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Abstract

Single-cell RNA sequencing (scRNA-seq) is a widely used technique for characterizing individual cells and studying gene expression at
the single-cell level. Clustering plays a vital role in grouping similar cells together for various downstream analyses. However, the high
sparsity and dimensionality of large scRNA-seq data pose challenges to clustering performance. Although several deep learning-based
clustering algorithms have been proposed, most existing clustering methods have limitations in capturing the precise distribution types
of the data or fully utilizing the relationships between cells, leaving a considerable scope for improving the clustering performance,
particularly in detecting rare cell populations from large scRNA-seq data. We introduce DeepScena, a novel single-cell hierarchical
clustering tool that fully incorporates nonlinear dimension reduction, negative binomial-based convolutional autoencoder for data
fitting, and a self-supervision model for cell similarity enhancement. In comprehensive evaluation using multiple large-scale scRNA-
seq datasets, DeepScena consistently outperformed seven popular clustering tools in terms of accuracy. Notably, DeepScena exhibits
high proficiency in identifying rare cell populations within large datasets that contain large numbers of clusters. When applied to
scRNA-seq data of multiple myeloma cells, DeepScena successfully identified not only previously labeled large cell types but also
subpopulations in CD14 monocytes, T cells and natural killer cells, respectively.
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INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) is a powerful technique
used in bioscience that allows researchers to measure gene
expression in individual cells. It enables the identification of
cell-to-cell differences in gene expression, revealing the complex
biology of tissues and organs [1]. scRNA-seq allows for the
identification of rare cell types or subpopulations that might
be missed with bulk RNA sequencing, leading to the discovery
of new biological processes and disease mechanisms [2]. It has
been widely used in cell type identification, disease research
and drug development and study dynamic changes in the
development process [3–6]. To gain a deeper understanding of the
transcriptome data and the variety of cells present, performing
cell clustering is the first and crucial step to identify the different
cell types. Furthermore, downstream analysis of scRNA-seq data
relies heavily on accurate cell typing, and the quality of the
cell clustering directly impacts the accuracy of downstream
results [7].

Although scRNA-seq can reveal individual cell characteristics
more accurately, the data often contains higher noise and missing
values than bulk RNA-seq due to the low RNA capture rate [8].
As a result, the high dimensionality, sparsity and noise of scRNA-
seq data make clustering a challenging task. Several clustering
methods have been developed for scRNA-seq data, such as CIDR
[9], SIMLR [10] and SC3 [11]. However, hierarchical clustering,
spectral clustering and k-means have limited scalability, making
them unsuitable for large datasets. Seurat4 [12] and SCANPY
[13] are two popular pipelines for large-scale single-cell data
analysis and use graph-based community detection algorithms
like Louvain [14] or Leiden [15] for clustering k-nearest neighbors
graphs after dimension reduction by principal component anal-
ysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE)
[16], or Uniform Manifold Approximation and Projection (UMAP)
[17]. Besides KNN graphs, there are also clustering algorithms on
shared nearest neighbors (SNN) graphs, such as SNN-Cliq [18]
and PhenoGraph [19]. We recently introduced SCENA [20], a novel
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clustering method that utilizes multiple feature sets, enhance-
ments of local affinity among cells and consensus spectral clus-
tering. Through large-scale validations, we validated its high per-
formance and demonstrated that consensus clustering and cell
similarity enhancement is effective strategies for cell clustering.
Although these graph-based community detection methods can
handle large-scale data, the constructed graphs may not cap-
ture proper relationships between cells [21, 22]. Moreover, linear
dimensionality reduction, except UMAP, is commonly applied to
scRNA-seq data before clustering, which discards the nonlinear
relationship between feature genes, resulting in reduced cluster-
ing accuracy [23].

To improve the clustering accuracy, several deep clustering
methods have been developed to embed high-dimensional
expression data points into a low-dimensional space using
autoencoders for nonlinear dimensionality reduction [24],
including DESC [25], scDeepCluster [26], scDMFK [27], scziDesk
[28], scAIDE [29], scGMAI [30], scCAN [31] and scDCCA [32], but
all have room for improvement. For example, some methods,
such as DESC [25], scDeepCluster [26] and scDMFK [27], ignore
the pairwise distance or affinity between cells, which limits their
inabilities to learn more cluster-friendly latent spaces with high
confidence. In other methods, such as scAIDE [29], scGMAI [30]
and scCAN [31], the lower-dimensional representation of cells
is learned separately from the clustering procedure, which uses
classical clustering methods such as k-means and graph clus-
tering. Additionally, some methods, such as scDeepCluster [26],
scGMAI [30], input all genes into autoencoders without feature
selection, which can be time-consuming. Some methods, such as
scDeepCluster [26], scziDesk [28], introduce data imputation in
their autoencoders before clustering, modelling the expression
values of each gene as a zero-inflated negative binomial (ZINB)
distribution and training the autoencoders by estimating the
paraments of the ZINB model. A recent systematic evaluation of
imputation methods on a set of benchmark scRNA-seq datasets
[33] found that autoencoder-based imputation methods such as
DCA [34], AutoImpute [35] and SAUCIE [36] did not essentially
help clustering algorithms to improve clustering accuracy, or even
reduce the clustering accuracy. In fact, recent studies also suggest
that the negative binomial (NB) is more appropriate than ZINB for
droplet-based scRNA-seq data, which is the current mainstream
commercial platform (e.g. 10× genomics) [37–40].

Another challenge in clustering is determining the optimal
number of clusters as it significantly affects the accuracy and
usefulness of the clustering results [21, 22]. However, there is no
definitive criterion for selecting the optimal number of clusters,
and it can vary depending on the clustering algorithm, dataset
and evaluation metrics used. Moreover, the number of clusters
can vary based on the specific goals and needs of the analysis,
especially in detecting rare cell types in scRNA-seq data [7,
22]. In mammals, the hierarchical organization of different cell
populations is naturally observed based on lineage relationships
and differentiation pathways [41, 42]. For instance, immune cell
populations have distinct subpopulations of T cells, B cells and
natural killer cells with specific immune functions [43]. To reflect
the complex and dynamic nature of cell differentiation and
specialization, an effective computational strategy is to perform
hierarchical clustering in scRNA-seq, where the expression
levels of genes or sets of genes can be hierarchically used as
features to perform clustering. So far, most of existing methods
of scRNA-seq clustering require predefined cluster numbers, but
limited methods can perform hierarchical clustering (CellBIC [44],
MRtree [45]). As the features (e.g. high variable genes) used for

upper-level cell populations may have poor performance in
detecting lower-level cell subpopulations (rare cell types), it is
important to extract different features for different levels of
different cell populations. This is especially pertinent when
targeting rare cell types—specific cell populations within a
tissue or organism present in very low frequencies but might
play critical roles in specific biological processes. Several recent
scRNA-seq studies have notably contributed to uncovering rare
cell types, including circulating tumor cells [46], plasma cells
in bone marrow [47], neuronal subtypes [48], rare immune
cell subsets [49] and developing embryonic cells [50]. These
discoveries have substantially contributed to our comprehension
of both normal physiological functions and disease-related
processes, subsequently influencing the formulation of novel
treatment strategies [51]. However, due to their rarity and
the specificity of gene expression attributes, the identification
and characterization of these cell types remain challenging
endeavors [29, 52–54]. In light of this, we propose that the strategic
application of hierarchical clustering, involving the definition of
distinct features for different clustering levels, could potentially
facilitate the efficient detection of rare cell types.

Based on these observations, we designed an enhanced deep-
learning method called DeepScena for cell clustering by fully
equipping the features of data imputation, dimensionality reduc-
tion, efficient clustering strategies of utilizing pairwise cell simi-
larities and hierarchically clustering for detecting rare cell types.
DeepScena especially employs a NB-based autoencoder by fit-
ting the NB model to accomplish data imputation and improve
accuracy. DeepScena then uses the deep clustering with self-
supervision model [55] that can gradually update pairwise data
similarities during training. To perform hierarchical clustering,
DeepScena recalculate the feature genes for different levels in a
top-down procedure. DeepScena was tested on eight large scRNA-
seq datasets and results shown it can not only recall popular cell
types but also delineate novel rare cell types.

MATERIALS AND METHODS
Overview of DeepScena
DeepScena is a deep clustering method for scRNA-seq data that
is based on a convolutional autoencoder network and pairwise
similarity enhancing networks. The framework of DeepScena is
depicted in Figure 1A and consists of two modules. The first
module is an NB-based convolutional autoencoder that is used for
data denoising, dimension reduction and preliminary clustering.
The second module is a fully connected neural network called
MNet, which uses pairwise cell similarities in a reliable subspace
to self-supervise the training procedure. The input layer of MNet
is the encoder’s output layer of the autoencoder.

Specifically, in the first module, DeepScena involves pre-
training the NB model-based autoencoder before clustering,
where the autoencoder maps each input cell xi to a latent space
U for dimensionality reduction, and soft assignments of each cell
to clusters are given in the latent space. To capture the unique
features of scRNA-seq data, an NB model-based loss function is
added to the autoencoder, with NB parameterized by the mean
(μ) and the dispersion (θ ). Additionally, two independent full
connection layers are added after the reconstruction layer to
estimate the mean and dispersion. The initialization of cluster
centers is obtained through standard k-means clustering in the
embedded feature space of the pre-training autoencoder, using
an NB distribution parameter loss function LNB. Subsequently,
DeepScena combines a weighted NB model-based loss function,
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Figure 1. The workflow of DeepScena. (A) Encoder-decoder structures implemented in DeepScena. In the first module, we train a NB model-based
denoising convolutional autoencoder to obtain a latent space U and a preliminary clustering in the latent space. The detailed specifications are shown
in Supplementary Figure S1. In the second module, we train MNet based on pairwise data similarities. (B) The top-down iterative application of DeepScena
to detect cell subpopulations. (C) Multiple myeloma cells were hierarchically clustered by DeepScena. (D) Downstream analysis of cell types.

a weighted reconstruction loss function Lr, and a weighted
centering loss function Lc to train the autoencoder by optimizing
the latent space, cluster centers and clusters simultaneously.
Moreover, the soft assignments of cells are treated as the weights
of the reconstruction and centering loss functions to prevent error
propagation caused by hard assignment.

In the second module, DeepScena uses a fully connected net-
work called MNet for self-supervision. MNet is appended to the
encoder part of the autoencoder trained in the first module after
discarding the decoder part. The representation of each cell in the
final latent space U is mapped to a trained K-dimensional space
q, where K is the number of cell clusters, and the inner product
is used for cell–cell similarity measurement. In this space, a pair
of similar cells is very close to each other, and a pair of dissimilar
cells is far away from each other. MNet strengthens similarities
between two similar cells and weakens similarities between two
dissimilar cells, with only similar and dissimilar pairs of cells
contributing to training MNet. Consequently, the second module
enhances the distinguishability of the final clusters and can better
handle data with complex distributions.

To hierarchically detect cell populations, DeepScena includes
a top-down loop that iteratively applies two modules to dif-
ferent levels of clusters. In each run of a cluster, the feature
genes are reselected within the cells of the cluster, which reflects
the natural differentiation linkages of mammalian cell systems
(Figure 1B). As a real-case application, we used DeepScena to
analyze scRNA-seq data of multiple myeloma (MM) and detect its
heterogeneous cell types within the immune microenvironment
under precursor stages [56] (Figure 1C). Finally, DeepScena was
systematically designed to output analysis results for diverse
downstream analysis purposes (Figure 1D).

Data preprocessing
DeepScena takes raw scRNA-seq reads count matrix as input.
To remove extreme low-quality cells and/or genes, the Python
package SCANPY (version 1.9.1) is applied to preprocess the raw
reads count matrix X with m genes and n cells. Firstly, we filter
out genes with non-zero counts in less than three cells. Secondly,
we normalize each cell by total counts over all genes using a size
factor of 104 (using the ‘pp.normalize_total’ function), followed by

log-transformation on the normalized matrix (using the ‘pp.log1p’
function). Since the matrix X is high-dimensional and sparse, both
ubiquitous and low-expressed genes do not better identify and
describe the cell types. Therefore, we select top t highly variable
genes (using the ‘pp.highly_variable_genes’ function) to obtain a
new matrix X′ = (

xij
)

n×t. Then, for each cell i, we reshaped the
values of the t selected genes in X′ into a r × r matrix (t = r2)
as the input of cell i in DeepScena. Reshaping each cell into a
matrix can better capture the nonlinear dependence among genes
than using a single vector. Therefore, cell clustering can adopt
similar methods of image clustering. Denote the preprocessed and
reshaped dataset as X̃ = (x1, x2, . . . , xn) where xi indicates the r × r
matrix of the i-th cell.

NB-based convolutional autoencoder
Given the preprocessed dataset, X̃ = (x1, x2, . . . , xn), where each xi

represents the i-th cells, we construct a NB model-based autoen-
coder network to estimate NB parameters, assuming the number
of clusters K is predetermined. The autoencoder network consists
of an encoder and a decoder, each with two independent fully
connected layers. The encoder uses three convolution layers and
a fully connected layer to map X̃ to a d-dimensional space (where
d � t). The resulting latent representation of X̃ is denoted by
U = (u1, u2, . . . , un). We apply soft clustering in the latent space
U by training the autoencoder using weighted reconstruction,
NB parameter and centering losses. The decoder then recon-
structs the d-dimensional data into the original t-dimensional
data through a fully connected layer and three deconvolution
layers. For each cell xi, the reconstructed output of the decoder
is denoted by x̂i.

To capture the characteristics of scRNA-seq data, we incorpo-
rate a NB model-based loss function into the autoencoder. NB is
parameterized with the mean μ and the dispersion θ :

PNB
(
[x′] |μ, θ

) = �
(
[x′] + θ

)
[x′] ! � (θ)

(
θ

θ + μ

)θ(
μ

θ + μ

)[x′]
, (1)

where [x′] represents the rounded preprocessed expression values
in X′. Let D be the output of the decoder. We use an exponential

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
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activation function for the mean and dispersion parameters since
they are non-negative values.

Specifically, the NB-based loss function in the autoencoder is
the negative log-likelihood of NB, which is given by μ = exp

(
WμD

)
and θ = exp (Wθ D) , where W represents network weight parame-
ter matrices. The NB-based loss function is given by:

LNB = − log
(
PNB

(
[x′] |μ, θ

))
. (2)

We first pretrain the autoencoder using the NB model-based
loss function LNB shown in Formula (2). This allows us to obtain
low-dimensional representations of cells in the latent space. We
then perform k-means clustering in the latent space to obtain K
initial cluster centers

[
u(1), u(2), . . . , u(K)

]
. Next, we train the autoen-

coder K times, once for each cluster, to make cell points more
likely to belong to their true cell clusters. To achieve this, we
define three loss functions. The first is for reconstruction of the
convolutional autoencoder, the second is for centering of clusters
and the third is for fitting NB distribution parameters.

Specifically, the loss function L(k)
u for the kth run is given in

Formula (3). This function includes three weighted sum losses:
L(k)

r , L(k)
c and L(k)

NB, defined by Formulas (4), (5) and (6), representing
the weighted sum losses of cell reconstruction, centering and NB
fitting respectively. Here we use two hyperparameters α and β to
balance the three components of the loss function L(k)

u . The level
of fuzziness, λ, is set to 1.5 in all experiments.

For each cell i, we calculate the membership degree pik to the
kth cluster by measuring the Euclidean distance between ui and
the cluster center u(k). The autoencoder’s parameters are then
updated by minimizing the loss function L(k)

u . The membership
degree pik is defined in Formula (7). The soft assignment of xi

is denoted by pi=
(
pi1, pi2, · · · , piK

)T, which is used as weights in
Formulas (4), (5) and (6). Every T1 iterations (epochs), the cluster
center u(k) is updated to the average of weighted cell points in
the latent space as defined in Formula (8). If the total number of
epochs is xT1, then each cluster center is updated x times. Thus,
DeepScena adapts its dimensionality reduction and clustering
procedures with every epoch by carrying out these steps alter-
nately. As shown in Formulas (4)–(6), the λ power of the clustering
probability pik is used as a nonlinear weight in the autoencoder’s
reconstruction, centering and NB loss functions. This approach
effectively draws cells belonging to the same cluster into closer
proximity within the low-dimensional latent space.

L(k)
u = L(k)

r + αL(k)
c + βL(k)

NB (3)

L(k)
r =

n∑
i=1

pλ
ik

∥∥xi − x̂i

∥∥2
2 (4)

L(k)
c =

n∑
i=1

pλ
ik

∥∥∥ui − u(k)
∥∥∥2

2
(5)

L(k)

NB = −
n∑

i=1

pλ
ik

t∑
j=1

log
(
PNB

([
xij

] |μ, θ
))

(6)

pik =
(∥∥∥ui − u(k)

∥∥∥ 2
m−1

2

)−1/ K∑
j=1

(∥∥∥ui − u(j)
∥∥∥ 2

m−1

2

)−1

(7)

u(k) =
n∑

i=1

pm
ikui

/ n∑
i=1

pm
ik (8)

Self-supervision via MNet
After running the first module of DeepScena, a fully connected
network MNet is attached to enhance the cell–cell similarity.
The input of MNet is the latent representation of each cell in
the autoencoder’s latent space, and the output layer consists
of K neurons, each corresponding to a cell cluster. The Softmax
function is applied in the output layer to obtain probability values
indicating the likelihood of a cell belonging to each of the K
clusters. For an input cell xi, the output value at the k-th neuron
in the output layer, qik, represents the probability of xi belonging
to the k-th cluster. The soft assignment of xi in MNet is denoted
by qi=

(
qi1, qi2, · · · , qiK

)T.
The training of MNet is divided into two phases. In the first

phase, MNet is randomly initialized. Within T2 training iterations
(epochs), the assignments p1, p2 . . . , pn, in the space U are used to
train q1, q2, . . . , qn with the loss function (9). Here δ (0 < δ < 1)
is a hyperparameter used to identify cell pairs with similarity
higher than δ or lower than 1−δ, and I [· ] is the indicator function.
Typically, δ is set to a decimal fraction less than 1, such as δ = 0.8,
so that similarity scores between 1 − δ = 0.2 and δ = 0.8 are
not used to train the MNet to avoid inconclusive clustering. In
each of the T2 iteration, the cluster centers u(k), k = 1, · · · , K, are
updated again using formula (8), and a relatively reliable space q
is obtained after T2 iterations. The MNet is then fine-tuned for a
number of epochs using the loss function LPhase2 defined in (10) in
the second phase.

The self-supervision approach allows the adoption of self-
defined pseudo labels as a form of supervision, where the cells
exhibiting high similarity should be classified into the same type,
while cells demonstrating significant dissimilarity should be cat-
egorized into different types. This curated supervised information
is then used to enhance the cell similarity measurement. The uti-
lization of self-supervised information contributes to an improve-
ment in clustering accuracy by further refining the model’s ability
to discern cell types based on their intrinsic similarities.

LPhase1 =
∑

xi ,xj∈X̃

(
I
[
pT

i pj ≥ δ
] (

1 − qT
i qj

) + I
[
pT

i pj ≤ (1 − δ)
] (

qT
i qj

))
(9)

LPhase2 =
∑

xi ,xj∈X̃

(
I
[
qT

i qj ≥ δ
] (

1 − qT
i qj

) + I
[
qT

i qj ≤ (1 − δ)
] (

qT
i qj

))
(10)

Parameter settings for networks
The proposed autoencoder employs an asymmetric design with a
bottleneck layer following each convolutional layer in the encoder
(see specific structure and specification in Supplementary Figure
S1). When a dataset contains m ≥ 2000 highly variable genes
identified by SCANPY, the input number of such genes is set as
r2 = 282; for datasets with m < 2000 highly variable genes,
the input number is set as r2 = 162. MNet’s input and output
stem from the d-dimensional latent space U and K-dimensional
space q, respectively. The fully connected network architecture of
MNet for all datasets is d − 128 − 128 − 128 − K. The autoencoder
and MNet weights are updated with the Adam optimizer [57],
utilizing the learning rate of 10−6, respectively. DeepScena utilizes
six hyperparameters α, β, λ, δ, T1 and T2, which remain constant
across all scRNA-seq datasets. Similar to DCSS [55], the value of
hyperparameter α that indicates the importance of the centering
loss L(k)

c in the loss function (3) is set to 0.1, the level of fuzziness
λ is set to 1.5, and the similarity cutoff δ is also set to 0.8 in
DeepScena. The other three hyperparameters β, T1 and T2, will be
discussed in the ‘Results’ section.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
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Datasets and evaluation metrics
To evaluate the performance of DeepScena, we selected scRNA-
seq datasets with large sizes (e.g. from thousands to tens
of thousands of cells) and mainstream sequencing protocols
(Supplementary Table S1). Briefly, the PBMC 4K dataset, which
contains the transcriptome of 4340 peripheral blood mononuclear
cells (PBMCs) from a healthy donor, and a dataset (referred
to as ‘Hgmm’), which is 1:1 mixture of fresh frozen human
HEK293T and mouse NIH3T3 cells, were downloaded from the
10× Genomics website. The scRNA-seq dataset of pancreatic
islets from four human donors (referred to as Baron dataset) was
downloaded from NCBI GEO database with access ID GSE84133.
We also downloaded four additional datasets sequenced from
mouse prefrontal cortex (referred to as Bhattacherjee dataset
[58]), visual cortex (referred to as Tasic dataset [59]) and cerebral
cortex (referred to as Zeisel dataset [60]), arcuate hypothalamus
and median eminence (referred to as Campbell dataset) with
access IDs of GSE124952, GSE115746, GSE60361 and GSE93374,
respectively. Another real dataset for detecting rare cell types
is multiple myeloma (MM) that was downloaded with access ID
of GSE124310. After quality control, a total of 5541 cells were
extracted from seven MM patients for downstream clustering
analysis (referred to as Zavidij dataset). The top 25 differentially
expressed genes (DEGs) were detected and plotted by using
SCANPY [13].

Two standard metrics, normalized mutual information (NMI)
and adjusted Rand index (ARI), were used to evaluate clustering
performance as we did in SCENA [20]. Both have a maximum value
of 1, with higher scores indicating better clustering performance.
ARI and NMI are defined in (11) and (12), respectively, and are
calculated based on a predicted clustering X = (X1, X2, . . . , Xr)

and a true partition Y = (Y1, X2, . . . , Ys). Here, n represents the
number of cells, nij represents the number of cells in true partition
Yj assigned to predicted cluster Xi. ni and nj represent the number
of cells in Xi and Yj, respectively.

ARI =

∑
ij

(
nij
2

)
−

[∑
i

(
ni
2

) ∑
j

(
nj
2

)]/(
n
2

)

1
2

[∑
i

(
ni
2

)
+ ∑

j

(
nj
2

)]
−

[∑
i

(
ni
2

) ∑
j

(
nj
2

)]/(
n
2

)
(11)

NMI =
∑

i
∑

j nij log
nnij
ninj

max
(

− ∑
i ni log

ni
n , −∑

j nj log
nj
n

) (12)

Comparison with other methods
For further benchmarking the performance of DeepScena, we
conducted a comparative analysis against seven recently devel-
oped unsupervised clustering algorithms: SCENA [20], scDeep-
Cluster [26], scziDesk [28], scAIDE [29], scGMAI [30], scCAN [31]
and scDCCA [32]. Our selection of these tools was driven by
specific factors. For instance, SCENA [20] has demonstrated its
superiority over SC3 [11], Seurat4 [12], SCANPY [13], pcaReduce
[61] and SNN-cliq [18]. Similarly, scAIDE claims to be superior
to scVI [62], scScope [63], SC3 [11], CIDR [9] and SIMLR [10].
Meanwhile, scziDesk [28] assets its advantage over to CIDR [9]
and SIMLR [10]. We specifically selected two newly published
methods scCAN [31] and scDCCA [32] that also use deep learning
techniques. All tools were applied to the eight datasets (Supple-
mentary Table S1) by using the parameters recommended by their
authors, with the cluster numbers set as them in their original
studies or automatically determined by built-in methods. This
rigorous comparative analysis aims to evaluate the strengths and
weaknesses of these algorithms in diverse clustering scenarios.

We have run all programs on a Linux workstation (CPU: Intel
Xeon E5-2620/2.10GHz/8 cores) with a GPU (Nvidia GTX 1080Ti). To
handle large-scale scRNA-seq data, DeepScena was developed by
using the PyTorch framework, enabling CPU/GPU parallel comput-
ing. When GPU are available, it utilizes CUDA implementations for
its main functions. The running instructions and codes of these
eight tools are available on https://github.com/shaoqiangzhang/
DeepScena.

RESULTS
The NB-based autoencoder is better than a
regular autoencoder
Firstly, we tested the performance of the first module with dif-
ferent values of the hyperparameter β on various datasets. In
DeepScena, the hyperparameter β indicates the importance of the
NB-based loss L(k)

NB in the loss function (3). We ran the first module
with different β ∈ (0, 0.01, 0.1, 1) and T1 = 2 on the Bhattacherjee,
Tasic, PBMC4K and Zeisel datasets (Supplementary Figure S2A).
The performance when β = 0.1 is more outstanding than the
other β values, particularly than the regular autoencoder without
the NB-based loss (i.e. β = 0). This indicates that the loss function
containing a certain proportion of NB-based loss is more suitable
for clustering scRNA-seq data than that without NB-based loss.
Additionally, this shows that NB-based convolutional autoencoder
has a certain imputation effect on these scRNA-seq datasets. We
set β = 0.1 as the default value for all datasets.

In the first module of DeepScena, the cluster centers need to be
updated every T1 iterations. We tested the clustering performance
of the first module with different intervals T1 ∈ (1, 2, 5, 10, 20)

on each dataset with the number of epochs increasing. Results
on four datasets show that a smaller value of T1 achieves better
clustering performance (Supplementary Figure S2B). To maintain
higher performance while reducing training time, we have set T1 =
2 for all datasets. Furthermore, we observed that for T1 = 2, the
performance of each experiment can achieve a relatively stable
state after 20 epochs (Supplementary Figure S2B). Therefore, we
set the default number of epochs in the first module of DeepScena
to 20.

The MNet module improves clustering
performance
To evaluate the performance of the second module, we first tested
its results with different values of hyperparameter T2 on the
Bhattacherjee, Tasic, PBMC4K and Zeisel datasets. Specifically,
we tested T2 ∈ (1, 5, 10, 15, 20) and observed that, as the num-
ber of epochs increased, smaller values of T2 led to faster and
more stable ARI scores. While larger values of T2 required more
epochs and longer running times without much improvement in
performance (Supplementary Figure S2C). Therefore, selecting T2

between 1 and 5 can result in high-performance clustering. In
our experiments, we selected T2 = 1 as the optimal value for all
datasets and set the number of epochs for the second module
to 20. As the total number of epochs for the two modules is 40,
DeepScena proves to be time effective.

We also compared the clustering performance of the first
module (NB-based autoencoder) and the second module (MNet)
by running each module 10 times on each dataset and recording
the ARI and NMI scores. We then used these scores to gener-
ate boxplots, which are shown in Figure 2A and B. Averagely,
5–10% increasments of ARI and NMI scores were observed for
the eight datasets. The results demonstrate that DeepScena with
both modules outperforms the first module alone for all eight
datasets. Furthermore, the clustering results of ARI and NMI

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://github.com/shaoqiangzhang/DeepScena
https://github.com/shaoqiangzhang/DeepScena
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
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Figure 2. Performance and comparison of DeepScena. (A) ARI and (B) NMI comparison between only the first module (NB-based autoencoder) and the
two modules (NB-based autoencoder + MNet) for each dataset. (C) ARI comparison of eight clustering tools. (D) NMI comparison of eight clustering
tools.

obtained after MNet applied have smaller variances than those
of the first module in seven datasets (Figure 2A and B), suggesting
that MNet can improve the probability of similar cells belonging
to the same cluster while reducing the likelihood of dissimilar
cells being grouped together. Thus, implementing the second
module is necessary for improving the clustering performance of
DeepScena.

Performance comparison of DeepScena and
other seven methods
Here, we aimed to compare DeepScena with other seven popular
methods that are recently designed for unsupervised clustering.
For each of the eight clustering methods, we generated box-
plots of ARI scores by applying it to each dataset ten times.
The results show that the ARI scores of DeepScena consistently
remain high across all eight datasets (Figure 2C, Supplementary
Table S2). In details, DeepScena excels in six datasets and secures
the second rank in the remaining two datasets (Campbell and
Hgmm). In comparison, the performance rankings of the other
seven methods are on average lower and display greater variances
than DeepScena across eight datasets. Specifically, DeepScena
was compared with two newly published methods, scCAN [31]
and scDCCA [32], both of which also incorporate deep learning-
based techniques. Results show that while scCAN and scDCCA
demonstrate commendable performance across these datasets,
their ARI and NMI scores do not match those achieved by Deep-
Scena. In general, scDCCA emerges as either the second or third
best performer across most datasets; however, its performance
stability is noticeably compromised, characterized by large stan-
dard deviations. The results are similarly observed in NMI metric
(Figure 2D, Supplementary Table S3).

As the cluster numbers of the eight datasets range from 8 to 23
(Supplementary Table S1), we further checked if DeepScena can
work well for datasets with large cluster numbers, where the data
may include more heterogenous and rare cell types. We observed

DeepScena can achieve good performance of ARI and NMI on
those datasets with large cluster numbers. For example, on three
datasets Tasic dataset (23 clusters), Campbell dataset (20 clusters)
and Baron dataset (14 clusters), DeepScena achieved ARI scores of
0.7952, 0.5632 and 0.7021, respectively, and NMI scores of 0.8935,
0.6916 and 0.8111, respectively. DeepScena outperformed scAIDE,
which was designed for clustering rare cell types. The main reason
for DeepScena’s high performance is that the newly constructed
latent space is better at separating different cell clusters. For
example, Tasic dataset has 23 clusters and four of them each
have less than 100 cells that are annotated in authors original
annotation. However, the authors clustering annotations show
multiple clusters aggregate each other (Supplementary Figure
S3A), while they are separated by using the reconstructed latent
space in DeepScena (Supplementary Figure S3B).

Robustness against dropout noise
In scRNA-seq, dropout refers to the phenomenon where a gene
appears to have zero or very low expression in a single cell, even
though it is known to be expressed in other cells or bulk tissue
samples. Although much progress has been made in scRNA-
seq data, different dropout levels are still frequently observed,
largely due to technical limitations such as the low amount of
RNA in single cells and the low sensitivity of detection methods.
It is important to evaluate the performance of computational
methods in accurately recovering cell-type populations at various
dropout rates. To this end, we generated simulations by randomly
reassigning certain proportions of genes as zeros. Among the eight
datasets used in this study, five have high original dropout rates
of over 90% (Supplementary Table S1). Therefore, we performed
the above simulation procedures for three datasets that have
lower dropout rates, less than 90% and increased the dropout
rates to 90% (Zeisel and Tasic datasets) and 95% (Bhattacherjee),
respectively. The simulation was performed 10 times for each
dropout rate level, and performance indices were plotted for six

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
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methods including the newly published deep learning-based
methods scCAN and scDCCA. The results show that, in each
dataset, the ARI scores of DeepScena outperform those of the
other five methods under different dropout rates (Figure 3).
Particularly, when the dropout levels increased from 85.7 to 90%
for the Zeisel dataset, the average performance of DeepScena on
Zeisel remained stable, but only the variances increased slightly
(Figure 3A). We further noticed that DeepScena maintained
fair performance on the Tasic (Figure 3B) and Bhattacherjee
(Figure 3C) datasets when the dropout levels increased from
∼80 to 85%. Overall, the results show that DeepScena has high
potential and super performance in separating and delineating
cell groups, regardless of high dropout levels.

Hierarchically detecting rare cell subpopulations
Unsupervised clustering analysis is an important practical strat-
egy for detecting rare cell types and providing biological insights
into cancer pathology. However, there are two technical chal-
lenges in unsupervised clustering: defining the cluster numbers of
cell types and retaining high performance for low cell numbers of
rare subpopulations. Clustering cells hierarchically is one strategy
to overcome these limitations. Classical hierarchical clustering
methods use cell-to-cell distance to reconstruct a tree structure,
which is highly affected by the different choice of an appropriate
metric and linkage criterion. Additionally, the cell-to-cell distance
is usually calculated using a fixed gene group, such as high vari-
able genes selected by dimension reduction approaches, which
may be highly biased towards regular and large cell types but not
suitable for rare cell types. Considering the complex and dynamic
nature of cell differentiation and specialization, it is reasonable to
perform hierarchical clustering by iteratively reselecting feature
genes at different cell levels.

To implement this strategy, DeepScena was iteratively applied
in a top-down process to detect rare cell types. We used
Bhattacherjee dataset as a detailed case study. The dataset
was obtained from the prefrontal cortex (PFC) cells of 12 mice,
including a total of 24 822 PFC cells merged from saline (11
886 cells) and cocaine (12 936 cells) condition groups [58]. First,
we applied DeepScena to all cells and detected 10 clusters
(Figure 4A), which recovered major cell types in the original
analysis using the Seurat pipeline [58, 64]. For each cell type,
we predicted the top 25 DEG genes (Supplementary Figure S4A)
and checked their cell-specific expression profiles. The expression
of the top 2 DEGs showed that most of them are only expressed
in one or two cell types (Supplementary Figure S4B). We also
observed that DeepScena could delineate another neuron type
among the excitatory neurons that were clustered together in
both analyses. We further applied DeepScena to these neurons
and found eight subpopulations (Figure 4B), including layer 2/3
pyramidal neurons, layer 5 pyramidal neurons, layer 6 pyramidal
neurons and layer 4 spiny stellate neurons. After predicting the
DEGs for these cell types (Supplementary Figure S5A and B),
we found that some of these genes have been reported to be
differentially expressed in certain layers or cell types. For instance,
Bcl11b is highly expressed in layer 5 neurons, including pyramidal
neurons [65], and Rab3c is more highly expressed in layer 2/3
than in layer 5 [66]. Calb1 (calbindin 1) is commonly used as a
marker for a subpopulation of layer 2/3 pyramidal neurons that
project to subcortical structures [67]. The clustering result of the
second iteration further demonstrates that DeepScena can well
reselect the feature gene sets to separate cell types. We then
applied DeepScena to the largest group of layer 2/3 pyramidal
neurons and found they could be clustered into seven further

subpopulations (Figure 4C). However, we also found that these
seven clusters were aggregated together in UMAP visualization,
suggesting that the highly variable genes have no significant
difference to separate them well. After checking the top-ranked
DEGs for each cell cluster (Supplementary Figure S6A), we noticed
that although the top-ranked DEGs have a cell-specific expression
pattern (Supplementary Figure S6B), they are not as specific as
upper-level DEG genes as shown in Supplementary Figures S4B
and S5B. Thus, the iteration of hierarchical clustering can be
practically terminated under such a case. Furthermore, most of
the marker genes at different levels are different (Supplementary
Figures S4B, S5B, and S6B), supporting our technical hypothesis
that different features are associated with different levels of
different cell populations.

Detecting rare cell subpopulations in multiple
myeloma
To demonstrate the performance of DeepScena in real data anal-
ysis, we applied it to scRNA-seq data from multiple myeloma
(MM) patients. MM is a hematological malignancy of plasma
cells characterized by extensive tumor heterogeneity, making
it largely incurable [68]. To better understand the clonal com-
plexity of tumor cells and immune microenvironment, several
scRNA-seq research projects have been performed to delineate
ongoing tumor dynamics and improve molecular stratification in
patients with MM [56, 69]. Here, we hypothesize that DeepScena
can improve data analysis by accurately dissecting diverse cell
types within the MM tumor microenvironment. We applied Deep-
Scena to the 5541 cells of seven newly diagnosed MM patients [56].
Our results show that the transformed latent space in DeepScena
improved performance in separating potential cell clusters com-
pared with author’s original labeling. As shown in Figure 5A, the
author’s labels of 10 cell types are separated into several small
clusters, particularly for CD14 monocytes, T cells and natural
killer (NK) cells. For instance, CD14 monocytes are distributed into
three individual groups, T cells are in four groups and NK cells
are in three groups, suggesting that these three cell types can be
further clustered into cell subpopulations.

To discover those potential subpopulations, we applied Deep-
Scena to the raw data to obtain a total of 15 clusters, which not
only recalled the authors original annotations (Figure 5A) but also
well separated CD14 monocytes, T cells and NK cells, respectively
(Figure 5B). To elucidate the potential functional characteristics
of different cell types, we conducted analysis of top 25 DEGs
for each cluster (Supplementary Figure S7) and particularly
emphasized the investigation of the 15 most highly ranked DEGs
corresponding to each of the 15 cell types. Remarkably, many
of these DEGs are widely recognized markers for immune cells
(Figure 5C). For instance, CD79A is specifically expressed in B
cells and pre-B cells (cluster 1 and 7 in Figure 5B,C), where it plays
a crucial role in B cell activation and the initiation of the humoral
immune response [70]. This protein is commonly used as a
marker for identifying B cells in various applications, such as flow
cytometry, immunohistochemistry and immunofluorescence [71,
72]. Similarly, IL7R is a marker of T cells, B cells and NK cells, and
is often used in conjunction with other markers to distinguish
between different subsets of T cells [73]. MNDA, a myeloid cell
nuclear differentiation antigen, is primarily expressed in the
nucleus of myeloid cells, including monocytes, macrophages and
granulocytes, where it regulates gene expression and differentia-
tion [74]. LST1, a leukocyte-specific transcript 1, is also a marker
of various immune cells, including monocytes, macrophages
and neutrophils, and is involved in regulating various cellular

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad335#supplementary-data
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Figure 3. Performance of six tools on different dropout rates. The ARIs were calculated for three datasets, Bhattacherjee (A), Tasic (B) and Zeisel (C).

processes such as phagocytosis, cytokine production and antigen
presentation [75]. CTSW, a protease enzyme, is primarily
expressed in cytotoxic T cells, where it contributes to the cleavage
and degradation of target cells [76, 77]. Although it has also been
found to be expressed in other cell types, such as natural killer
cells, mast cells and dendritic cells, its expression in these cells
is generally lower than in cytotoxic T cells. Moreover, we found
that although other genes were not marker genes, they were
specifically expressed in different types of B cells or T cells and

implicated in various biological processes, providing insight into
the differentiation and activation states of immune cells in MM
pathology.

DISCUSSION
In this study, a novel deep-learning clustering method called
DeepScena was designed for scRNA-seq data analysis that
provides accurate results for detecting rare cell populations.
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Figure 4. DeepScena can hierarchically detect rare cell populations. (A) DeepScena detected ten cell types at the top level. (B) Cluster the excitatory
neurons into eight subpopulations. (C) Cluster the layer 2/3 pyramidal neurons into seven subpopulations.

Figure 5. DeepScena separates different cell types in MM. (A) Author’s labels on latent space. (B) DeepScena’s prediction of fifteen cell types. (C) The
violin plots for top-one ranked marker genes of each cell type.

The method was fully equipped with features such as data
imputation, dimensionality reduction, enhanced pairwise cell
similarities, and efficient clustering strategies. A key feature of
DeepScena is the use of a negative binomial-based autoencoder to
fit the NB model for data imputation, which enhances accuracy.
Additionally, DeepScena uses paired data similarity as a self-
supervised means to capture cell relationships and obtain a
cluster-friendly space for efficient aggregation of similar cells.
The study found that the NB-based autoencoder in DeepScena
outperformed a regular autoencoder in terms of clustering
scRNA-seq data. DeepScena was tested on eight expansive scRNA-
seq datasets, yielding results that its ARI/NMI scores excel in
six datasets and secure the second rank in the remaining two
datasets (Campbell and Hgmm). One potential explanation for
DeepScena not consistently outperforming other models could
be its uniform utilization of hyperparameter settings across all
datasets. This approach, however, in turn mitigates overfitting
issues commonly observed in methods trained exclusively on
specific datasets [78]. This notion is supported by the fact that
the performance rankings of the other seven methods average
lower and exhibit greater variances than DeepScena across the
eight datasets.

The application of DeepScena to MM scRNA-seq datasets facil-
itated the identification of discrete subpopulations within CD14
monocytes, T cells and natural killer (NK) cells. This discovery
holds critical implications for enhancing our understanding of
immune cell diversity and its role in MM development. Through
the exploration of gene expression profiles within these subpopu-
lations, we gain insights into their distinctive functions within the

immune system. For instance, the specific expression of CD79A in
B cells and IL7R across T cells, B cells and NK cells underscores
their roles as essential markers for immune cell identification
and differentiation. Similarly, the presence of MNDA and LST1 in
myeloid cells provides insights into the regulation of gene expres-
sion and differentiation in monocytes, macrophages and granulo-
cytes. Moreover, the identification of CTSW’s specific expression
in cytotoxic T cells and its lower expression in other immune cells
like natural killer cells provides a nuanced understanding of its
involvement in target cell degradation. These findings not only
enrich our knowledge of immune cell subpopulations but also
offer potential avenues for investigating their distinct functions
and contributions to immune responses.

As the features used to define large cell populations are dif-
ferent with those used for subpopulations within one cell group,
the DeepScena method can be run iteratively on these clusters to
further detect rare cells, thus partially resolved the question of
determining optimal cluster numbers. However, determining the
number of clusters is challenging in general as there is no clear
objective criterion for selecting the optimal number of clusters. A
common approach is to use metrics such as the silhouette score
[79] or the gap statistic to evaluate the quality of the clustering
results for different numbers of clusters. However, these metrics
are not always reliable and may not accurately reflect the under-
lying biological structure of the data. Additionally, the choice of
clustering algorithm and the choice of input parameters can have
a significant impact on the clustering results, further complicat-
ing the task of determining the optimal number of clusters. To
address these challenges, one approach is to use a consensus
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clustering approach, where multiple clustering algorithms and
input parameters are used to generate multiple clustering solu-
tions. These solutions are then combined to identify a consensus
solution that is more robust to the variability and noise in the
data. Another approach is to use dimensionality reduction tech-
niques such as PCA or t-SNE or UMAP to visualize the data and
manually identify distinct subpopulations of cells. For example,
we can visualize the distribution of cells by using the UMAP [17]
method to reduce the input matrix to two dimensions and observe
the number of cell blocks as the number of preliminary clusters.
Furthermore, users can run DeepScena on different clusters num-
bers and choose the optimized numbers with best ARI and/or
NMI scores. Trying different cluster numbers can lead to novel
biological discoveries, as this empirical procedure is important for
detecting rare cell types that we have no prior information about.

In summary, we have demonstrated that DeepScena performs
exceptionally well in detecting rare cell types, thereby revealing
important information about their characteristics and functions.
The ability to detect and study these rare cell types using scRNA-
seq has tremendous potential to provide new insights into the
biology of various tissues and diseases, which could eventu-
ally lead to the development of novel treatments and thera-
pies. Nonetheless, there remains room for further enhancing the
precision and applicability of DeepScena. For instance, we can
expand DeepScena’s scope to integrate diverse single-cell omics
datasets, such as scATAC-seq [80] or scMethyl-seq [81], to achieve
a comprehensive understanding of cellular heterogeneity and
epigenetic regulation. Additionally, we can explore transfer learn-
ing techniques [82], leveraging pre-trained models on extensive
datasets and adapting them to datasets with limited samples,
thus enhancing DeepScena’s generalizability. Furthermore, we
can extend DeepScena’s capabilities to accommodate bulk RNA-
seq data and spatial transcriptomics data [83], enabling a more
comprehensive appreciation of cellular diversity within tissues
[84]. By addressing these research topics and challenges, Deep-
Scena could evolve into a more versatile and comprehensive tool
for deep-learning-based clustering analysis of scRNA-seq data,
with applications spanning across various biological contexts.

Key Points

• DeepScena is fully equipped with multiple deep-
learning-based technical features for high performance
of hierarchical clustering analysis.

• DeepScena enables efficient autoencoders by incorpo-
rating data-specific distributions (e.g. negative bino-
mial).

• DeepScena is robust against high dropout noise levels
and can hierarchically identify rare cell types from large
scRNA-seq datasets.
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