
micromachines

Article

Tunable Wettability Pattern Transfer Photothermally Achieved
on Zinc with Microholes Fabricated by Femtosecond Laser

Fengping Li 1,2,* , Guang Feng 2, Xiaojun Yang 3, Chengji Lu 2, Guang Ma 2, Xiaogang Li 2, Wei Xue 2

and Haoran Sun 2

����������
�������

Citation: Li, F.; Feng, G.; Yang, X.;

Lu, C.; Ma, G.; Li, X.; Xue, W.; Sun, H.

Tunable Wettability Pattern Transfer

Photothermally Achieved on Zinc

with Microholes Fabricated by

Femtosecond Laser. Micromachines

2021, 12, 547. https://doi.org/

10.3390/mi12050547

Academic Editor: Martin Byung-

Guk Jun

Received: 13 April 2021

Accepted: 6 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
2 Zhejiang Provincial Engineering Lab of Laser and Optoelectronic Intelligent Manufacturing,

Wenzhou University, Wenzhou 325035, China; fengguang0150@link.tyut.edu.cn (G.F.); lcj@wzu.edu.cn (C.L.);
ma_guang@wzu.edu.cn (G.M.); lixiaogang@lyncwell.cn (X.L.); xw@wzu.edu.cn (W.X.);
sun13736712970@163.com (H.S.)

3 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China;
laser_ceo@opt.cn

* Correspondence: lfp@wzu.edu.cn; Tel.: +86-577-8551-6752

Abstract: A quickly tunable wettability pattern plays an important role in regulating the surface
behavior of liquids. Light irradiation can effectively control the pattern to achieve a specific wettability
pattern on the photoresponsive material. However, metal oxide materials based on light adjustable
wettability have a low regulation efficiency. In this paper, zinc (Zn) superhydrophobic surfaces
can be obtained by femtosecond-laser-ablated microholes. Owing to ultraviolet (UV) irradiation
increasing the surface energy of Zn and heating water temperature decreasing the surface energy of
water, the wettability of Zn can be quickly tuned photothermally. Then, the Zn superhydrophobic
surfaces can be restored by heating in the dark. Moreover, by tuning the pattern of UV irradiation, a
specific wettability pattern can be transferred by the Zn microholes, which has a potential application
value in the field of new location-controlled micro-/nanofluidic devices, such as microreactors and
lab-on-chip devices.

Keywords: tunable wettability; wettability pattern; femtosecond laser

1. Introduction

In nature, the lotus has excellent superhydrophobic surfaces [1]. After long-term
research, it has been determined that in the characterization of superhydrophobic surfaces,
they must have a certain rough structure and low surface energy [2]. Therefore, there
are two methods for preparing superhydrophobic surfaces: one is fabricating a rough
structure with low surface energy; the other is fabricating a rough surface and then spraying
a low-surface-energy modifier onto it. However, the fixed wettability surface cannot
satisfy the needs of a functional surface. Tunable wettability surfaces play an important
role in regulating the surface behavior of liquids, which can be used for printing [3],
droplet transfer [4], microfluidic systems [5], oil-water separation [6,7], and underwater
gas collection [8–10].

In recent years, the tunable wettability of some metal oxide materials under light
stimulation has attracted much attention [11–13]. The metal oxide ZnO, which is an
important light-sensitive material, has the advantages of good stability and low cost, but its
regulation efficiency is low. For example, Yong et al. [14] used a femtosecond laser to ablate
cross micro-/nanostructures on the surface of a zinc (Zn) plate, and realized the regulation
between superhydrophobic and superhydrophilic surfaces in ultraviolet (UV) and dark
environments. However, the superhydrophobic Zn surface must be irradiated by UV light
for 24 h to become a quasi-superhydrophilic surface, and then the quasi-superhydrophilic
surface must be placed in a dark environment for 7 d to become a superhydrophobic surface.
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Tian et al. [15] used UV light to irradiate a stainless-steel mesh covered with ZnO nanorods
to achieve regulation between superhydrophobic and superhydrophilic surfaces. However,
the regulation efficiency was also low. To improve the efficiency of wettability regulation,
Bai et al. [16] used stearic acid ethanol solution and sodium hydroxide to quickly adjust
the wettability of stainless steel coated with nano Zn oxide. The regulation can be quickly
switched in 15 min, but this method requires two kinds of chemical reagents to tune the
wettability and does not have the ability to form a wettability pattern.

At the same time, the temperature can also be used to adjust the wettability. For
example, Liu et al. [17] realized the rapid regulation between superhydrophobic and
superhydrophilic aluminum (Al) surfaces by adjusting the temperature of the Al surface
and the pressure between the water and Al, and still achieved excellent recoverability,
stability, and repeatability after 10 cycles. Moreover, Ngo et al. [18] achieved the adjustment
of wettability by heating copper, Al, and titanium at different temperatures. The higher the
temperature, the shorter the conversion time from superhydrophilic to superhydrophobic.
However, this method does not have the ability to form a wettability pattern. Furthermore,
tunable wettability can be achieved by changing the water temperature [19]. Liu et al. [20]
investigated the repellent hot water of superhydrophobic surfaces and found that the
superhydrophobic surfaces usually exhibited a high repellency to cool water. However,
such surfaces show a remarkably decreased repellency to hot water, which can be attributed
to a decrease in the surface tension. Moreover, the surface structures can be destroyed by
elevated temperatures [21].

Meanwhile, the magnetic field [22], electric field [23], and mechanical force [24]
have been commonly used to achieve tunable wettability. For example, Tian et al. [25]
used ferromagnetic micro-nanomaterials to prepare a magnetic fluid/ZnO nanoarray. A
water droplet could follow the motion of the gradient composite interface structure as it
responded to the gradient magnetic field motion, which achieved tunable wettability. In
addition, Tian et al. [26] further proposed a method for photoelectric coordination to achieve
tunable wettability. The photosensitizer material titanium phthalocyanine was coated on
the ZnO nanorods, and the structure was modified by heptafluorododecyltrimethoxysilane.
The capillary pressure between the micro/nanostructures is tuned by a voltage combined
with the light-modified photosensitizer in order to tune the wettability. Yang et al. [27]
used a femtosecond laser to prepare the superhydrophobic surface of silicone rubber. The
superhydrophobic surface of silicone rubber was transformed from the “petal” state to the
“lotus” state by stretching.

Compared with light and thermal tune wettability, the advantage of the magnetic
field is that it can quickly achieve tunable wettability, but the disadvantage is that magnetic
materials must be added to soft materials, which limits the scope of application. The voltage
can quickly tune wettability, but the material must be conductive. The shortcomings of the
mechanical force are also due to the limitations of the material. This method can only use
materials with flexibility and high ductility to achieve tunable wettability.

The above methods mainly serve to control the properties of materials in order to
achieve tunable wettability, which is easily affected by the defects of material properties.
At present, optical, magnetic, electrical, mechanical forces and other factors are seldom
combined with liquid temperature to achieve tunable wettability. Because the temperature
of the liquid is not affected by the material properties, it can not only improve the efficiency
of tunable wettability but also provide a new idea for achieving tunable wettability. There-
fore, to achieve a quickly tunable wettability pattern, in the work described in this paper, a
femtosecond laser was used to fabricate microholes on Zn foil placed in the dark and heated
at 100 ◦C for 12 h to obtain a superhydrophobic surface. The wettability pattern was then
able to be obtained by controlling the pattern of UV irradiation. Moreover, with an increas-
ing water temperature, the surface tension of water decreases. Therefore, the wettability
pattern of the Zn-foil surface can be quickly transferred to paper through microholes. This
method has potential applications in new location-controlled micro-/nanofluidic devices,
such as microreactors and lab-on-chip devices.
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2. Sample Fabrication

The size of the Zn foil sample measured 20 × 20 × 0.04 mm3. A Light Conversion
L17771 femtosecond laser was used, which emitted a wavelength of 1064 nm with a
maximum average power of 20 W, a pulse width of 200 fs, and a focusing spot diameter of
20 µm. Before the sample was ablated by the femtosecond laser, the sample was cleaned
with an ultrasonic cleaning machine under alcohol for 10 min to remove surface impurities
and was then taken out to dry. The specific laser parameters were the following: the
diameter of the microhole was 20, 30, 40, 50, 60, and 70 µm, respectively, and the distance
between the two microholes was 100 µm. The laser scanning speed was 2000 mm/s, the
power was 10 W, and the frequency was 100 kHz.

3. Results

Figure 1 shows the contact angles (CA) of the microhole with diameters of 20, 30,
40, 50, 60, and 70 µm, respectively. The CA increases with the increase of the microhole
diameter. When the microhole diameter is 50 µm, the CA reaches the maximum. With the
further increase of the microhole diameter, the CA will decrease, which may be due to the
lesser microstructure for supporting liquid with the increase of the microhole diameter.
However, when the diameter of the microhole is 20 µm, the CA is larger than that of
30 µm and 40 µm, which is because more areas that are not ablated are coated by the
microfragments. Therefore, the sample with a microhole diameter of 50 µm is researched
in this paper.
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Figure 1. The contact angle of microholes with different diameters.

Scanning-electron-microscopy (SEM) images of the microholes with a diameter of
50 µm ablated by the femtosecond laser are shown in Figure 2. The entrance and exit of the
microhole are shown in Figure 2a,c, respectively, and the local amplification is shown in
Figure 2b,d, respectively. Owing to the ultrashort pulse of the femtosecond laser having no
obvious thermal effect, the surface of the Zn foil has a small layer, but the micro-fragments
shown in Figure 2b,d are formed. The sizes of the microfragments range from the nano- to
microscales. These microfragments and microholes form the micro-/nanostructure on the
surface of the Zn foil, which is the one of the keys to the formation of a superhydrophobic
surface. Meanwhile, the three-dimensional (3D) image profile of the femtosecond-laser-
ablated surface is shown in Figure 3. The entrance and exit of the microholes are shown in
Figure 3a,b respectively.
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Figure 3. 3D image profile of the femtosecond-laser-ablated surface. (a,b) are the entrances and exits
of the microholes, respectively.

Figure 4 shows the weight percentages of different elements after the femtosecond-
laser ablation, which were investigated by X-ray spectroscopy (EDXS). Elemental C, O, and
Zn exhibit obvious changes. Owing to the Zn forming a rough ZnO layer on the surface
after the femtosecond-laser ablation, the weight percentage of elemental O increased from
0% to 6.843% and 8.916% and the weight percentage of elemental Zn decreased from 100%
to 86.582% and 83.840%. The increase of elemental O resulted in the decrease of the surface
energy of Zn, which is another crucial factor in the formation of a superhydrophobic
surface. However, owing to the fact that the Zn was ablated on the glass substrate, the F
and Si of glass could be deposited on the surface of Zn.
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The wettability transformation between superhydrophobicity and hydrophobicity
can be achieved by UV irradiation and heating in the dark, as shown in Figure 5. With
an increasing UV-irradiation time, the CA of the black curve gradually decreases, and the
wettability of the sample changes from a superhydrophobic surface to a hydrophilic surface.
The UV power was 36 W; the higher the UV power, the shorter the UV-irradiation time.
Therefore, the time of the wettability transformation can also be decreased by increasing
the UV power [3]. As is well known [28–30], UV irradiation produces electron-hole pairs in
the ZnO lattice. The electrons and holes produced under UV irradiation will move to the
surface, and water and O in the air may competitively adsorb on these vacancies. Compared
with O adsorption, Zn2+ defect sites are more favorable for hydroxyl adsorption. Finally,
the UV-irradiated surface will form functional groups with hydroxyl groups, resulting in
the hydrophilicity of the Zn foil surface.

Furthermore, the superhydrophobic surface can be restored by heating in the dark.
As shown in Figure 5, with an increasing heating time in the dark environment, the CA
of the red curve is larger. The heating time determines the hydrophobicity of the Zn foil
surface. The Zn surface under UV irradiation is hydrophilic, and the CA is 42◦. Finally,
after heating in the dark for 12 h, the superhydrophobic surface is obtained, and the CA is
152◦. The main reason for the wettability transformation is that the O atoms in the air can
gradually replace hydroxyl during heating in the dark environment, and the wettability is
restored from hydrophilicity to superhydrophobicity.

The wettability transformation of the Zn surface between a superhydrophobic surface
and a hydrophilic one can be tuned by UV irradiation and heating in the dark. The pattern
of UV irradiation is controllable, but the time of the wettability transformation becomes
very long. Therefore, a quickly tunable wettability and wettability pattern can be achieved
by UV irradiation and increasing the water temperature.
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As shown in Figure 6, the influence of UV irradiation and water temperature on
wettability was investigated. When the UV irradiation time was 0, 4, 8, and 12 h, the
CA of the Zn surface decreased. With an increasing water temperature, the Zn surface
changed from a superhydrophobic/hydrophobic to a hydrophilic surface. This can be
attributed to a decrease in surface tension when the water temperature increases, and the
lower surface tension of hot water makes it a better “wetting agent” for penetrating into
the microstructure of rough surfaces rather than bridging them with surface tension [20].
When 90 ◦C water was dropped onto the Zn surface under no UV irradiation, the CA of the
Zn surface was 100◦. This surface can then be called a hydrophobic surface. When 70 ◦C
or higher water was dropped onto the Zn surface under UV irradiation for 4 h, the CA of
the Zn surface was below 90◦ and was thus a hydrophilic surface. When the Zn surface
was under UV irradiation for 8 h, water above −50 ◦C could achieve a hydrophilic effect.
However, When the Zn surface was under UV irradiation for 12 h, it was hydrophilic at
any temperature, and the minimum CA of the Zn was 28◦.

If the water temperature is not considered, the wettability transformation can be
achieved by using UV light alone, but it requires at least 20 h. Therefore, the time can be
reduced to 8 h by increasing the water temperature. When the UV-irradiation time is only
8 h, the time it takes for the sample to recover the superhydrophobic surface by heating in
the dark can be reduced to 6 h.

Therefore, the wettability transformation from a superhydrophobic to hydrophilic sur-
face can be used to realize a quickly tunable wettability pattern. However, when the water
temperature is over 50 ◦C, the surface tension of water decreases and the water molecules
move faster, resulting in the water expanding quickly. Thus, a clear wettability pattern will
not be obtained when water droplets are transferred to the paper through microholes.

As shown in Figure 7, the first step is to irradiate the Zn superhydrophobic surface
with UV light for 8 h; the UV light irradiates the obverse and reverse of the Zn foil by a
mask plate with a cross-pattern. The second step is to drop 50 ◦C water onto the upper
surface of the Zn foil, place a piece of paper on its lower surface, and then gently press the
Zn foil against the paper. The result is that the water will penetrate through the microholes
in the area that is UV-irradiated. Finally, the wetted cross-pattern can be observed on the
paper, as shown in Figure 7.
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To explain the above phenomenon, the regulation mechanism of wettability must
be understood. The wettability transformation is mainly done to tune the surface energy
between the water and solid. The surface energy of water is higher than metal at room tem-
perature and atmospheric pressure. Therefore, the metal surface is generally hydrophilic.
The roughening of the metal surface is obtained by laser ablation, and then the oxide layer
is formed on the rough surface by heating in the dark, which decreases the surface energy
of the metal surface. Therefore, the differentials between the surface energy of the metal
surface and that of water are increased, resulting in a strong repulsive force between the
water and metal surface, and, thus, a superhydrophobic surface is finally formed.

As shown in Figure 8a,c, the wettability of the Zn surface is mainly tuned by UV
irradiation of the superhydrophobic Zn foil surface, which results in the formation of
hydroxyl groups. Therefore, the surface energy of the Zn foil will increase after UV
irradiation. However, the surface of the Zn foil is hydrophilic, and therefore there is a
differential between water and Zn. However, the small surface differentials cannot prevent
water droplets from wetting the Zn foil and penetrating the microholes. The hydrophilic
surface can be heated in the dark, and then the superhydrophobic surface can be obtained.



Micromachines 2021, 12, 547 8 of 11

However, this method has an obvious disadvantage in that the time of the wettability
transformation is very long. The surface energy of the Zn foil’s superhydrophobic surface
increases after UV irradiation and then returns to the low-surface-superhydrophobicity
surface by heating in the dark environment. In this process, only the surface energy of the
Zn foil is constantly adjusted. Therefore, the process is inefficient.
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To improve the wettability transformation efficiency of the Zn foil, the water tempera-
ture is considered herein, and the surface energy of water can be adjusted by temperature.
As shown in Figure 8b,d, first the surface energy of the Zn foil is increased by UV irradi-
ation, and the surface energy of water is decreased by increasing the water temperature.
The differentials in surface energy between water and Zn can quickly decrease. Therefore,
the superhydrophobic Zn foil surface is quickly transformed into a hydrophilic surface.
The time to heat the water is very short, negligible compared with the UV-irradiation time.
Therefore, this method can greatly improve the efficiency of the wettability transformation.
Moreover, because the Zn superhydrophobic surface is formed by its chemical transforma-
tion, the increasing temperature of hot water will not damage the chemical composition
of the surface. When the water temperature returns to room temperature and the Zn is
placed in the dark and heated for some time, the surface of the Zn foil can quickly return to
a superhydrophobic surface.
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Upon comparing Figure 8b,d with Figure 8a,c, it can be seen that the wettability trans-
formation time between the superhydrophobic and hydrophilic surfaces is significantly
reduced. Therefore, the controllable pattern of UV irradiation and water temperature on the
surface energy of water can be combined to achieve a quickly tunable wettability pattern.

The mechanism of the wettability transformation can be expressed by the following
equations [3,31]:

Γ(T) = 75.714 − 0.1414 × T − 2.5399 × 10−4 × T2 (20 ◦C ≤ T ≤ 90 ◦C) (1)

P = −l × Γ × cosθ/A (0◦ ≤ T ≤ 180◦) (2)

TCP = l × ∆Γ/A (3)

where Γ is the surface tension of the liquid–vapor interface, T is the temperature of water,
P is the hydrostatic pressure, l is the circumference of the microholes, θ is the CA, A is the
cross-sectional area of the microhole, and TCP is the temperature conducting pressure.

P = 5.80 × 106 Pa—which is a considerable wetting energy barrier at atmospheric
pressure—must be overcome for the liquid to penetrate into the microholes. According
to Equation (2), the decrease of θ will lead to the decrease of P, as shown in Figure 8e.
When the CA is lower than 90◦, P is lower than zero. Therefore, the UV irradiation can
decrease θ, which can cause the wettability transformation from the superhydrophobic
to hydrophilic surface. In addition, the water temperature can increase the TCP, and
when TCP−P > 0, the liquid can penetrate the microholes, as shown in Figure 8f. With
an increasing UV-irradiation time and temperature, the TCP−P value gradually increases.
However, when the UV-irradiation time is 8 h and the water temperature is 50 ◦C, TCP−P
is not zero, which differs from the experiment to some degree. When the UV-irradiation
time is 12 h, the value of TCP−P is larger than zero at any temperature. Therefore, by
increasing the water temperature and UV irradiation time at the same time, the wettability
transition can be quickly realized.

4. Conclusions

In summary, a Zn superhydrophobic surface can be achieved by femtosecond-laser-
ablated microholes. The Zn superhydrophobic surface can be quickly transformed into
a hydrophilic surface by adjusting both the UV irradiation and water temperature. UV
irradiation can control the wettability pattern of the Zn surface, while the hot water can
decrease the surface tension of water to obtain a low surface energy of water. Therefore,
the specific wettability pattern can be transferred through microholes in Zn foil. Compared
with the adjustment of the UV radiation or temperature alone, the proposed method
can effectively improve the wettability-transformation efficiency and achieve specific
wettability patterns. Therefore, the method has good potential application prospects in
new location-controlled micro-/nanofluidic devices, such as microreactors and lab-on-chip
devices, among others.
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