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The four serotypes of Dengue virus (DENV1-4) are arboviruses (arthropod-borne viruses)
that belong to the Flavivirus genus, Flaviviridae family. They are the causative agents of an
infectious disease called dengue, an important global public health problem with
significant social-economic impact. Thus, the development of safe and effective dengue
vaccines is a priority according to the World Health Organization. Only one anti-dengue
vaccine has already been licensed in endemic countries and two formulations are under
phase III clinical trials. In this study, we aimed to compare the main anti-dengue virus
vaccines, DENGVAXIA®, LAV-TDV, and TAK-003, regarding their antigens and potential
to protect. We studied the conservation of both, B and T cell epitopes involved in
immunological control of DENV infection along with vaccine viruses and viral isolates. In
addition, we assessed the population coverage of epitope sets contained in each vaccine
formulation with regard to different human populations. As main results, we found that all
three vaccines contain the main B cell epitopes involved in viral neutralization. Similarly,
LAV-TDV and TAK-003 contain most of T cell epitopes involved in immunological
protection, a finding not observed in DENGVAXIA®, which explains main limitations of
the only licensed dengue vaccine. In summary, the levels of presence and absence of
epitopes that are target for protective immune response in the three main anti-dengue
virus vaccines are shown in this study. Our results suggest that investing in vaccines that
contain the majority of epitopes involved in protective immunity (cellular and humoral arms)
is an important issue to be considered.
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INTRODUCTION

Dengue virus (DENV) is an arbovirus (arthropod-borne virus)
that belongs to the Flaviviridae family, Flavivirus genus. There
are four distinct serotypes: DENV-1, DENV-2, DENV-3, and
DENV-4 (1). They are responsible for promoting an infectious
disease called dengue, which can be presented in a wide
spectrum. This can range from subclinical disease to severe flu-
like symptoms in those infected. Although less common, some
people develop severe dengue, which can be any number of
complications associated with severe bleeding, organ impairment
and/or plasma leakage. Severe dengue has a higher risk of death
when not managed appropriately (2). Several factors such as
disordered urbanization, population growth, migration,
international travels, and vector control challenges favor a
rapid and efficient spread of the disease (3). Dengue is
considered an important global public health problem with
significant social-economic impact (4). According to the Pan
American Health Organization (PAHO), more than 1.6 million
dengue cases were registered until June 2020 in the Americas,
65% of them registered in Brazil (5).

DENV is a single-stranded positive sense RNA virus
surrounded by an icosahedral capsid and an envelope. The
RNA is translated shortly after the virus enters the host cell. It
encodes three structural proteins: capsid protein (C), pre-
membrane protein (pre-M), and the envelope glycoprotein (E).
In addition, the genomic RNA also encodes seven non-structural
(NS) proteins: NS1; NS2A; NS2B; NS3; NS4A, NS4B, and NS5,
which participate both in the replication of the viral genome and
in the assembly of the new viral particles (1). The E glycoprotein
is involved in attachment of DENV to the host cell receptors as
well as in membrane fusion. In addition, it is the main target for
neutralizing and enhancing antibodies. Its ectodomain is
arranged in three domains: DI, DII and DIII. DII is central in
the monomers, surrounded by DI and DIII. The hydrophobic
fusion loop is located in DII and is essential for membrane
fusion. Domain III is frequently related to a receptor binding
function (6, 7).

Controlling dengue by suppressing mosquito vectors is only
effective if applied before the circulation of viruses in a certain
region. Due to epidemiological complexity of the disease, once it
is established, agencies responsible for disease prevention face
significant technical, scientific and operational difficulties in
controlling dengue (8). Thus, according to the World Health
Organization, the development of a safe and effective dengue
vaccine is a priority. To date, one anti-dengue virus vaccine has
already been licensed in endemic countries (Mexico, Philippines,
Brazil, El Salvador, Costa Rica, Paraguay, Guatemala, Peru,
Indonesia, Thailand, and Singapore) (9), while the other six
vaccine formulations are under development; two are in phase III
of clinical trials and four are in the early stages of clinical testing
in different regions worldwide. A recently published review
comprehensively explores details regarding development and
clinical trials of anti-dengue virus vaccine formulations (9).

Both, antibodies and T lymphocytes play important roles in
fighting DENV (10). Antibodies prevent host cells from being
infected mainly through neutralization mechanisms. CD4+ T
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lymphocytes control viral replication mainly by producing
inflammatory and antiviral cytokines, and CD8+ T
lymphocytes contribute to controlling DENV spread through
direct cytotoxicity on infected cells (9, 11). In addition, the
production of IFN-g by both CD4+ and CD8+ T cells is a
hallmark of protective immunity (10, 12–15). However, the
immune response against DENV is not that straightforward
and can lead to exacerbated forms of the disease in the case of
sequential contacts with different viral serotypes. In general, it
occurs due to a phenomenon called antibody-dependent
enhancement (ADE), in which antibodies generated against a
first DENV serotype bind less efficiently to a different serotype
and promote increased viral entry and replication in host cells
through Fc-g receptors (9, 16). In addition, exacerbation of
DENV infection can also occur due to cross-reaction mediated
by T lymphocytes. In both cases, an original antigenic sin leading
to cytokine storms occurs (17, 18). There is a serious risk of
vaccines inducing such mechanisms if the immune response is
not balanced against all DENV serotypes. Therefore, an ideal
anti-dengue vaccine should generate immune responses with
antiviral mechanisms, as well as induce a safe, long-lasting, and
balanced immune response for all four DENV serotypes,
therefore reducing the risk of exacerbated inflammatory
responses related to ADE and T cells cross-reaction.

In this study, we aimed to compare the main anti-dengue
vaccine antigens regarding their compositions and potential to
protect. We studied the licensed DENGVAXIA® from Sanofi
Pasteur; LAV-TDV from NIAID/Butantan, which is under phase
III of the clinical trial; and TAK-003 from Takeda, which
concluded phase III of the clinical trial. Dengvaxia® is a live,
attenuated and tetravalent recombinant vaccine. Its antigens
consist of chimeric viruses in which genomic sequences
encoding the pre-membrane (prM) protein and the envelope
glycoprotein (E) of the 17D strain of Yellow fever virus (YFV)
were replaced by those of each of the four serotypes of DENV.
LAV-TDV is a live, attenuated and tetravalent vaccine solely
based on DENV. The viruses were attenuated by deletions in
their genomes and one of them consists of a chimera of a DENV2
and a DENV4. And TAK-003 is also a live attenuated tetravalent
vaccine that is based on DENV2 (16681) PDK 53, which was
used as a backbone in the constructs of the chimeric vaccine
viruses of DENV1, DENV3 and DENV4 (9).The levels of
presence and absence of epitopes that are target for protective
immune response in the three main anti-dengue virus vaccines
are shown here.
METHODS

Reconstruction of Sequences Used in
Vaccine Antigens
We performed a search for anti-dengue vaccine formulations
both, in clinical trial records (ClinicalTrials.gov) and papers
obtained from PUBMED (https://www. ncbi.nlm.nih.gov/
pubmed/). The search filters used at ClinicalTrials.gov were as
follows: Condition or disease: “dengue”; type of study:
“interventional clinical trials”; study results: “with result”;
August 2021 | Volume 12 | Article 715136
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Eligibility criteria: “child (birth–17)”, “adult (18–64)”, “elderly
(65+)”; Gender: “all”; Study phase: I, II, III and IV. Pubmed
searches were performed using keywords: dengue, vaccine,
clinical trial. We selected three vaccine formulations that were
either licensed or were under phase III of the clinical trial or had
finished phase III of the clinical trial: DENGVAXIA® from
Sanofi Pasteur; LAV-TDV from NIAID/Butantan Institute and
TAK-003, from Takeda.

Nucleotide sequences of vaccine antigens were rebuilt using
data recovered from the nucleotide database of the National
Center for Biotechnology Information (NCBI) platform (https://
www.ncbi.nlm.nih.gov/nucleotide/). The assembly was
performed using the software ApE-A plasmid Editor, and the
translation from DNA to protein sequence was performed using
the Translate tool (https://web.expasy.org/translate/). Then,
the sequences were used to compose a dataset in FASTA
format (Supplementary Data). The dataset was used for the
further analyses.

Construction of a Dataset of Circulating
DENV 1-4 Sequences
The DENV 1-4 polyprotein sequences dataset was built by
applying the same filters for Flavivirus previously described
(19). Sequences were retrieved until January 2021. The dataset
consisted of 189 DENV polyprotein sequences: 60 for DENV1,
58 for DENV2, 46 for DENV3, and 25 for DENV4, representing
five regions of the world: The Americas, Europe, Asia, Africa,
and Oceania (Supplementary Table 1).

Survey of Epitopes Involved in Protective
Immunity Against Dengue
For B cell epitopes, we carried out a search at IEDB (Immune
epitope database) (https://www.iedb.org/) for B cell epitopes
validated in neutralization assays using the following filters:
“any epitope”, “dengue1-4”, “B-cell positive essays”, “any MHC
restriction”, “human host”, “infectious diseases” and “only
positive B-cell assays with neutralization essays”. We retrieved
50 B cell discontinuous epitopes from IEDB, namely, 20 from
DENV1, 13 from DENV2, 13 from DENV3, and 4 from DENV4
(see Supplementary Table 2).

Additionally, we carried out a bibliography search for the
studies about the protective anti-dengue response induced by T
lymphocyte epitopes that were experimentally characterized. The
data was retrieved from Pubmed database (https://www.
ncbi.nlm.nih.gov/pubmed/) using the following search criteria:
i) studies evaluating the survival or viral load control in challenge
experiments, either using human or humanized animal models
(transgenic animals expressing HLA); ii) infection of human
host by DENV without presentation of pathological signs;
iii) identification of important epitopes in the context of an
immune response induced by anti-dengue vaccines known to
be protective. We constrained our search to studies that
contained epitope binding to HLA (human leukocyte antigen)
and analysis of the proinflammatory cytokine production profile
by CD4+ T cells or cytotoxicity mediated by CD8+ T cells. We
also selected only studies in which at least two different
Frontiers in Immunology | www.frontiersin.org 3
methods were used to validate the secretion of pro-inflammatory
cytokines or cytotoxic activity. The keywords used were: CD4+ T
lymphocyte, CD8+ T lymphocyte, epitopes, protection, immunity,
Dengue virus.

A total of 175 epitopes were retrieved from five articles (see
Supplementary Table 3). However, eight of them were found
more than once and, therefore, repeated epitopes were removed
from the dataset for the further analyses.

Conservation Analysis
The IEDB conservation analysis tool (http://tools.iedb.org/
conservancy) was performed as previously described (20).
Briefly, we computed the conservation of B cell epitopes
retrieved from the IEDB database and T cell epitopes
characterized and reported in the literature. Only epitopes 100%
conserved were considered.

Population Coverage Analysis
The T cell epitopes selected in the conservation analysis were
subjected to population coverage analysis using the IEDB
populat ion coverage calculat ion tool (http : / / tools .
immuneepitope.org/tools/population/iedb_input), as previously
described (20).

Structural Biology Analysis
Epitopes conserved in vaccines were mapped in a 3D envelope
glycoprotein model, as previously described (20). The PyMol
program (http://www.pymol.org/) was used to perform the
epitope mapping. The 3D model protein was retrieved from
the protein database (https://www.rcsb.org/).

Statistical Analysis
Statistical analysis was performed to compare the results of the
epitope conservation scores that were present in at least one of
the three vaccines. Scores were defined based on the levels of
conservation of epitopes present in vaccines in circulating
viruses. This method is shown in details in Supplemental
Material. Comparisons were performed regarding location of
epitopes in specific viral proteins and percentage of conservation
in circulating viruses (clinical isolates). The Kruskal-Wallis one-
way test was used to verify whether the differences in the medians
of the set of epitopes present in each protein were significant.
This statistical analysis was only necessary for the comparison of
the conservation values among the T cell epitopes. We did not
compare conservation regarding B cell epitopes because they do
not vary in relevant levels.
RESULTS

Reconstruction of the Sequences Used in
Vaccine Antigens
In order to assemble the components of the DENGVAXIA®

vaccine, the sequences used for genetic recombination were
extracted from GenBank, according to the accession numbers
in Figures 1A, B. The vaccine constructs were assembled in the
August 2021 | Volume 12 | Article 715136
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ApE-A plasmid Editor. The sequences from prM and E proteins
(nucleotides 482-2452) from the YFV 17D backbone as well as
the nucleotides at the 5 ‘end (1-118) and 3’ end (10355-10789)
were removed from the assembly because they are not present or
are not translated in vaccine antigens. Finally, the sequences of
each Chimeric yellow fever virus-DENV (CYD) were inserted,
and the four constructs were assembled (see Figures 1A–C),
translated using the Translate tool, and deposited in FASTA
format (see Supplementary Data).

The sequences of the vaccine antigens rDEN1D30, rDEN2/
4D30, and rDEN4D30 that compose LAV-TDV were retrieved
from the NCBI Database (Genbank) according to the accession
Frontiers in Immunology | www.frontiersin.org 4
numbers in Figure 1D. We did not obtain the accession number
for DENV3 antigen, therefore, we used the sequence obtained
from the Sleman/78 DENV strain, accession number:
AY648961.1 (21), and applied the 7398 nucleotide point
mutation from Cytosine to Thymine. This alteration
contributes to viral attenuation, as previously described (21).
For all sequences, we removed the 5´ and 3´ untranslated regions
(UTR), which do not participate in polyprotein translation. The
nucleotide position deletions in viral genomes are as follows: for
DENV1 (1-94 and 10274-10705), DENV2 (1-101 and 10266-
15239), DENV3 (1-94 and 10268-10707), and DENV4 (1-101
and 10266-10618) (see Figures 1D, E). Finally, the vaccine
A B

D E

F G H

C

FIGURE 1 | Schematic representation of genetic constructions of vaccine antigens. (A) PrM and E coding sequences were used to chimerize Yellow fever virus (B)
and generate DENGVAXIA® vaccine antigens (chimeric viruses) (C). (C) Schematic representation of the final constructs of the DENV1-4 vaccine viruses of the
DENGVAXIA® formulation. (D) Representation of genomic characteristics of vaccine viruses of the LAV-TDV vaccine formulation (E) Schematic representation of the
final constructs of the DENV1-4 vaccine viruses of the LAV-TDV formulation. (F) Representation of coding sequences of PrM and E proteins of the DENV1 and
DENV3, and E protein of DENV4. These sequences were used to modify PDK-53-V infectious clone (G) and generate vaccine viruses of the TAK-003 vaccine
formulation (H). Known accession numbers are shown. NS, non-structural proteins.
August 2021 | Volume 12 | Article 715136
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sequences were translated and used to compose a sequence set in
FASTA format (see Supplementary Data).

TAK-003 is a tetravalent vaccine. Its antigens are based on the
genetic backbone of the DENV-2 PDK-53-V variant, as
previously described (22). In order to build the chimeras, we
used the nucleotide sequence from PDK-53-V, according to the
accession number in Figure 1G. The PDK-53-V virus is not
annotated, then we used the PDK-53-E virus sequence (accession
number M84728.1) (23) as a reference for annotation. The prM
and E sequences (nucleotides 439-2421) and the UTR sequences
(nucleotides 1-96 and 10273-10723) from PDK-53-V were
removed for insertion of DENV1, DENV3, and DENV4 prM
and E coding sequences, as shown in Figures 1F–H. For DENV4,
only the E protein-coding sequence (Accession number:
U18429.1) was found using the Genbank filter: “dengue virus 4
strain 1036 Indonesia 1976”. Therefore, the PrM coding-
sequence of the PDK-53-V virus was used in the DENV4
vaccine. Finally, the nucleotide sequences of vaccine viruses
were translated and deposited in a sequence dataset in FASTA
format (see Supplementary Data).

Conservation Analysis and Structural
Biology of B Cell Epitopes Targeted by
Neutralizing Antibodies
In the IEDB search, we retrieved 50 discontinuous IEDB B cell
epitopes using the following filters: “any epitope”, “dengue1-4”,
“positive assays for B cells”, “any MHC restriction”, “human
host”, “infectious diseases” and “only positive assays for B cells
with neutralization assays”. It is important to highlight that such
epitopes are target for neutralizing antibodies which were
previously reported. We evaluated the conservation of these 50
epitopes in vaccine antigens from the three manufacturers.
However, we did not find relevant differences in the number of
epitopes conserved among the vaccine antigens studied here (see
Table 1). From 22 epitopes present in the LAV-TDV vaccine,
only one is absent in TAK-003 vaccine (ID: 504135, sequence:
F585, S586, I587, D588, K589, E590, M591, A592, E593, T594,
T599, V600, V601, K602, V603, K604, E606, N641, V643, T644,
N645, I646, L668, H669, W670, G678, K679) and another is
absent in DENGVAXIA® (ID: 504136, sequence: F586, K587,
L588, E589, K590, E591, V592, A593, E594, T595, G598, T599,
V600, L601, V602, Q603, V604, K605, E642, I647, E648, S670,
F672, K674, G675, S676, S677, I678, G679, K680). Both epitopes
are located in the envelope glycoprotein in the LAV-TDV
vaccine. It is important to highlight that all of these conserved
epitopes are discontinuous. In addition, most of them are located
in the envelope glycoprotein and only one of them is located in
prM. Moreover, our analyses showed that circulating DENV2
contain the highest number B cell epitopes targeted by
neutralizing antibodies (see Supplementary Table 4). Of the
22 conserved epitopes in the three vaccine antigens, 13 of them
are conserved in at least 50% of the circulating DENV2, while
nine are conserved in the circulating DENV4 and DENV3 and
seven are conserved in the circulating DENV1.

We identified the presence of a diverse distribution, with
epitopes inserted in all regions of the envelope glycoprotein: DI,
Frontiers in Immunology | www.frontiersin.org 5
shown in red; DII, shown in yellow, DIII, shown in blue and the
fusion loop shown in green (see Figure 2A). The residues W101,
N103, G104, G106, L107, and G111, represented in Figure 2B,
are shared with the five epitopes inserted in the fusion loop
region. Epitopes with ID (504078, 504074, and 178102) are
highlighted and contain all their residues fully inserted in the
fusion loop region. The epitope with ID 240773 (magenta) also
has residues in DII outside the fusion loop and the epitope with
ID 241577 (orange) also has epitopes in DII outside the fusion
loop and DIII. Residues shared by these two epitopes out of the
fusion loop are shown in cyan. The Epitopes with ID 504136,
504134, and 504135 contain amino acids in the DIII, and also
share common amino acids in the stem region, which is not
present in the model used in this study (Figure 2C). Amino acids
of the epitope with ID 753471 are all located in the DI, shown in
salmon; amino acids of the epitope with ID 504083 (Figure 2D)
are all located in the DII; and amino acids of epitopes with ID
540687, 540688, 540689, 753469, 753470 and 504117 are all
located in the DIII, shown in cyan (Figure 2C). There are also
epitopes with amino acids located in two or three domains: in DI
and DII, epitopes with ID 591354 (shown in brick), ID 240770
(shown in green), ID 538524 (shown in luish-purple), and ID
591353 (shown in magenta) (Figure 2E); in DII (outside the
loop) and DIII, epitopes with ID 240773 (shown in magenta) and
241577 (shown in orange) (Figure 2B); and in DI, DII and DIII,
the epitope with ID 173906 (shown in cyan) (Figure 2E). Finally,
only one epitope is located in the prM (ID 241577). It is
conserved in the three vaccines, as shown in Table 1. It is
important to highlight that some of the epitopes presented
here are conserved in both vaccines and circulating viruses (see
Supplementary Table 4). These results suggest that the three
vaccines antigens analyzed in this study contain most of B cell
epitopes targeted by neutralizing antibodies.

Conservation Analysis of T Cell Epitopes
Involved in Protective Immunity
The conservation analysis revealed that 29 out of 167 T cell
epitopes were not conserved in the three vaccine antigens,
whereas two of them were not preserved in either vaccine or
circulating viruses (Supplementary Table 5).

The DENGVAXIA® vaccine presented only 23 conserved
epitopes – a number relevantly smaller if compared to the
number of epitopes presented by TAK-003 and LAV-TDV
vaccines, 72 and 105, respectively. Most of the DENGVAXIA®

vaccine’s epitopes were located at the envelope glycoprotein.
However, two and five of them were found in prM and NS5,
respectively. In contrast, the LAV-TDV and TAK-003 vaccines
preserved epitopes all over the 10 proteins (structural and non-
structural). A score-based scale associated with conservation
percentages of epitopes obtained from circulating viruses
(Supplementary Table 6) was used to statistically compare
conservations of epitopes in the three studied dengue vaccines.
As shown in Table 2 and Figure 3, significant numbers of
epitopes in NS1, NS2a, NS3, NS4B, and NS5 are not present in
the DENGVAXIA® vaccine. Collectively, these results suggest
that TAK-003 and LAV-TDV vaccines present higher
August 2021 | Volume 12 | Article 715136
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conservation rates of epitopes involved in protective immunity
than the DENGVAXIA® vaccine, which lacks most of T cell
epitopes involved in protective immunity against DENV.

Analysis of Population Coverage of T Cell
Epitopes Based on HLAs
The 167 epitopes were evaluated regarding their coverage in the
world population. The epitope sets for each vaccine were
analyzed separately. Population coverage was shown to be high
for all three vaccines worldwide, with percentages of 76.67% for
DENGVAXIA®, 84.58% for LAV-TDV, and 85.80% for TAK-
003. In addition, these vaccines had a population coverage of
more than 70% in different continents and subcontinents in the
world, except forCentralAmerica,whichobtained a lowpercentage
of 20.48%, 22.86%, and 27.18%, for DENGVAXIA®, LAV-TDV,
Frontiers in Immunology | www.frontiersin.org 6
and TAK-003, respectively. These results suggest that vaccine
antigens studied here present high population coverage, mainly
TAK-003 and LAV-TDV vaccine antigens (see Figure 4).
DISCUSSION

Dengue is a one of most common arboviral diseases. According
to the World Health Organization, the development of safe and
effective dengue vaccines is a priority. Therefore, in this study, we
compared the main dengue vaccine antigens regarding their
immunological properties. We studied DENGVAXIA® from
Sanofi Pasteur, which is a licensed vaccine; LAV-TDV from
NIAID/Butantan, which is under phase III clinical trial and
TAK-003 from Takeda, which finalized phase III clinical trial.
TABLE 1 | B cell epitopes which are target for neutralizing antibodies and are conserved in the main dengue vaccines.

IEDB
ID

Epitope Sequences Vaccine in Which
Epitope is Conserved

Location (protein)

173906 T331,N332,Q411,Y412,L415,K416,G439,T440,T445,P446,Q447,E452,I453,L455,G554,T555,L588,
K590,E664,K665

LAV-TDV,
DENGVAXIA®, TAK-003

E (DI, DII, and DIII.)

504078 W101,L107,G111 LAV-TDV,
DENGVAXIA®, TAK-003

E (DII inside the fusion loop)

504083 R73,G78,E79 LAV-TDV,
DENGVAXIA®, TAK-003

E (DII)

504136 F586,K587,L588,E589,K590,E591,V592,A593,E594,T595,G598,T599,V600,L601,V602,Q603,V604,
K605,E642,I647,E648,S670,F672,K674,G675,S676,S677,I678,G679,K680

LAV-TDV, TAK-003 E (DIII and stem region)

240770 H438,S554,V589,K590,E591 LAV-TDV,
DENGVAXIA®, TAK-003

E (DI and DII)

240773 T350,E351,S352,C354,Q357,S361,L362,N363,E364,R379,W381,G382,N383,G384,C385,G386,
I393,T395,K526,K527,Q528

LAV-TDV,
DENGVAXIA®, TAK-003

E (DII inside and outside the
fusion loop)

504074 N103,G104,G111 LAV-TDV,
DENGVAXIA®, TAK-003

E (DII inside the fusion loop)

504134 F586,K587,V588,V589,K590,E591,I592,A593,E594,T595,H597,T599,I600,V601,R603,Q605,V645,
N646,I647,E648,S676,S677

LAV-TDV,
DENGVAXIA®, TAK-003

E (DIII and stem region)

540687 K305,K307,K310 LAV-TDV,
DENGVAXIA®, TAK-003

E (DIII)

540688 K305,K310,E311 LAV-TDV,
DENGVAXIA®, TAK-003

E (DIII)

540689 T303,G304,K307 LAV-TDV,
DENGVAXIA®, TAK-003

E (DIII)

753469 K307,V309,K310,Q316,G318,D362,S363,P364 LAV-TDV,
DENGVAXIA®, TAK-003

E (DIII)

753470 K307,V309,Q316,D362,P364 LAV-TDV,
DENGVAXIA®, TAK-003

E (DI and DII)

753471 K160,E161,I162,K163,I170,T171,A173,E174,T176,G177,T180 LAV-TDV,
DENGVAXIA®, TAK-003

E (DII)

178102 W101,L107,G109 LAV-TDV,
DENGVAXIA®, TAK-003

E (DII inside the fusion loop)

196271 L117,S119,E123,K140 LAV-TDV,
DENGVAXIA®, TAK-003

PrM

241577 A50,T51,Q52,L53,A54,T55,R73,C74,W101,G106,E126,K128,V130,Q131,E133,N134,Q148,L196,
T198,T274,I276,K307,K308,E309

LAV-TDV,
DENGVAXIA®, TAK-003

E (DII inside and outside the
fusion loop and DIII)

504117 V585,L586,K587,K588,E589,V590,S591,E592,G596,T597,I598,L599,I600,K601,V602,E603,V643,
N644,I645,I667,W669,S674

LAV-TDV,
DENGVAXIA®, TAK-003

E (DIII)

538524 Q52,L53,E126,K128,E133,L135,A203 LAV-TDV,
DENGVAXIA®, TAK-003

E (DII and DIII)

504135 F585,S586,I587,D588,K589,E590,M591,A592,E593,T594,T599,V600,V601,K602,V603,K604,E606,
N641,V643,T644,N645,I646,L668,H669,W670,G678,K679

LAV-TDV, DENGVAXIA® E (DIII and stem region)

591353 K330, K403, K479, K481 LAV-TDV,
DENGVAXIA®, TAK-003

E (DI and DII)

591354 K330, V332,K403, L414, K479, K513 LAV-TDV,
DENGVAXIA®, TAK-003

E (DI and DII)
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Neutralizing antibodies play a key role in controlling viral
infections (24). Thus, much of the research to assess the
immunological protection capacity of anti-dengue vaccines is
based on the detection and/or evaluation of neutralizing
Frontiers in Immunology | www.frontiersin.org 7
antibodies (25–28). Therefore, we evaluated conservation of B
cell epitopes for neutralizing antibodies in the three main dengue
vaccines studied here. Most of the B cell epitopes here evaluated
were located in the envelope glycoprotein, which is involved in
TABLE 2 | Results of the medians of the epitope set scores and the p-values derived from comparative analyzes between vaccines.

Protein Median of Epitope Set Scores P-value

Dengvaxia® LAV-TDV TAK-003

C 0.000 0.143 0.165 0.07758
prM 0.113 0.167 0.140 0.82796
E 0.168 0.161 0.149 0.81011
NS1 0.000 0.321 0.241 0.00716
NS2A 0.000 0.085 0.062 0.00585
NS2B 0.000 0.074 0.088 0.18181
NS3 0.000 0.284 0.147 0.00000
NS4A 0.000 0.210 0.037 0.19875
NS4B 0.000 0.361 0.280 0.00022
NS5 0.067 0.352 0.207 0.00002
August 2021 | Volume 12 | Article
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FIGURE 2 | Location B cell epitopes that are the target for neutralizing antibodies and conserved in dengue vaccines on the 3D structure of envelope glycoprotein
dimers. (A) 3D structure of envelope glycoprotein dimer. Domain I (DI) is shown in red, Domains II (DII) is shown in yellow, fusion loop is shown in green, and Domains III (DIII) is
shown in blue. (B) Location of the 5 epitopes that share residues in the fusion loop, shown in green. Three of these epitopes contain all of their residues located in the fusion loop
(504078, 504074 e 178102). The epitope ID 240773 (magenta) also has residues in DII and the epitope ID 241577 (orange) also has epitopes in DII and DIII. Residues shared by
these two epitopes out of the fusion loop are shown in cyan. (C) Nine epitopes shown in cyan are located in DIII (IDs 540687, 540688, 540689, 753469, 753470, 504117,
504136, 504134, and 504135). The three last epitopes have residues located at the stem region; which was not represented in this 3D model. (D) Representation of the epitope
with ID 753471, with residues shown in salmon. All residues are located at DII. (E) Residues shared by six epitopes are shown in white and are located in domains I, II, and III. The
epitopes with residues located in the DI and DII are shown in brick (ID 591354), green (ID 240770), bluish-purple (ID 538524) and in magenta (ID591353). The epitope with ID
173906 is represented with residues in cyan, which are located in DI, DII, and DIII.
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the binding of DENV to host cell receptors. It is also involved in
membrane fusion and is divided into three domains (DI, DII,
and DIII). DII is central in each monomer and surrounded by DI
and DIII (29). The hydrophobic fusion loop is located in DII and
Frontiers in Immunology | www.frontiersin.org 8
is highly conserved in DENV serotypes due to its important role
in mediating membrane fusion (20, 29). Minimal changes in
fusion loop amino acid sequences prevent membrane fusion
(30). This explains the conservation of five epitopes for
FIGURE 4 | Percentage of coverage predicted for each vaccine based on the presence of a set of epitopes.
FIGURE 3 | Distribution of protein scores in the three vaccines.
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neutralizing antibodies in this region, despite the high selective
pressure imposed by the host immune system on the whole
envelope glycoprotein. These findings are in agreement with our
previous report about the conservation of B cell epitopes for
neutralizing antibodies in the Flavivirus genus (20). In addition,
we found epitopes for neutralizing antibodies conserved in the
DIII, which also corroborates our previous report considering
the Flavivirus genus (20). The role of DIII in the DENV cycle is
frequently related to a receptor binding function (29, 31).
Antibodies targeting different regions in DIII were shown to
strongly neutralize West Nile virus, a Flavivirus as DENV.
Therefore, the concentration of epitopes for neutralizing
antibodies in this domain was already expected. We also found
epitopes with residues completely located at DI and DII or with
part of residues located in these regions. These structures have
important roles in changes in protein structure which occur
before membrane fusion events. Finally, the single epitope
located in the prM suggest that most epitopes which are target
for neutralizing antibodies and are highly conserved have
residues located in structures with key biological functions in
the virus life cycle, such as the E protein.

The protective role of T lymphocytes during viral infections
has been well established (32). Several findings have suggested
that both, CD4+ and CD8+ T lymphocytes have a direct
relationship with the establishment of the immune response
since CD4+ T lymphocytes control viral infection through
mechanisms such as: i) the increase in B lymphocyte responses
and CD8+ lymphocytes, ii) production of inflammatory and
antiviral cytokines, iii) cytotoxicity against infected cells, in
addition to stimulating immune memory (33–37). It was
previously reported that the repertoire of T cell epitopes for
DENV is distributed throughout the virus proteome (38). We
then computed conservation and population coverage of T cell
epitopes involved in protective immunity against dengue, as
previously described by us (20). Most of these epitopes are
concentrated in NS3, NS5 and NS4B proteins (13, 14, 20, 38).
Our results suggest that in Dengvaxia®, a chimeric vaccine in
which non-structural proteins are those from Yellow fever virus,
most of the important T cell epitopes involved in protective
immunity are not present. This is probably the explanation for
the low protective efficacy of Dengvaxia® when compared to
TAK-003. For example: clinical trials carried out with
Dengvaxia® revealed an efficacy of 60.3% (95%CI. 55.7 to 64.5)
in children and adolescents from 2 to 16 years old (39) and an
efficacy of 30.2% (95%CI. 13.4 to 56.6) in those aged between 4
and 11 years old (40). In contrast, TAK-003 showed an efficacy of
80.9% (95%CI. 75.2 to 85.3) in children and adolescents from 4
to 16 years old (41). In addition, it was found that hospitalization
rates due to severe dengue were significantly higher in dengue
naïve children who received Dengvaxia® (42). Although this
vaccine formulation had achieved equivalent percentages of
Frontiers in Immunology | www.frontiersin.org 9
population coverage regarding LAV-TDV and TAK-003, our
results suggest that investing in vaccines that contain the
majority of epitopes involved in protective immunity (cellular
and humoral arms) is an important issue to be considered.
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