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ABSTRACT

Motivation: Understanding the association between genetic
diseases and their causal genes is an important problem concerning
human health. With the recent influx of high-throughput data
describing interactions between gene products, scientists have been
provided a new avenue through which these associations can be
inferred. Despite the recent interest in this problem, however, there is
little understanding of the relative benefits and drawbacks underlying
the proposed techniques.
Results: We assessed the utility of physical protein interactions
for determining gene–disease associations by examining the
performance of seven recently developed computational methods
(plus several of their variants). We found that random-walk
approaches individually outperform clustering and neighborhood
approaches, although most methods make predictions not made
by any other method. We show how combining these methods into
a consensus method yields Pareto optimal performance. We also
quantified how a diffuse topological distribution of disease-related
proteins negatively affects prediction quality and are thus able to
identify diseases especially amenable to network-based predictions
and others for which additional information sources are absolutely
required.
Availability: The predictions made by each algorithm considered are
available online at http://www.cbcb.umd.edu/DiseaseNet
Contact: carlk@cs.umd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
To understand the molecular basis of genetic diseases, it is important
to discover their causal genes. Typically, a disease is associated
with a linkage interval on the chromosome if single nucleotide
polymorphism (SNPs) in the interval are correlated with an increased
susceptibility to the disease (Birnbaum et al., 2009; Kathiresan et al.,
2009). These linkage intervals define a set of candidate disease-
causing genes. Genes related to the same disease are also known
to have protein products that physically interact (Goh et al., 2007;
Ideker and Sharan, 2008; Kann, 2007; Oti and Brunner, 2007).
A class of computational approaches have recently been proposed
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that exploit these two sources of information—physical interaction
networks and linkage intervals—to predict associations between
genes and diseases (Chen et al., 2006, 2009; Kohler et al., 2008;
Lage et al., 2007; Oti et al., 2006; Vanunu and Sharan, 2008; Wu
et al., 2008, 2009). Previous studies (Kohler et al., 2008; Lage et al.,
2007; Oti et al., 2006; Wu et al., 2009) typically begin with an
artificial disease subinterval and test how well they can identify a
known causal gene from among a fixed number of nearby genes
in the query subinterval. In this article, instead of ranking only
genes in the subinterval, we rank all genes in all intervals related
to a query disease. This more stringent approach is advantageous
because it allows us to find disease-causing genes that lie in existing
disease intervals but that were previously not associated with the
disease. Consequently, we can gauge a gene’s relatedness to any
query disease.

Several techniques for uncovering gene–disease associations
take an integrative approach, leveraging Gene Ontology
annotations (Aerts et al., 2006; Franke et al., 2006; Gaulton
et al., 2007; Perez-Iratxeta et al., 2007; Radivojac et al., 2008; Sam
et al., 2007), gene expression (Aerts et al., 2006; Franke et al.,
2006; Gaulton et al., 2007; Karni et al., 2009; Ma et al., 2007),
protein sequence (George et al., 2006; Perez-Iratxeta et al., 2007;
Radivojac et al., 2008), biological pathways (Aerts et al., 2006;
Franke et al., 2006; George et al., 2006), text mining (Ozgur et al.,
2008; van Driel et al., 2006), transcription factor binding sites (Aerts
et al., 2006) and various phenotypic traits of diseases (Freudenberg
and Propping, 2002). Recent studies (Lage et al., 2007; Wu et al.,
2008) have suggested that network-based predictions can be of
comparable quality with current integrative approaches. We focus
here on isolating protein–protein interaction (PPI) networks and
linkage intervals to determine how much information is readily
extractable from them for predicting gene–disease associations. Any
improved network-based analysis can subsequently be incorporated
into a more comprehensive, integrative system (Linghu et al.,
2009).

We compare approaches based on direct network neighbors (Oti
et al., 2006, and neighborhood), unsupervised graph partitioning
[graph summarization (GS; Navlakha et al., 2008) and Markov
clustering (MCL; Van Dongen, 2008)], semi-supervised graph
partitioning (VI-Cut; Navlakha et al., 2009a), random walks (Kohler
et al., 2008) and network flow (Vanunu and Sharan, 2008), plus
several of their variants (see Table 1 and Section 2). Trends in
the precision and recall achieved by these computational methods
yield several insights about the utility of PPI networks for
uncovering gene–disease associations. We find that random walk
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Table 1. The primary methods compared in this study

Method Type of analysis

Neighborhood Network neighbors
Oti1 Network neighbors
GS Unsupervised clustering
MCL Unsupervised clustering
VI-Cut Semi-supervised clustering
Random walks (RW) Random walks with restarts
Flow propagation (Prop) Network flow with priors

Several variations are also considered, including requiring more corroborating
interactions than Oti1 (Oti2, Oti3), hierarchically summarizing the graph (GS2, GS3,
GS-All) and choosing larger (VI-CutL) and smaller (VI-CutS) clusters.

approaches outperform all other tested classes of methodologies,
with performance ranging from high precision and low recall (92%
and 1%, respectively) to low precision and mediocre recall (17%
and 38%, respectively) based on the parameters used. The graph
clustering methods, which have not previously been tested in this
domain, mostly perform better than the neighborhood approaches.
When only using linkage intervals (without the network), we find
substantially lower performance, as is the case when using only
the network (without linkage intervals). However, in this latter
scenario, graph clustering methods can be more precise than the
other methodologies. This suggests that the proper choice of method
and parameters depends on the setting.

We also quantify the relationship between the quality of
predictions for a disease and the topological distribution of its related
proteins in the network.As one would expect, we obtain better results
for diseases whose proteins are situated near one another in the
network. The measured relationship between closeness (homophily)
and performance can be used to estimate precision and recall per
disease a priori. The lower precision observed on diseases whose
genes are spread apart in the network also suggests that making
high-quality predictions for these diseases warrants the integration
of more information sources and is where future computational
efforts should be directed. We compare the actual predictions made
by each method and find that most methods make some correct
predictions not made by any other method, and that there are very
few incorrect predictions made by multiple methods. Consequently,
we show that combining these methods using a consensus Random
Forest classifier results in Pareto optimal performance. Given the
wide range of approaches considered, the consensus method may
be considered the current performance of the network itself for
determining gene–disease associations.

2 METHODS

2.1 Protein interaction network and gene–disease
annotations

We constructed a PPI network from the Human Protein Reference Database
(HPRD Release 7; Keshava Prasad et al., 2008). The entire network
contained 9182 proteins and 36 169 interactions. We considered only its
main component, which consisted of 8776 proteins and 35 820 interactions.
A second network was constructed from the Online Predicted Human
Interaction Database (OPHID; Brown and Jurisica, 2005). This larger
network contained 9842 proteins and 73130 interactions. Neither of these

databases provided weights associated with their interactions, hence we
considered them unweighted.

Diseases were associated with genes and linkage intervals using
annotations from the Online Mendelian Inheritance in Man (OMIM;
McKusick, 2007) morbid-map file. Diseases that roughly shared the same
first name were grouped into disease families as previously done (Kohler
et al., 2008; Oti et al., 2006). In the remainder of this text, we refer to
a ‘disease family’ simply by ‘disease’. Diseases currently associated with
only one gene were discarded in order to facilitate cross-validation testing.
Loci for 8470 of the 8776 genes were obtained from UniProt (The UniProt
Consortium, 2008). In the HPRD network, 1415 genes were associated with
at least 1 of the 450 diseases. There were 189 genes associated with diseases
according to OMIM, but which did not lie in any of the disease’s recorded
linkage intervals according to UniProt. We resolved these incompatibilities
by assigning those genes to some linkage interval associated with the disease.
Of the annotated genes, an average of 4.60 genes were associated with each
disease, and on average 1.46 diseases were associated with each annotated
gene. Each disease defined a set of intervals which covered an average of
397 genes.

2.2 Network-based algorithms to predict gene–disease
associations

A widely used (Nabieva et al., 2005; Schwikowski et al., 2000) network-
based approach (‘Neighborhood’) predicts for a protein p the annotations
that are associated with more than θ percent of p’s network neighbors. The
method of Oti et al. (2006) associates a gene with a disease if it lies within
a linkage interval associated with the disease and interacts with ≥1 gene
annotated with the disease. Our variants (‘Oti2’ and ‘Oti3’) require ≥2 and
≥3 such genes, respectively.

Random walks have been used to transfer annotations within
networks (Chen et al., 2009; Kohler et al., 2008). Kohler et al. (2008)
define a random walk (‘RW’) starting from genes known to be associated
with a query disease d. At each time step, the walk has a probability r
of returning to the initial nodes. We set r =0.75, as was done by Kohler
et al. (2008). Once the process converged (L2-distance between probability
vectors in consecutive time steps <10−6), a prediction was made for all genes
in relevant intervals with visitation probability greater than θ. A similar flow
propagation algorithm was given by Vanunu and Sharan (2008), which we
refer to as ‘Prop’.

Graph partitioning is a promising technique for predicting gene–disease
associations because it can uncover functional modules in PPI networks, and
phenotypically similar diseases are often caused by proteins that have similar
biological processes (Fraser and Plotkin, 2007; Wu et al., 2008). We tested
three graph partitioning algorithms that were recently shown (Brohee and
van Helden, 2006; Navlakha et al., 2009a, b) to find the most biologically
relevant modules: GS (Navlakha et al., 2008), MCL (Van Dongen, 2008)
and VI-Cut (Navlakha et al., 2009a). GS1 losslessly compresses the input
network, producing a smaller summary network and a list of corrections to
over-generalizations in the summary. The nodes in this summary correspond
to modules in the input network. The summary graph can be further
compressed by discarding the list of corrections and applying GS again,
resulting in larger modules (‘GS2’). This process can be repeated i times,
yielding a ‘GSi’ method. The ‘GS-All’ method makes the union of the
predictions made by GS1, GS2 and GS3. VI-Cut is a semi-supervised
clustering method that uses annotations in the training set when creating
modules. We test two variants of VI-Cut, dubbed ‘VI-CutS’ and ‘VI-CutL’,
which break ties by favoring smaller and larger modules, respectively.
A complete description of the algorithms is provided in Supplementary
Section 1.

Since code is not available for the machine learning methods of Wu et al.
(2008) and Lage et al. (2007), we were unable to test their algorithms on
our framework. Both methods predict human genetic diseases drawn from
the OMIM database, but differ slightly in the exact diseases, interactions and
validation methodology used. Each of them also define a similarity measure
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Fig. 1. (a) The disease annotations (if any) are discarded from one protein p
(double-circled node), and an attempt is made to predict these annotations as
follows. (b) For each disease d, an algorithm A is used to give a score A(p,d)
measuring how much p appears to be associated with disease d. If A(p,d)≥θ,
the p-d association is considered as a candidate. (c) Finally, candidates are
filtered based on genetic intervals known to be associated with disease. A p-d
association is predicted if A(p,d)≥θ and p lies in a chromosomic interval
known to be associated with disease d.

between diseases, which allows them to include diseases in the test set for
which only one causative gene is known.

Finally, we consider a consensus method that incorporates all 13 tested
methods into a Random Forest classifier (Breiman, 2001; Witten and Frank,
1999). For each tested gene–disease pair, a 13D vector was created with
entries containing each method’s score for the pair. A vector was classed as
yes if its gene was known to be associated with its disease, otherwise it was
classed as no. To predict a gene–disease association, we required a minimum
yes probability of θ, which we varied from 0.5 (default) to 0.9.

2.3 Testing framework
To test each potential protein–disease association p-d, we used leave-one-
out cross-validation (Fig. 1). The algorithms described above were used to
compute a score A(p,d) for each possible disease d that is associated with
an interval containing p. When scoring p-d, all disease associations known
for p are discarded. The score A(p,d) was then compared with a specified
threshold θ, with higher thresholds yielding more conservative predictions.

True positives (TP) are those p-d associations with A(p,d)≥θ, where
protein p is contained within an interval known to be associated with disease
d and for which p is known to be associated with d. False positives (FP)
are those p-d associations for which A(p,d)≥θ, with p contained in an
appropriate interval, but for which p is not currently known to be associated
with d. We conservatively considered predictions made for any of the 7361
unannotated genes in the network as incorrect, even though some of these
predictions might in fact be novel associations. False negatives (FN) are p-d
associations for which p is known to be associated with d but A(p,d)<θ.
Precision is TP/(TP+FP), the number of correct predictions made divided by
the total number of predictions. Recall is TP/(TP+FN), the number of correct
predictions divided by the total number of possible correct protein–disease
associations.

For neighborhood and clustering algorithms, A(p,d) was the percentage
of p’s neighbors or co-clustered proteins that were associated with disease
d, with the threshold θ varying between 5% and 90%. For random walk
methods (RW and Prop), A(p,d) was the visitation probability of p in the
random walk started from seed genes associated with d. For RW, we varied
θ between 0.01% and 9% (Supplementary Material).

2.4 Quantifying homophily
We quantified the relationship between predictive performance and the
topological distribution of the disease proteins in the network using two
measures. These measures are designed to assess whether a set of proteins
(that are associated with a given disease) is located in dense pockets in
the network or is more uniformly distributed. The first, average pairwise
distance, is the average number of interactions separating two proteins

associated with a disease. A similar idea was recently used by Radivojac
et al. (2008) as one of many integrative features in an support vector
machine (SVM) to predict disease annotations, and by Lavallee-Adam et al.
(2009) to quantify the distribution of Gene Ontology (Ashburner et al.,
2000) annotations in a PPI network. This measure is reasonable when all
proteins are in one dense region, but is incorrectly large in instances where
the nodes are located in several dense but well-separated regions in the
network. A second measure, neighborhood homophily, does not suffer from
this problem. The neighborhood homophily of disease d is the average
percentage of network neighbors of a disease d protein also known to be
associated with d.

3 DISCUSSION

3.1 The quality of network-based predictions
Predictions were made by each computational method (Table 1) as
described in Section 2. The precision and recall for each method
on the HPRD (Keshava Prasad et al., 2008) network is shown in
Figure 2a. Lines connect the performance for the same method
using different prediction thresholds. Performance points where
recall dropped <1% were removed. There was a wide range of
performance among all the methods tested, with precision ranging
between 17.0% and 92.3% and recall between 1.2% and 37.6%
(Fig. 2a and b).

The random walk methods [RW (Kohler et al., 2008) and
Prop (Vanunu and Sharan, 2008)] show a clear dominance over the
clustering and neighborhood methods. The similar performance of
RW and Prop is not surprising because the prior-evidence vector
of Vanunu and Sharan (2008) is similar in principle to the restart
probability in the random walk of Kohler et al. (2008). Thus,
although couched in different terms, RW and Prop are closely
related. The slight advantage to RW might be attributed to the fact
that Prop’s prior-evidence vector pumps one unit of flow along each
edge, instead of normalizing by a node’s degree. Hence, there may be
a bias toward annotations from high-degree nodes. As the threshold
increases both methods gain in precision, with RW plateauing at
92.3% precision, the highest of any single method. The generally
superior performance of the random walk methods suggests that
the clustering and neighborhood methods are too restrictive when
defining their locality.

The clustering methods [MCL (Van Dongen, 2008), VI-Cut
(Navlakha et al., 2009a), and GS1 (Navlakha et al., 2008) and
its variants GS2, GS3 and GS-All], which have not previously
been appraised for the task of predicting gene–disease associations,
performed slightly worse than the random walk methods, but
better than the neighborhood approaches. They achieve between
18.4% and 68.6% precision and 1.1% and 17.9% recall. The
performance of GS1 and GS2 was similar, though GS2 covered
a wider range of precision and recall. GS3 created too few modules
and performed relatively poorly by itself. Taking the union of GS1,
GS2 and GS3 (GS-All) improved over GS1 and GS2 by yielding a
higher recall, and improved over GS3 in both precision and recall.
This suggests that iteratively compressing the PPI network yields
informative modules. MCL extended the range of precision and
recall further than GS2, but still fell within a tight linear band
along which most clustering methods lie. VI-Cut incorporates known
annotations when finding clusters, unlike GS and MCL, which are
unsupervised approaches. VI-CutS breaks ties by choosing smaller,
more homogeneous clusters, and, as a result, yielded a high precision
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Fig. 2. Performance of the methods. (a) Precision and recall for each
method using leave-one-out cross-validation on the HPRD network. The
random walk methods individually perform the best, followed by the
clustering and neighborhood approaches. The consensus method, which
combines predictions made by all methods using a Random Forest classifier,
outperforms all other methods. (b) A magnification of the dashed region
corresponding to the clustering methods.

(average of 66.0%), albeit a very low recall (1.4% on average).
VI-CutL breaks ties by choosing larger clusters and therefore yielded
a lower precision but a higher recall. Across all clustering methods,
smaller clusters produced more precise predictions. The similar
performance of the many clustering algorithms tested suggests that
their utility for predicting gene–disease associations lies within a
well-defined range.

The Neighborhood and Oti methods each make predictions by
only considering the annotations of the neighbors of a protein.

Predictions made by Neighborhood ranged in precision from 23.5%
to 40.1% and 2.1% to 23.7% recall, depending on the prediction
threshold θ used. The Oti methods do not vary with respect to θ

and are therefore shown as single points in Figure 2. Oti1 yielded
a recall of 29.5% with still a relatively high precision (19.0%).
Oti2 and Oti3 both drive up the predictive confidence by requiring
more seed proteins to interact with the candidate protein. Both not
only have successively higher precision than Oti1, but also have
successively lower recall. Oti4 showed no improvement over Oti3.
For the clustering and neighborhood approaches, precision improved
as θ increased from 0% to 50%, but remained relatively stable for
θ≥50%, indicating that a 50% prediction threshold is appropriate
and that there are few competing majority annotations among the
cluster or network neighbors of a protein.

The same experiments on the OPHID (Brown and Jurisica,
2005) network yielded similar performance for all methods
(Supplementary Fig. S1).

3.2 Interplay between linkage intervals and interaction
information

A disease is typically associated with a linkage interval if SNPs
in that interval result in an increased susceptibility to the disease.
The actual causal genes for the disease could lie anywhere in
the interval. To understand how much added benefit the network
provides in identifying the target genes, we considered two baseline
genomic methods that only used linkage intervals, ignoring the
network entirely. The first method predicted, for each disease d,
x random genes within linkage intervals known to be associated
with d, where x is the known number of d-causing genes. This
resulted in 1.6% precision and 1.6% recall on average. The second
method predicted a disease for all genes contained within the
disease’s intervals [i.e. A(p,d)=∞ for all p,d in related intervals].
This resulted in 100.0% recall but only a 1.2% precision. We
also tested the quality of the predictions made by each network-
based method assuming linkage interval information is not available.
Again, we found a large drop in performance compared to using
linkage intervals and PPI networks in conjunction. The random
walk methods achieved precision ranging from 1.3% to 37.1%, and
recall ranging from 1.2% to 29.0%. Some clustering methods were
more precise in this scenario [precision between 4.4% (MCL) and
48.0% (VI-CutS) and recall between 1.1% (VI-CutS) and 17.9%
(MCL)], which suggests that some clusters found represent true
disease modules, and that the random walk methods benefit more
from the filter that linkage intervals provide. Undoubtedly, linkage
intervals or networks by themselves are not sufficient to make high-
quality predictions; however, such predictions can be anecdotally
useful. Recent literature (Birnbaum et al., 2009; Firoz et al., 2009;
Kathiresan et al., 2009) reports several gene-disease associations
that are not currently in OMIM but which were uncovered by one of
the tested methods when run without using linkage intervals. A table
summarizing these predictions is in Supplementary Table T1.

3.3 Prediction quality per disease
Performance varied widely when assessed on a per-disease basis. For
each disease, we computed the maximum precision and maximum
recall separately across the 13 methods. The number of diseases for
which performance is within each precision–recall range is given
in Figure 3. Row and column sums are shown at the margins. Very
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Fig. 3. Upper bound on achievable performance. Each (x,y) square is
colored by the number of diseases that had maximum recall x and maximum
precision y across all 13 methods using the prediction threshold for each
method corresponding to roughly 10% recall.

good performance can be achieved for many diseases using some
method. In particular, there are 124 diseases for which the maximum
precision is >90%. There were 19 diseases for which at least
half of the 13 methods achieved precision >90% (Supplementary
Section 4). Assuming the optimal method is chosen per disease, this
is the upper bound on the best performance possible.

Fourteen diseases have at least three associated proteins
and achieved maximum precision >90% and maximum recall
>90% for some combination of methods (Bare lymphocyte
syndrome, Bernard–Soulier syndrome, Dysfibrinogenemia, Ellipto-
cytosis, Epidermolysis, Griscelli syndrome, Heinz body anemia,
Hemochromatosis, Mismatch repair cancer syndrome, MODY
diabetes, Nephronophthisis, Ovarioleukodystrophy, Thalassemia
and Trichothiodystrophy). Fanconi anemia, which has been
experimentally shown (Macé et al., 2005; Pan, 2008) to have protein
products that interact, had a maximum precision and recall of 100%
and 69.2%, respectively. There were also 144 diseases that had a
maximum precision <10%. These are the diseases for which the
network seems to provide little information and for which new
computational methods or additional data are absolutely required.

The existence of proteins implicated in the same disease that
do not interact has been shown to adversely affect predictive
performance for a disease (Lage et al., 2007). We can quantify
the degree to which proteins associated with the same disease tend
to be located near each other in the network using measures of
homophily, such as neighborhood homophily and average pairwise
distance (Section 2). Predictions made for more homophilic diseases
were typically of higher quality than those made for diseases that
do not exhibit strong homophily. Figure 4a shows how predictive
performance varies as a function of neighborhood homophily for five
representative methods (Neighborhood, GS-All, VI-CutL, Prop and
RW) using the prediction threshold for each method that corresponds
to roughly 10% recall. The bars in the plot indicate the average
F1-measure (harmonic mean of precision and recall) of predictions
made by all five methods for diseases with neighborhood homophily

Fig. 4. Disease homophily versus prediction quality. The effect of disease
homphily on the quality of the predictions made for that disease. The x-axes
correspond to homophily, measured via (a) neighborhood homophily, and
(b) the average pairwise distance of a disease. The y-axes are the F1-measure
(harmonic mean of precision and recall) of the predictions for the disease.
Least squares fit lines are shown for each method, with regression values
in the legend. Vertical bars indicate variance. The trends uniformly indicate
that the lower the average pairwise distance and higher the percentage of
similarly annotated neighbors, the better the predictions. Numbers in bars
give the count of diseases with the given level of homophily.

in the given range. Error bars show the variance across the five
methods. Five least squares lines fit the performance points of each
method, with regression values shown in the legend. (Separate
precision and recall plots for each homophily measure are in
Supplementary Fig. S2). Even the methods that do not directly
use network neighbors (i.e. GS-All, VI-CutL and RW) showed a
significant correlation with neighborhood homophily.

A similar dependence was seen for average pairwise distance
(Fig. 4b). On average, as the distance between disease-related
proteins grew, performance worsened. Thus, homophily can be used
to provide an a priori estimate of the quality of network-based
predictions for a given disease.

3.4 Consensus classifier improves predictions
The methods considered here use a variety of techniques to extract
predictions from the PPI network, and consequently each might
be expected to make successful predictions for genes not correctly
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handled by other methods. To quantify this, we define the uniqueness
of method M to be the percentage of correct predictions made by M
that were not made by any other method. When more methods are
included in such an analysis, the uniqueness for each method will
generally decrease.

We considered the five representative methods (Neighborhood,
VI-CutL, GS-All, Prop and RW), using the prediction threshold
for each method that corresponds to roughly 10% recall. All five
methods made predictions that were not made by the other four.
In particular, 18.9%, 7.6%, 5.0%, 3.1% and 30.7% of the correct
predictions made by these five methods, respectively, were unique.
The incorrect predictions were also not shared across the methods.
Among the five methods, 976 total predictions were made, yet only
19 (1.9%) were both wrong and made by all five methods.

This implies that, although random walks individually perform
the best, an aggregate method that combines several of the network
analysis strategies will be useful. In particular, in Figure 2a, we
show the performance of a consensus method using an ensemble of
decision trees (Section 2.2). All five points are Pareto optimal over
all other methods (meaning no other method has higher precision
and recall). The superior performance of the consensus method
indicates that many of the individual methods capture different kinds
of structure in the network and that these individual abilities can be
used in tandem to make higher quality predictions.

4 CONCLUSION
The classes of network-based methods considered here each
approached the task of predicting gene–disease associations using
very different philosophies. Although random walk approaches are
superior to clustering and neighborhood approaches, we showed that
all methods make unique predictions and can be used together to
increase performance. We also quantified the relationship between
disease homophily and prediction quality, and found certain diseases
for which high-throughput PPI networks were an especially useful
source from which to make high-quality predictions. Diseases
that have little correlation with the interaction network call for
higher quality networks or an integrative approach that considers
sequence, functional annotations, expression data or other additional
information.
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