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A B S T R A C T   

Mass spectrometry imaging (MSI) has emerged as a rapidly expanding field in the MS community. The analysis of 
large spectral data is further complicated by the added spatial dimension of MSI. A plethora of resources exist for 
expert users to begin parsing MSI data in R, but there is a critical lack of guidance for absolute beginners. This 
tutorial is designed to serve as a one-stop guide to start using R with MSI data and describe the possibilities that 
data science can bring to MSI analysis.   

Introduction 

Mass spectrometry imaging (MSI) is a versatile tool for the analysis 
and identification of molecules of interest within biological tissues [1]. 
MSI [2] is an application of mass spectrometry [3,4], which allows 
scientists to analyze non-volatile biomolecules by ionizing them into the 
gas phase. This label-free technique can determine the spatial distribu-
tion of hundreds of compounds in a highly heterogeneous sample in one 
experiment. In MSI, frozen tissue sections are spray-coated with a matrix 
solution and data are then collected at discrete locations on the sample 
surface [5,6]. 

In the past ten years, the use of MSI has expanded from basic research 
[2,7] to biomedical applications, particularly proteomics and lipidomics 
[8] due to the ease of ionization of these classes of compounds [9]. MSI 
has the potential to transform translational science and general medi-
cine and to improve health outcomes in a number of ways. For example, 
MSI has enhanced pharmaceutical drug discovery and development by 
facilitating high-resolution evaluation of drug disposition, metabolism, 
and toxicology [10–13]. 

MSI can be employed to discover and track the presence of predictive 
tissue biomarkers and aid in disease diagnosis, patient risk stratification, 
and disease management [14]. Because MSI can be carried out within 
hours to days, it can provide data that can be co-registered with 

concurrent histopathology [15,16] and, thus, has real potential for 
future routine integration into clinical workflows. As an example of how 
MSI has been used in patient diagnostics, desorption electrospray ioni-
zation (DESI) MSI and, more recently, MALDI-MSI have been integrated 
into the preoperative decision-making phase of tumor resection 
[17–21]. Intraoperative analysis of tissues has been interfaced with real- 
time surgical workflows and resulted in identifying peaks of interest that 
can be informative for pathological determinations. MALDI-MSI in the 
surgical suite has been demonstrated to deliver near-real-time peptide 
and protein information within 30 min of tissue resection [20]. 

Exciting recent studies that acquire metadata and utilize machine 
learning are paving the way for novel and unexpected correlations with 
disease states and ways to benefit patient outcomes [22,23]. Integration 
of MSI-based data with proteomic, transcriptomic, and genomic infor-
mation [22] suggests that MSI could have far-reaching impacts and 
could become a clinical assay in and of itself. MSI is a highly efficient 
technique for high-throughput collection of large quantities of data, 
making it an optimal tool for creating accessible data sets within the 
scientific community. 

Even as MSI usage has soared in the past two decades, there are 
several aspects that require further development in order to fully 
implement MSI in routine clinical research and practice. For example, 
while MSI works well for visualizing peptides, proteins, and lipids, its 
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application for other categories of small molecules (typically defined as 
mass less than 500 Daltons) is underdeveloped in comparison. This 
limits the use of MSI in metabolomics, which is increasingly of interest to 
researchers to understand the distribution and metabolism of natural 
and synthetic small molecules in tissue [24], as well as in applying 
metabolic signature profiling to precision medicine practices [25,26]. As 
biochemical reactions and metabolites vary among individuals, envi-
ronmental conditions, and disease states, the ability of a high- 
throughput technique such as MSI to obtain metabolomics data will be 
extremely important in establishing precision medicine [27,28], as well 
as population trends and predictive patterns. Furthermore, consistent 
protocols must be established for reproducibility across laboratories and 
data analysis within a clinical timescale; computational and statistical 
strategies are needed for unbiased assessment of data quality. Across all 
of these challenges, it is also necessary to ensure that MSI can be applied 
by non-experts in order to maximize its utility [29]. 

For MSI to enter routine biomedical and clinical practice, it must be 
“user-friendly” for non-experts. Instrument operation has evolved to be 
driven by workflows and ease-of-use software integrations, making it 
more hands off; scientists who outsource MSI to fee-for-service labs often 
receive data they cannot adequately interpret. Most data analysis 
methodologies are geared towards expert users with coding knowledge 
in order to extract the most information, and many research teams 
include computational biologists and/or biostatisticians for this pur-
pose. In addition, current computational strategies for MSI often require 
the purchase of expensive proprietary software that requires extensive 
training to use effectively. While there is open-source software, such as 
the statistical programming language R, that can provide the workflows 
and code for anyone to use, open-source code often lacks the instructions 
and details required for non-experts to process and interpret the data. 

One of the current challenges for MSI in pre-/clinical and pharma-
cological applications is a consistent application of experimental repli-
cates and a subsequent routine data validation. Further compounding 
the issue is that there is no broadly accepted way to assess data quality in 
MSI, which impacts non-expert users the most, as they do not have 
enough MSI experience to judge data informally. This tutorial is a simple 
proposed data analysis workflow in R that will allow new pre-/clinical 
users to determine the requirements of data analysis in MSI and will 
provide concrete explanations behind the code. The base requirements 
for a new user are to have the current version of R and the R Studio 
integrated development environment installed on their workstation. 
Additionally, the package, Cardinal, and its dependencies will need to be 
downloaded (see Section 3.1.1 for information on how to get started). 
Cardinal requires all data to be converted to the vendor neutral imzML 
format as it is not designed to read the native file format from in-
struments. Nearly all vendor instrument software offers conversion to 
imzML features to export imaging runs in this format. This is not 
intended to be a tutorial on how to use Cardinal, as those already exist 
[30,31], but rather to introduce how to use the tools for data analysis 
needs in pre-/clinical experimentation. 

The tutorial workflow has two sample scenarios in order to meet the 
demands of data quality in pre-/clinical analysis for which we will show 
data and the subsequent outcomes: (i) rapid comparison between tissue 
sections in order to account for the question of biological variance (i.e., 
cellular heterogeneity), and (ii) rapid assessment of sample preparation 
parameters/environmental factors to confirm data quality. By using the 
same R Notebook with the same commands to perform basic data vali-
dation on complex MSI data, our goal is to show that anyone can use R 
and the sample dataset to assess these outcomes. Fig. 1, shown below, 
describes the analyses to be performed, the sample requirements, the 
validity tests, and the processed data outcomes. 

Methods for sample prep in MSI 

Zebrafish embryos were placed in a 10 mm × 10 mm × 5 mm biopsy 
cryomold (Ted Pella, Redding, CA) and embedded in Thermo Scientific 

Shandon M1 embedding media (Thermo Fisher Scientific, Waltham, MA). 
After freezing at − 20 ◦C, the block was sectioned at 10 μm thickness at 
− 16 ◦C and thaw-mounted onto cleaned indium tin oxide (ITO) slides 
(Delta Technologies, Loveland, CO). All cryosectioning was done on a 
Leica CM1860 cryostat (Buffalo Grove, IL). A traditional organic matrix 
was prepared at 10 mg/mL DHB in 50% methanol/50% water and 
sprayed using an HTX M5 sprayer (HTX Technologies, Chapel Hill, NC) 
with a nozzle temperature of 85 ◦C, using 8 spray passes at a flow rate of 
0.075 mL/min with no drying time. Gold nanoparticles (AuNPs) were 
sprayed at either 30 or 45 ◦C, with one pass at a flow rate of 0.010 mL/ 
min with 2 s drying time. One ITO slide was used for all experiments, with 
parafilm used to mask different sections of the slide so that multiple spray 
compositions were contained on this one slide. The final slide layout and 
description of regions of interest are shown in Fig. 2. 

Zebrafish husbandry 

The Institutional Animal Care and Use Committee (IACUC) at the 
University of Scranton approved protocols #9–19 and #1–20, which 
includes all animal handling, breeding, and euthanasia methods. Adult 
zebrafish (Danio rerio) were purchased from Carolina Biological Supply 
(Burlington, NC) and bred, and embryos were collected within 1 h of 
fertilization. Embryos were transferred to Petri dishes containing em-
bryo medium (E3 buffer) and kept in an incubator at 28.5 ◦C. E3 buffer 
was changed daily until 5 days postfertilization when embryos were 
sacrificed using either a 600 mg/L solution of tricaine methanesulfonate 
or immersion in liquid nitrogen. 

Instrumentation and data handling 

All imaging experiments were performed on Bruker Rapiflex MALDI 
TOF/TOF (Billerica, MA) in reflectron positive mode at a lateral spatial 
resolution of 20 μm. Data collection occurred at the Applied Imaging 
Mass Spectrometry Core Facility at Johns Hopkins University School of 
Medicine with full software capabilities (i.e., FlexImaging, SCiLS lab, 
and other Bruker software). However, data analysis was done off-site on 
a workstation at the University of Scranton (see workstation re-
quirements in section 3.1). All data was exported from FlexImaging into 
an .imzML file for use in R, which is required by Cardinal for analysis. 

Experimental planning and rationale 

This tutorial and data set were originally used for teaching within the 
Stumpo research group at the University of Scranton, a primarily un-
dergraduate institution, with the goal of introducing new undergraduate 
students to the broad utility of MSI and data science. Without easy access 

Fig. 1. Workflow for data validation of three sample parameters.  
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to an instrument, the main dataset utilized for that purpose was rede-
signed into this tutorial. A common question in the zebrafish community 
is if sacrifice method has an impact on detectable biochemical processes, 
especially for embryos [32–34], hence the two different sacrifice 
methods. The foundational publication of the Stumpo group centered 
around using nanoparticles for enhanced ionization of small molecules 
[35], hence the multiple comparisons of matrices. 

Tutorial for R using R Studio 

This tutorial starts with the basic information needed to setup a 
workstation for data processing. The minimum recommended computing 
power is an Intel Core i7 processor (equivalent or better), Microsoft 
Windows 7 operating system or Linux operating system (Ubuntu recom-
mended), 32 GB of RAM, a 1 TB SATA solid state drive, and a graphics 
card supporting OpenGL 3.2. The best way to improve on this set of 
minimum recommendations is to add more RAM. If more storage space is 
needed, a less expensive option is to have a larger non-SSD for long-term 
storage and data for immediate processing can be stored on the SATA SSD. 
Due to the inherent large file size of MSI datasets this minimum setup is 
suggested, but it is worth noting that a weaker system such as a laptop is 
capable of processing small imaging runs and that size of the dataset will 
dictate minimum performance requirements. 

Basic information to get setup for data processing 

A host of powerful R packages have been created to enable efficient 

and relevant analysis of MSI data in R Studio. This tutorial will guide 
users through a simple step-by-step workflow to allow MSI data to be 
analyzed in R Studio without requiring a strong background in R or MSI. 
A sample dataset has been provided with different sacrifice and spray 
conditions, enabling many routes for comparison and analysis. R pack-
ages have been optimized to load complex MSI data with a few simple 
commands that are contained within a notebook that can be used 
repeatedly. Depending on your familiarity with R, the following re-
sources are designed to guide beginners through the user interface to 
start using this notebook (https://education.rstudio.com/learn/ 
beginner/). You will need at least a basic understanding of how to 
“talk” to R, such as the introductory information shown in Fig. 3 (some 
small suggestions on how to work within your notebook are given in the 
figure as well). 

With R and R Studio installed, the user interface can be quickly un-
derstood through freely available videos and guides, such as the re-
sources provided by the R Studio team. Use your own dataset or 
download the example from the GitHub data section, which includes this 
dataset and the tutorial notebook. Metaspace (a free online collection of 
MSI datasets available to download) [36] is another resource for finding 
and using MSI datasets. As this tutorial progresses, you will see code 
displayed in a code chunk (shown below), which you can copy and paste 
into your own R notebook or run natively in the provided introductory 
notebook. MSI datasets are ready to be loaded into R once they are in the 
imzML format. Imaging runs are either stored as continuous or pro-
cessed imzMLs, which Cardinal treats differently. In a continuous file the 
m/z values will be the same for every spectrum in an image, while in a 

Fig. 2. Optical image of imaged slide with regions of interest highlighted and sample preparation conditions defined.  

Fig. 3. Sample R Studio notebook screenshot with some basic introductory information.  
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processed type each spectrum keeps a respective m/z array. Cardinal 
documentation explains the features of both types clearly, but an un-
derstanding of which type of file is being used is required to start. The 
code that is utilized throughout is available as a downloadable R note-
book on GitHub: https://github.com/Camber27/MSI-R-Tutorial.   

With the Cardinal package prepared and a MSI dataset in imzML 
format downloaded locally, analysis can proceed. 

MSI data loading 

The defining feature of MSI is the spatial component of the data. To 
generate m/z images, data first needs to be read into R and processed.   

Important note: depending on the OS of the workstation, different 
symbols are needed for file paths. In Windows the symbol \ is the default 
for outputting file paths, but R will read this as its own command. This is 
why a second \ is added manually. In UNIX based OS like Mac or Linux 
the native / file paths are acceptable.   

Now the object data is your MSI dataset loaded into R for further 
analysis. Many packages and data parsing methods can be used through 
R to make discoveries from the data. 

MSI data preprocessing 
Raw data can be analyzed, but preprocessing is the standard for MSI 

experiments. This step reduces the computational resources and time 
required for analysis and can be tuned for specific needs. The parame-
ters, such as total ion count (tic) and root mean square (rms), are listed 
in Cardinal documentation and user choice. The most important 
parameter is the signal-to-noise ratio (SNR). This number dictates how 
much more intense a peak must be than the noise region to be consid-
ered a real peak and retained in the processed data. By increasing SNR, a 
smaller number of higher intensity peaks will be used for analysis. If a 

particular peak is desired, it is useful to make an m/z image and display 
its spectrum before and after preprocessing to verify this step retains the 
target. 

For more information, readers are directed to several recent reviews 
that give a good overview of the choices available and the mechanics of 
preprocessing.[37–40]  
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Target confirmation 
By visually inspecting the before and after preprocessing dataset ob-

jects, a target m/z can be identified by comparing images and spectra. 
The imaging of before preprocessing will be a time intensive process as it 
is performing analysis on unprocessed data (Fig. 4.).   

In this example, the spectra is shown through the plot() command 

allowing visual confirmation of a peak at m/z 146 where an arbitrary 
target is located. By confirming peak presence before and after pre-
processing users can verify target compounds are not being removed 
artificially in the data processing pipeline. 

In MSI m/z images utilize the keystone spatial component of the data. 
By simply changing the value of the mz in the code, a new image with a 
new target can be created quickly. The images are a scale from no target 

present (black) to maximum intensity (bright color) for the imaged re-
gions. Note that in Figs. 5 and 6, two commonly used different color 
schemes are employed, called “magma” and “veridis.” 
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This m/z image shows the total amount of signal for all pixels. By 
changing the parameters in the code, specific m/z values can be used 
along with changing the color theme. Cardinal offers dark and light 
themes along with cividis, magma, inferno, and plasma for colorscales. 
An m/z image of the whole dataset is useful for quickly visualizing signal 
hotspots and trends without further analysis. Furthermore, the image 

generated can be used to estimate coordinates for particular areas of the 
slide. 

Selecting desired regions of interest (ROI) 
This code enables the user to choose coordinates from the previous m/ 

z image of the full imaging run. By using estimated coordinates a select 
region can be turned into an R object. This is useful for targeted analysis of 
specific sections and having a smaller object for later processing.   

Now, when the smaller code chunk is projected as an image it only 
includes the desired region. 
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Data interpretation 
Visual interrogation of images for quality/consistency is subjective 

but is a first pass at assessing data quality. For these data shown in Fig. 7, 
the left set shows no distinctive features from the zebrafish embryo, 
while the center and right sets show outlines of the eye and notochord. 
For method development experiments, this is a useful early indicator of 
which preparation is working best (Fig. 8). 

Unsupervised data exploration 

Data analysis is typically broken up into “supervised” and “unsu-
pervised” analyses. The former focuses on looking at specific target 
molecules and performing desired statistical analyses. The latter aims to 
look at the underlying data and any patterns that can be discerned, and 
has been the focus of numerous papers and reviews, as the field of MSI 
data analysis has grown significantly.[41–43] We will focus here on two 
techniques that can be quickly utilized for our two main data analysis 
questions: are the samples of interest similar enough to each other for 
comparison, and are the samples prepared in an adequately similar 
fashion to yield similar results? Data dimension reducing techniques, 
such as spatial shrunken centroids (SSC) and principal component 
analysis (PCA) can be used to parse MSI datasets without the need for 
targeted user inputs. 

Data dimension reducing techniques, such as principal component 
analysis and spatial shrunken centroids, can be used to parse MSI 
datasets without the need for targeted user inputs. 

Spatial shrunken centroid (SSC) function 
In the spatial shrunken centroid function, there are four user 

changeable parameters, which are “method,” “r,” “s,” and “k.” The 
method picks the type of spatial weights to be used and the typical op-
tions are “adaptive” or “gaussian.” Here we use “adaptive” to attempt to 
preserve the image along the tissue edges better. The “r” value defines 
the smoothing radius. The “s” value alters the way peaks are chosen and 
is also called the shrinkage parameter; higher values result in fewer 
peaks being used for the segmentation analysis and it is typical to start in 
the range of 0–10. The “k” parameter is the number of segments desired 
and is what is most often changed by the user; this will have the greatest 
effect on your visual output. While it is beyond the scope of this tutorial, 

Fig. 4. Spectra confirming peak near m/z 146 is retained after preprocessing.  

Fig. 5. An m/z image of a target value only found in gold nanoparticle sample preparations at high intensities outlining the zebrafish.  
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Fig. 6. Image of intensity for all pixels in imaging run. Sum signal intensity shown by colorscale is not associated with a particular m/z value.  

Fig. 7. A m/z image for the right (tricaine sacrifice) side of the slide demonstrating how to selectively image ROIs for optimal visualization.  
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SSC is capable of powerful classification models between specified re-
gions and is explained in the Cardinal documentation and other review 
articles.[41,43,44]   

After finishing this computation the following command images the 
results shown in Fig. 9  

Interpretation of SSC 
In this dataset, 4 classes were specified and they show underlying 

trends in the data. Visual analysis reveals the far left DHB section in 

orange and purple appears to spread into the first 5 nm AuNP region, 
which also displays green and blue. The sections on the right that span 
DHB and AuNPs do not have any overspraying. This was not a pur-

poseful overspraying and was difficult to see by visual inspection of the 
actual slide; overspraying would likely have not been noticed without 
this calculation. Since the trends that are analyzed are not correlated 
with biological conditions or sample preparation, the user must inspect 
this output to confirm the veracity. Beyond visual interpretation, nu-

merical analysis is also possible. Using the topFeatures() function the top 
10 m/z values used to determine each class are displayed. The class can 
be changed in the class parameter to get a listing for each of the classes 

Fig. 8. A m/z image of a target m/z of 86.2 showing strong intensity in different preparation conditions.  
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that have been defined. This listing is a good start for looking for features 
of interest within your dataset and generating m/z images is a common 
next step.   

Fig. 9. SSC generated from R. The five data regions (from left to right) correspond to: DHB liquid nitrogen sacrifice, 5 nm AuNPs liquid nitrogen sacrifice, 2 nm 
AuNPs liquid nitrogen sacrifice, DHB tricaine sacrifice, 5 nm AuNPs tricaine sacrifice. 
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Principal component analysis function 
Dimension reduction by orthogonal transformation is accomplished 

using principal component analysis (PCA), which has emerged as a 
common approach for unsupervised exploration of MSI data. The first PC 
is defined so that it explains the largest possible variance in the dataset. 
Each subsequent PC is defined so that it explains the largest possible 
variance for the remainder of the dataset, and so on and so on. The more 
PCs that are defined, the less impact they should have on the overall 
dataset. However, this does mean that how you define your regions of 
interest are of critical importance, as a whole-body section will naturally 
have high heterogeneity, but a single organ tissue section should be 
more consistent, unless there is a disease state present. The command 
lines for generating a PCA and subsequent image are below, with the 
results shown in Fig. 10.  

Analysis of PCA 
There are several points to note in this analysis. First, the unsuper-

vised method again picked up on accidental overspray of DHB matrix 
into the 5 nm AuNP zone. For the AuNP regions without overspraying, 

small differences can still be observed between 5 nm AuNPs and 2 nm 
AuNPs; interestingly, the tissue and background are difficult to distin-
guish from each other on the far-right set (2 nm AuNPs tricaine sacri-
fice). This was not observed using SSC, making both tools useful. For the 
DHB sprayed sections, it is easy to tell matrix only area from tissue area, 
allowing for a quick assessment of spray consistency, which is one of the 
most important MSI sample preparation parameters for successfully 
acquiring data. 

Conclusion 

This R tutorial for introductory use in MSI has been intended to guide 
newer users through an open-source option for assessment of MSI data, 
as well as the tools to progress into more complex data analysis. Any 
manuscript dealing with MSI data analysis must limit its scope because 

of the plethora of data science methods that are available, although 
references have been provided throughout to aid in further knowledge 
aquisition. 

Fig. 10. PCA generated from R. The six data regions (from left to right) correspond to: DHB liquid nitrogen sacrifice, 5 nm AuNPs liquid nitrogen sacrifice, 2 nm 
AuNPs liquid nitrogen sacrifice, DHB tricaine sacrifice, 5 nm AuNPs tricaine sacrifice, 2 nm AuNPs tricaine sacrifice. 
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