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Abstract: Renal fibrosis, which is characterized as progressive extracellular matrix accumulation, is a
common feature of different stages of chronic kidney disease, and the degree of fibrosis is strongly
associated with renal function. In clinical practice, precise understanding of the space distribution
of fibrosis is extremely important for the diagnosis and prognosis of renal disease. Rapid advances
in terahertz (THz) technology have been made, and this technology has a broad application in bio-
detection, as it can interact and measure the collective vibrations and rotations of molecular groups. It
is well known that hydroxyproline (HYP) is the key component of collagen, which is synthesized by
fibroblasts to maintain the extracellular matrix, and HYP content detection in tissue homogenate can
be achieved by classical biochemistry method. In this study, a THz microprobe system was employed
to conduct THz microspatial scanning with a resolution of 20 µm. Both the content and distribution
of HYP were directly characterized by the THz absorption spectrum. The absorption intensity in the
THz spectrum was used to determine HYP density in renal tissues; therefore, the fibrosis change in
the kidneys can be determined using THz scanning at micrometer resolution, which provides more
possibilities for precise diagnosis of renal fibrosis.

Keywords: microprobe terahertz spectroscopy; renal fibrosis; non-invasive; early diagnosis

1. Introduction

Based on the data of the 2012 National Epidemiological Investigation [1], the preva-
lence of chronic kidney disease (CKD) in China is approximately 10.8%, which is estimated
at around 130 million CKD cases. In addition, renal fibrosis is an important pathologi-
cal marker during renal function decline. Renal fibrosis is a chronic progressive fibrotic
nephropathy, and is the eventual outcome of almost all CKDs and progressive nephropa-
thy [2]. A comparable proportion of the population with renal fibrosis eventually progresses
to advanced renal failure and requires life-long dialysis or kidney transplantation, resulting
in an immense burden on patients, families, and society [3]. The primary pathological
presentations of renal fibrosis are inflammatory cell infiltration, fibroblast activation and
proliferation, accumulation of large amounts of extracellular matrix (ECM), and loss of renal
intrinsic cells [4,5]. Treatment of renal fibrosis is extremely difficult, and early diagnosis of
this disease has been a focus and a challenge for nephrologists to overcome.

The ideal diagnosis of renal fibrosis should be precise and non-invasive. At present,
diagnosis of renal fibrosis is mainly dependent on histological and radiologic assessment,
as well as biomarker detection. Histology is currently the gold standard for the clinical
diagnosis of renal fibrosis, as histological images provide direct evidence of fibrosis severity
and precise subcellular change, by specific staining. Nevertheless, all of these changes only
reflect the pathological features in a tissue slice, rather than the overall renal tissue changes.
Additionally, the risk of renal hemorrhage in the aging, obese, and anticoagulant-using
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population limits the conduction of kidney biopsies [6]. Radiologic methods include ultra-
sound, magnetic resonance imaging (MRI), and optical coherence tomography (CT), which
are non-invasive techniques. Physicians can determine whether fibrosis has occurred in the
patient by observing kidney elasticity, oxygen content, and blood perfusion. According to
the image post-processing, the 2D or 3D renal fibrosis status in computerized tomography
or MRI, could be acquired under about 1 mm resolution. However, renal fibrosis identifica-
tion tends to be affected by factors such as blood pressure, weight, respiratory movements,
and differences in subjective judgments between observers, resulting in low precision [7].
Generally, radiological images are indirect findings, which reflect the physical or chemical
status of fibrotic tissue. The specific staining of biomacromolecules in tissue could be the
evidence of early-stage fibrosis. In the latest research, some biological molecules showed
the potential ability to illustrate fibrosis. For example, urinary microRNA 214 (miR-214)
can be used as a biomarker to monitor early renal fibrosis, but its sensitivity and specificity
remain to be determined [8].

In summary, evaluation of the proportion, degree, and spatial distribution of renal
fibrosis is extremely important for understanding kidney disease conditions. There is an
urgent need to develop a non-invasive strategy that integrates biomacromolecule labeling
and spatial distribution to achieve an early diagnosis of renal fibrosis.

In recent years, terahertz (THz) science and technology has demonstrated great po-
tential in medical diagnoses. THz (1 THz = 1012 Hz) refers to a frequency of 100 gigahertz
(GHz) to 10 THz, and the corresponding wavelength is from 3 mm to 30 µm, which is a
broad electromagnetic wave spectral region between millimeter waves and infrared [9–14].
THz technology has importance in life sciences. In addition to conventional spectral mea-
surement information, THz technology can also provide low-frequency vibration, hydrogen
bond stretching, and bond rotation information for liquids and gases [15]. Currently, THz
technology is non-destructive, accurate, and fast, and can provide good penetration [16].
Hence, THz spectroscopy may be an effective method for diagnosing various diseases [17].
A previous study established a test standard for using the THz spectrum in rodent tissue
samples [18]. THz spectroscopic technique has been proven to have an effect on the de-
tection of skin, breast, tongue, liver, and colon tumors [19–21]. The THz spectrum and
concentration gradient were constructed by biomarker screening and by testing pure stan-
dard samples. After excluding individual differences by interference, the evaluation was
confirmed, and the effective characteristic peaks were retained. Finally, THz spectroscopy
was shown to play an important role in the rapid, accurate, and early diagnosis of diseases,
which resulted in further exploration to achieve rapid, accurate, low-cost, early, precise,
and qualitative diagnoses of diseased tissues using the THz spectrum.

For the purpose of renal fibrosis early diagnosis, biomacromolecule detection is the
most promising approach to explore. High levels of hydroxyproline (HYP) are well-
established as the feature of active fibroblast cells, thus, Peng et al. started the rodent
research to observe whether HYP can be recognized by the THz system, instead of the
biochemistry method [18], after confirming that HYP had a clear THz characteristic peak at
~1.2 THz that changes almost linearly with concentration. Although this is an extremely
useful experiment to quantitatively identify the concentration of HYP, which is closely
related to renal fibrosis, it still cannot demonstrate the spatial distribution of HYP and renal
fibrosis. This is because the terahertz wavelength was about 300 µm, the spatial resolution
of which is too poor for the spatial distribution measurement (around ~mm). However,
knowledge of the spatial distribution of HYP, together with the location of fibrosis, is
extremely important for clinicians to judge the severity of fibrosis, so that more reasonable
therapies can be provided to patients according to the spatial distribution of HYP, together
with the location of fibrosis.

In the present study, a THz microprobe system was employed to conduct THz spec-
trum testing of kidney tissues in mice with chronic renal fibrosis. THz spatial scanning
with a resolution of 20 µm was achieved, resulting in direct observation of the THz imaging
spectrum to determine the spatial distribution of renal fibrosis. As renal fibrosis and HYP
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have a direct relationship [18], and the HYP content can be directly characterized by THz
absorption peaks. Therefore, here, terahertz time-domain spectroscopy (THz-TDS) with
micrometer resolution was employed to determine not only the density of HYP, but also
the location of lesions in renal tissues, using the THz beam. Compared with the complex
preparation time of pathological specimens, THz spectral detection can achieve rapid
and high-resolution imaging of the spatial distribution of fibrotic tissues, provide more
favorable evidence for evaluating mouse renal function and prognosis, and also provide
more thorough exploration in biological tissue specimens. We hope that this proposed
method can provide more possibilities for the precise diagnosis of renal fibrosis. However,
due to the limitation of the energy of the THz beam, the entire experiment was conducted
in vitro,. In the future, THz spectrum testing may be a promising way for clinicians to
make the decision of diagnosis and treatment in vivo.

2. Materials and Methods
2.1. Micro-probe Terahertz Time-Domain Spectroscopy (Microprobe THz-TDS)

Microprobe THz-TDS equipment was used in this study which is illustraed in Figure 1.
In the experiment, a 1560-nm fs laser was used, with a pulse duration of 100 fs, repetition
rate of 80 MHz, and mean power of 150 mW. The laser ray emitted was divided by a
1/4 beam splitter into a pump beam and a probe beam. The pump beam was guided onto
an indium gallium arsenide emitter through an optical fiber. The THz electromagnetic
wave emitted by the photoconductive antenna was made parallel by the parabolic mirror
and directed onto the sample. The probe beam underwent frequency multiplication by
periodically poled lithium niobate (PPLN) to produce a 780-nm laser (approximately
30 mW) and was directed onto the probe photoconductive antenna (gallium arsenide)
to measure the THz signals that penetrated the sample. In the experiment, the effective
bandwidth of the signal was 0.2 to 2.0 THz, the spectral resolution was approximately
15 GHz, and the spatial resolution reached 20 µm. The spectrum was averaged 32 times
to ensure a high signal-to-noise ratio. The THz pulse waveform acquisition speed was
10 scans/s.
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2.2. Thermostatic Liquid Nitrogen Cryostat

A variable thermostatic liquid nitrogen cryostat (OptistatDN2, Oxford Instruments)
with high-density polyethylene glass, a commercial product designed for spectroscopy,
was used. The temperature of the cryostat was able to continuously vary between 77 K to
500 K with a precision of ±0.5 K. In the experiment, the cryostat was placed between the
THz focal points, which were between the off-axis parabolic mirrors in the THz-TDS. The
sample was placed in the cryostat, and THz radiation was passed through the sample to
obtain a fingerprint spectrum.

2.3. Preparation of Animal Model Samples

Eight-to-nine-week-old male Institute of Cancer Research (ICR) mice weighing 32–35 g
were provided by the Tongji University Laboratory Animals Center, and were bred and
maintained according to the Guide for the Care and Use of Laboratory Animals published
by the US National Institutes of Health. The Laboratory Animal Ethics Committee of
the Navy Medical University approved the use of a unilateral ureteral obstruction (UUO)
mouse model to study renal fibrosis. A total of 18 male ICR mice were randomized into
a normal (sham surgery) group (n = 9) and renal fibrosis (UUO surgery) group (n = 9).
Sodium pentobarbital (3%, 2 mL/kg) was administered by intraperitoneal injection for
anesthesia. After anesthesia, on the right kidney, UUO or sham surgery was performed.
The right ureter was ligated with 6–0 surgical suturesk, and sham-operated mice underwent
the same surgery without ligation of one ureter. Mice were euthanized 14 days after surgery.
Right kidneys were harvested from mice in the UUO and normal groups. The resected
renal tissues were cut into 600-µm-thick sections that were rapidly freeze-dried using liquid
nitrogen. The freeze-dried renal tissues were placed in the THz probe system for imaging.

2.4. Hematoxylin and Eosin and Masson’s Staining

Kidney tissue was fixed in 4% paraformaldehyde for 24 h. Then, the kidney tis-
sues were paraffin-embedded according to the standard protocol. Finally, the paraffin
blocks were sectioned into 4-µm-thick slices. Both hematoxylin and eosin (H&E) and Mas-
son’s staining were conducted, and the slices were subjected to a microscopic histological
examination.

3. Results
3.1. Pathological Findings Showed Renal Tubulointerstitial Fibrosis (RIF)

The pathological images of renal tissues from renal fibrosis and normal groups are
shown in Figure 2. H&E staining indicated the worse parenchymal loss, tubular atrophy,
and more significant infiltration of inflammatory cells in renal fibrosis slices (Figure 2B)
than that in normal renal tissue (Figure 2A). Compared with sham surgery mice (Figure 2C),
Masson’s staining also revealed that UUO mice showed fibrotic renal tissue with more
extensive collagen deposition (Figure 2D). The positive blue staining in the mouse kid-
ney demonstrated that the collagen fiber was synthesized. However, the aforementioned
changes in the slices only occurred during the middle–late phase of fibrosis. These charac-
teristics suggest that fibrosis occurred in the renal tissues.
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Figure 2. Renal pathological finding in mice underwent sham surgery and unilateral ureteral obstruc-
tion (UUO). (A) No obvious damage could be found in normal kidney slice. (B) Glomerulosclerosis,
tubular atrophy, parenchymal loss, and inflammatory cells infiltration were significant in H&E stain-
ing of renal fibrosis section. (C,D) Masson’s staining indicated small amount collagen deposition
(blue staining) in normal kidney section, as well as strong tubulointerstitial collagen staining in renal
fibrosis mice.

3.2. THz-TDS Imaging

A previous study confirmed that a visible THz characteristic peak exists for HYP,
and linear changes occur as the concentration changes [18]. This result indicates that the
whole THz signal in the time-domain decreases when the HYP concentration increases
(absorption caused by HYP). Based on this finding, THz waves were used to detect the
HYP in mouse renal tissue sections. Figure 3 shows the THz absorption spectrum of renal
tissues from mice from the UUO surgery and sham groups. The absorption curves were
obtained from the Fourier transformation of time-domain signals. Then, using the function
I = I0exp (−α × l), where I is the intensity of the output THz wave through the tissue
sample, I0 is the intensity of the entrance THz wave, and l is the thickness of the tissue
sample, the absorption coefficient α can be obtained as an arbitrary (arb.) unit. As shown
before [18], L-HYP had a clear THz characteristic peak at ~1.2 THz that can represent the
concentration of the HYP. Here, the microprobe THz system also showed the same results,
i.e., that the HYP was concentrated in fibrotic renal tissues, and the concentration of HYP
can be represented by the intensity of the absorption coefficient. This figure shows that
the absorption of the entire spectrum was higher, together with a clear peak at 1.2 THz for
renal fibrosis tissue, especially for the A point (center point), and almost no absorption
signal was found at the edge B point. These results prove that the HYP gathers in the center
of renal tissue. On the other hand, for normal tissue, these HYP absorption peaks, i.e., at
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1.2 THz, were very low, which proves that concentrations of HYP is normal renal tissue is
low, as well as means mild fibrosis.
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Figure 3. THz absorption spectra of mouse renal tissues in normal and renal fibrosis group. Black line
is the absorption spectrum of the renal fibrosis tissue from the renal fibrosis group (center point). Blue
line is the absorption spectrum of the renal fibrosis tissue from the renal fibrosis group (edge point).
Red line is the absorption spectrum of the normal renal tissue from the normal group (center point).
Green line is the absorption spectrum of the normal renal tissue from the normal group (edge point).

Figure 3 shows the absorption spectra of specified points. Then, using scanning
technology, we can obtain the absorption spectra of the whole tissues. Here, we do not
move the terahertz beam, due to the complicated optical path. Using a Micro Servo Motor,
we move the sample to get a new data, together with the thermostatic liquid nitrogen
cryostat. In Figure 4, from pictures D to F, are the terahertz images of the absorption of renal
fibrosis tissues from UUO mice and normal tissues from the sham group under different
frequencies. As a comparison, the pictures A–C (Figure 4) show optical images covered on
the THz imaging of these tissues, corresponding to pictures D to F. The HYP distribution in
the 600-µm-thick pathological tissue sections of the renal can be used to clearly distinguish
the distribution of fibrotic sites. We can clearly see that: (1) for the renal fibrosis tissue,
the absorption in the center of the tissue is much higher than that at the edge, which is
the same result as shown in Figure 3. This clearly proves that the HYP gathers in the
center of the tissue, and that the fibrosis is also much more serious in the center. (2) if we
compare the results between the center-of-fibrosis tissue and normal tissue, we find that the
absorption difference is very large, especially at 1.2 THz and 1.4 THz; this is because HYP
has a very strong absorption peak at ~1.2 THz and ~1.4 THz, which mainly exists in the
center-of-fibrosis tissue. Using this method, routine pathological staining is not required,
and the spatial distribution of HYP-containing proteins can be determined.
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4. Discussion

Renal fibrosis is a complex and dynamic process. During disease onset, scar tissue
replaces functional tissue, changing the physiological function of the organ and resulting
in failure. In addition, the structure of the kidneys becomes disorderly, damage to the
glomeruli and interstitium occurs, and there is an imbalance in the synthesis and degra-
dation of ECM components, thereby leading to aberrant increases in ECM in tissues and
organs, and excessive deposition [4,5]. Generally, during the early stages of organ fibrosis,
proline will be hydroxylated by prolyl hydroxylase into HYP; this is because the HYP is
a characteristic of collagen, which is not widespread in other kinds of protein. Thus, the
HYP content in tissues represents the degree of collagen metabolism. As collagen is a major
component of the ECM, the HYP content also reflects the degree of tissue fibrosis [6,7,18].
However, none of experiments were able to reach the microresolution level. The current
study found that THz signals that characterize the HYP distribution were highly expressed
in fibrotic renal tissues, and had high concordance with traditional pathology tests. By
observing Masson-stained renal tissue sections, this study found that widespread collagen
hyperplasia was present in renal tissues in UUO model mice. Microprobe THz-TDS has the
ability to solve this problem, which could be used for effective identification of tissue sites
with biological macromolecules, such as HYP, and to capture some organ-specific biological
macromolecules; therefore, Microprobe THz-TDS can indicate the location and severity of
lesions, and aid clinicians in making accurate judgments of disease severity.

THz waves are extremely sensitive to water content in biological tissues, which con-
ceals the minor changes in chemical substances. For a long time, differences in tissue water
content were considered to be the main reason for differences in THz imaging signals,
because water shows strong THz absorption [17,22,23]. However, THz waves can also
detect the slight changes in tissues after samples have undergone dehydration or paraffin
embedding, suggesting that THz imaging can be used to distinguish structures or ingredi-
ents of different pathological tissues. In addition, Microprobe THz waves have a higher
spatial resolution than other THz imaging methods, and can also penetrate the epidermis.
Furthermore, the use of time-domain imaging can allow the conversion of amplitude and



Diagnostics 2022, 12, 1602 8 of 9

phase information of samples into three-dimensional (3D) images. These characteristics
enable THz waves to be used for in vitro tissue imaging and in vivo imaging for some
superficial tissues. This characteristic expands the application of Microprobe THz-TDS in
medicine, i.e., Microprobe THz-TDS can be used to detect the distribution sites of HYP and
other biological macromolecules in superficial fibrotic diseases, such as dermatomyositis,
scleroderma, and systemic sclerosis, and it can enable clinicians to determine the severity
and specific locations of these diseases in a non-invasive manner in the near future; at
present, this process is still performed in vitro.

The advantages of using this sample preparation method are as follows: (1) the sample
is freeze-dried, and therefore, strong THz absorption by water is avoided; (2) the samples
never deteriorate, and the temperature is 77 K. However, this probe system uses multiple
lenses (including the cold cavity lens); therefore, the effective frequency spectral range is
only 1.5 THz, and is further decreased to 0.8 THz with samples, and the 1.02 THz peak
cannot be observed.

In a previous study, a microprobe THz system was employed to measure the spatial
distribution of HYP, which is closely related to the location of renal fibrosis. THz spatial
scanning with a resolution of 20 µm was achieved, The current study was based on
this previous study, and employed Microprobe THz-TDS to directly resolve the spatial
resolution of the THz spectrum of renal fibrosis tissues using 600-µm tissue sections. The
spatial distribution of HYP was observed to determine the precise spatial localization of
fibrotic tissues in the entire kidney. The use of Microprobe THz-TDS could effectively avoid
the limitations of currently used test methods, such as biopsies, provide a new test method
for early and active intervention for renal fibrosis in the future, and provide new ideas and
research directions for the diagnosis of fibrosis in different tissues.

There are some limitations of this study. The pathogenesis of fibrosis is extremely com-
plex, and there are differences in renal fibrosis progression caused by different etiologies. In
addition, the HYP is not an ideal parameter to define all stages of fibrosis, especially during
the recovery stage [24]. Only the classical UUO model was selected for the Microprobe
THz study, which may not be generalizable to the entire disease course. In subsequent
studies, we will use the Microprobe THz imaging system to test different fibrosis models,
as well as different biomacromolecules, which could provide more ideas for analyzing
the pathogenesis of renal fibrosis, and assist in the early diagnosis and treatment of renal
fibrosis in clinical practice.

5. Conclusions

In summary, a THz microprobe system was employed to conduct THz spectra testing
of renal tissues in mice with chronic renal fibrosis. THz spatial scanning with a resolution
of 20 µm was achieved, resulting in direct observation of the THz imaging spectrum
to determine the spatial distribution of HYP, which is closely related to the location of
fibrosis. Compared with other techniques, Microprobe THz-TDS can improve the accuracy,
sensitivity, and detection speed of diagnosis. Its high sensitivity, accuracy, and speed
highlight its potential in the early diagnosis, staging evaluation, and disease monitoring
of biological diseases. In the future, this form of dynamic monitoring is expected to
achieve real-time imaging during operation in vivo, which can greatly improve the accuracy
of treatment.

Author Contributions: Conceptualization, H.L. and X.L.; methodology, H.L.; software, M.L.; val-
idation, H.Z. and M.L.; formal analysis, X.L.; investigation, H.L.; resources, X.L.; data curation,
H.L.; writing—original draft preparation, J.D., H.Z. and M.L.; writing—review and editing, X.L.;
visualization, J.D. and H.Z.; supervision, X.L.; project administration, H.L.; funding acquisition, H.L.
and X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 61801329);
Project of the Science and Technology Commission of Yangpu District (No. YP19ZB05).



Diagnostics 2022, 12, 1602 9 of 9

Institutional Review Board Statement: The animal study protocol was approved by the Institutional
Review Board of Navy Medical University (NMUMREC-2021-006l).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was carried out on equipment of Shanghai Key Lab of Modern Optical
System, University of Shanghai for Science and Technology. Heartfelt thanks to the technical support
from staff of Terahertz Technology Innovation Research Institute.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney

disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [CrossRef]
2. Humphreys, B. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [CrossRef]
3. Huang, S.; Susztak, K. Epithelial Plasticity versus EMT in Kidney Fibrosis. Trends Mol. Med. 2016, 22, 4–6. [CrossRef]
4. Peng, Y.; Ding, Y. Pharmacokinetics and tissue distribution study of caudatin in normal and diethylnitrosamine-induced

hepatocellular carcinoma model rats. Molecules 2015, 20, 4225–4237. [CrossRef] [PubMed]
5. Yanguas, S.; Cogliati, B.; Willebrords, J.; Maes, M.; Colle, I.; van den Bossche, B.; de Oliveira, C.; Andraus, W.; Alves, V.;

Leclercq, I.; et al. Experimental models of liver fibrosis. Arch. Toxicol. 2016, 90, 1025–1048. [CrossRef] [PubMed]
6. Zhuo, L.; Wang, H.; Chen, D.; Lu, H.; Zou, G.; Li, W. Alternative renal biopsies: Past and present. Int. Urol. Nephrol. 2018,

50, 475–479. [CrossRef]
7. Torres, H.; Queirós, S.; Morais, P.; Oliveira, B.; Fonseca, J.; Vilaça, J. Kidney segmentation in ultrasound, magnetic resonance and

computed tomography images: A systematic review. Comput. Methods Programs Biomed. 2018, 157, 49–67. [CrossRef]
8. Zhang, X.; Li, X.; Zhou, W.; Liu, X.; Huang, J.; Zhang, Y.; Lindholm, B.; Yu, C. Serum Lysyl Oxidase Is a Potential Diagnostic

Biomarker for Kidney Fibrosis. Am. J. Nephrol. 2020, 51, 907–918. [CrossRef]
9. Pickwell, E.; Wallace, V.P. Biomedical applications of terahertz technology. J. Phys. D-Appl. Phys. 2006, 39, R301–R310. [CrossRef]
10. Zhong, H.; Redo-Sanchez, A.; Zhang, X. Identification and classification of chemicals using terahertz reflective spectroscopic

focal-plane imaging system. Opt. Express 2006, 14, 9130–9141. [CrossRef]
11. Ueno, Y.; Rungsawang, R.; Tomita, I.; Ajito, K. Quantitative measurements of amino acids by terahertz time-domain transmission

spectroscopy. Anal. Chem. 2006, 78, 5424–5428. [CrossRef]
12. Zeitler, J.A.; Newnham, D.A.; Taday, P.F.; Strachan, C.J.; Pepper, M.; Gordon, K.C.; Rades, T. Temperature dependent terahertz

pulsed spectroscopy of carbamazepine. Thermochim. Acta 2005, 436, 71–77. [CrossRef]
13. Ajito, K.; Ueno, Y. THz Chemical Imaging for Biological Applications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 293–300.

[CrossRef]
14. Nishizawa, J.; Sasaki, T.; Suto, K.; Tanabe, T.; Saito, K.; Yamada, T.; Kimura, T. THz transmittance measurements of nucleobases

and related molecules in the 0.4-to 5.8-THz region using a GaP THz wave generator. Opt. Commun. 2005, 246, 229–239. [CrossRef]
15. Peng, Y.; Shi, C.; Wu, X.; Zhu, Y.; Zhuang, S. Terahertz Imaging and Spectroscopy in Cancer Diagnostics: A Technical Review.

BME Front. 2020, 2020, 2547609. [CrossRef]
16. Ge, H.; Jiang, Y.; Lian, F.; Zhang, Y.; Xia, S. Quantitative determination of aflatoxin B1 concentration in acetonitrile by chemometric

methods using terahertz spectroscopy. Food Chem. 2016, 209, 286–292. [CrossRef]
17. Peng, Y.; Shi, C.; Zhu, Y.; Gu, M.; Zhuang, S. Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio

improvement. PhotoniX 2020, 1, 12. [CrossRef]
18. Peng, Y.; Huang, J.; Luo, J.; Yang, Z.; Wang, L.; Wu, X.; Zang, X.; Yu, C.; Gu, M.; Hu, Q.; et al. Three-step one-way model in

terahertz biomedical detection. PhotoniX 2021, 2, 12. [CrossRef]
19. Bogomazova, A.; Vassina, E.; Goryachkovskaya, T.; Popik, V.; Sokolov, A.; Kolchanov, N.; Lagarkova, M.; Kiselev, S.; Peltek, S. No

DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz
radiation. Sci. Rep. 2015, 5, 7749. [CrossRef]

20. Ashworth, P.; Pickwell-MacPherson, E.; Provenzano, E.; Pinder, S.; Purushotham, A.; Pepper, M.; Wallace, V. Terahertz pulsed
spectroscopy of freshly excised human breast cancer. Opt. Express 2009, 17, 12444–12454. [CrossRef]

21. Wahaia, F.; Valusis, G.; Bernardo, L.M.; Almeida, A.; Moreira, J.A.; Lopes, P.C.; Macutkevic, J.; Kasalynas, I.; Seliuta, D.;
Adomavicius, R.; et al. Detection of colon cancer by terahertz techniques. J. Mol. Struct. 2011, 1006, 77–82. [CrossRef]

22. D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz Pulsed Imaging in Biomedical Applications. Condens. Matter
2020, 5, 25. [CrossRef]

23. El-Shenawee, M.; Vohra, N.; Bowman, T.; Bailey, K. Cancer detection in excised breast tumors using terahertz imaging and
spectroscopy. Biomed. Spectrosc. Imaging 2019, 8, 1–9. [CrossRef]

24. Song, S.; Fu, Z.; Guan, R.; Zhao, J.; Yang, P.; Li, Y.; Yin, H.; Lai, Y.; Gong, G.; Zhao, S.; et al. Intracellular hydroxyproline imprinting
following resolution of bleomycin-induced pulmonary fibrosis. Eur. Respir. J. 2022, 59, 2100864. [CrossRef]

http://doi.org/10.1016/S0140-6736(12)60033-6
http://doi.org/10.1146/annurev-physiol-022516-034227
http://doi.org/10.1016/j.molmed.2015.11.009
http://doi.org/10.3390/molecules20034225
http://www.ncbi.nlm.nih.gov/pubmed/25751784
http://doi.org/10.1007/s00204-015-1543-4
http://www.ncbi.nlm.nih.gov/pubmed/26047667
http://doi.org/10.1007/s11255-017-1668-x
http://doi.org/10.1016/j.cmpb.2018.01.014
http://doi.org/10.1159/000509381
http://doi.org/10.1088/0022-3727/39/17/R01
http://doi.org/10.1364/OE.14.009130
http://doi.org/10.1021/ac060520y
http://doi.org/10.1016/j.tca.2005.07.006
http://doi.org/10.1109/TTHZ.2011.2159562
http://doi.org/10.1016/j.optcom.2004.10.076
http://doi.org/10.34133/2020/2547609
http://doi.org/10.1016/j.foodchem.2016.04.070
http://doi.org/10.1186/s43074-020-00011-z
http://doi.org/10.1186/s43074-021-00034-0
http://doi.org/10.1038/srep07749
http://doi.org/10.1364/OE.17.012444
http://doi.org/10.1016/j.molstruc.2011.05.049
http://doi.org/10.3390/condmat5020025
http://doi.org/10.3233/BSI-190187
http://doi.org/10.1183/13993003.00864-2021

	Introduction 
	Materials and Methods 
	Micro-probe Terahertz Time-Domain Spectroscopy (Microprobe THz-TDS) 
	Thermostatic Liquid Nitrogen Cryostat 
	Preparation of Animal Model Samples 
	Hematoxylin and Eosin and Masson’s Staining 

	Results 
	Pathological Findings Showed Renal Tubulointerstitial Fibrosis (RIF) 
	THz-TDS Imaging 

	Discussion 
	Conclusions 
	References

