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Simple Summary: The malignant growth and therapy resistance of isocitrate dehydrogenase (IDH)-
wildtype glioblastoma is thought to be driven by a subpopulation of tumor cells with cancer stem-like
cell (CSC) properties. Employing a high-throughput in vitro drug screen, we identified LGK974 and
berberine as drugs that impair wingless (WNT) signaling and can thereby sensitize glioblastoma
stem-like cells (GSCs) to glucose starvation-induced cell death. The main goal of this study was
to characterize the role of the WNT pathway in mediating the survival and metabolic plasticity of
GSCs under nutrient-restricted growth conditions. Gas chromatography mass spectrometry (GC-MS)
was used to determine WNT-specific alterations of intracellular metabolites in GSCs grown under
nutrient restriction, i.e., glucose depletion, or under standard conditions. Metabolic fingerprints
hold the promise to complement classic biomarkers, thus potentially aiding the prediction of tumor
behavior and patient prognosis.

Abstract: Isocitrate dehydrogenase (IDH)-wildtype glioblastoma is the most common primary malig-
nant brain tumor. It is associated with a particularly poor prognosis, as reflected by an overall median
survival of only 15 months in patients who undergo a supramarginal surgical reduction of the tumor
mass followed by combined chemoradiotherapy. The highly malignant nature of IDH-wildtype
glioblastoma is thought to be driven by glioblastoma stem-like cells (GSCs) that harbor the ability
of self-renewal, survival, and adaptability to challenging environmental conditions. The wingless
(WNT) signaling pathway is a phylogenetically highly conserved stemness pathway, which promotes
metabolic plasticity and adaptation to a nutrient-limited tumor microenvironment. To unravel the
reciprocal regulation of the WNT pathway and the nutrient-limited microenvironment, glioblas-
toma cancer stem-like cells were cultured in a medium with either standard or reduced glucose
concentrations for various time points (24, 48, and 72 h). Glucose depletion reduced cell viability and
facilitated the survival of a small population of starvation-resistant tumor cells. The surviving cells
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demonstrated increased clonogenic and invasive properties as well as enhanced chemosensitivity to
pharmacological inhibitors of the WNT pathway (LGK974, berberine). Glucose depletion partially
led to the upregulation of WNT target genes such as CTNNB1, ZEB1, and AXIN2 at the mRNA and
corresponding protein levels. LGK974 treatment alone or in combination with glucose depletion
also altered the metabolite concentration in intracellular compartments, suggesting WNT-mediated
metabolic regulation. Taken together, our findings suggest that WNT-mediated metabolic plasticity
modulates the survival of GSCs under nutrient-restricted environmental conditions.

Keywords: glioblastoma; cancer stem-like cells; glucose starvation; cancer metabolism;
WNT/β-catenin

1. Introduction

Gliomas are the most common primary malignant brain tumors [1]. They are classified
into distinct tumor types based on the combination of histopathological features and
molecular biomarkers according to the World Health Organization (WHO) classification
of central nervous system (CNS) tumors [2]. Among the diffusely infiltrating gliomas in
adults, the WHO classification distinguishes three major tumor types, namely the IDH-
mutant astrocytomas of CNS WHO grades 2, 3, or 4, the IDH-mutant and 1p/19q-codeleted
oligodendrogliomas of CNS WHO grades 2 or 3, as well as the IDH-wildtype glioblastomas
of CNS WHO grade 4. Malignant glioma growth and resistance to therapy are thought
to be driven by a subpopulation of tumor cells with stem-like features, including the
ability of self-renewal and an adaptability to extreme and adverse microenvironmental
conditions in terms of nutrient availability, especially during rapid tumor growth [3–6].
Tumor expansion leads to hypovascularized, hypoxic, and nutrient-deprived tumor areas
consequently favoring the survival of subpopulations of nutrient stress-resilient cells [7].
The study of the metabolic plasticity and reprogramming of tumor cells in nutrient-limited
microenvironments in IDH-wildtype glioblastoma is a promising area of research that
may delineate mechanisms promoting tumor cell survival [8]. Stress resilience has been
attributed to stem-like tumor cells in glioblastomas, with stemness playing an essential
role in promoting the resilience, self-renewal, and metabolic adaptability of glioblastoma
cells [9]. Various stemness factors and phylogenetically conserved stemness pathways,
such as the WNT pathway, have been implicated as drivers of cancer cell stemness and
tumor growth in different types of cancers, especially breast cancer, colorectal cancer,
prostate cancer, and glioblastoma [10]. WNT signaling has pleiotropic effects on cell
physiology and development during embryogenesis and organogenesis, especially in
nervous tissue, and in maintaining metabolic homeostasis. WNT signaling can be divided
into several independent pathways such as the WNT/β-catenin-dependent (referred to
as the canonical WNT pathway) and the non-canonical pathway. The non-canonical
pathway is further subdivided into the planar cell polarity and the WNT/Ca2+ pathway,
each inducing different downstream cascades and thereby promoting different cellular
effects. The most studied WNT pathway is the canonical WNT signaling pathway, which
regulates the abundancy of the transcriptional co-activator β-catenin that controls key
developmental processes [11]. Altered β-catenin signaling, especially via the aberrant
activation of the canonical WNT pathway, plays an important role in promoting tumor
growth in various tumor types, including glioblastoma [12]. Recently, our group has shown
that β-catenin, together with CCL2, promotes monocyte migration towards glioblastoma
cells [13]. In particular, WNT-mediated β-catenin signaling is thought to promote metabolic
changes in cancer [14]. For example, the transcriptional upregulation of monocarboxylate-
transporter 1 (MCT-1) has been linked to β-catenin-mediated promoter activation via
binding to TCF/LEF sites, which consequently leads to lactate secretion and increased
aerobic glycolysis [15]. It has been discussed that activation of the canonical WNT pathway
may lead to the activation of aerobic glycolysis through the upregulation of pyruvate
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dehydrogenase (PDH), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDH-A), a
sodium-dependent unspecific amino acids transporter (SLC1A5), and glucose transporter
1 (GLUT1). Non-canonical WNT signaling also enhances glycolysis by activating the Akt-
mTOR pathway [14]. Fatty acid oxidative metabolism is also enhanced by mTORC1 and
β-catenin signaling [16]. In addition, glucose-6-phosphate dehydrogenase, increased by
mTOR as a consequence of an upregulated pentose phosphate bypass, leads to the enhanced
availability of reduction-equivalents, such as co-enzyme nicotinamide adenine dinucleotide
phosphate (NADPH/H+), and provides phosphoribosyl pyrophosphate (PRPP) for purine
and pyrimidine synthesis, thus supplying more substrates for efficient DNA synthesis [17].

In the present study, we focused on cellular models of IDH-wildtype GSCs and in-
vestigated the impact of glucose concentration on the cellular metabolism and biological
features of GSCs in vitro. As a proof of principle, we assessed the effects of glucose depri-
vation on the WNT/β-catenin pathway in glioblastoma and evaluated the consequences of
pharmacological WNT inhibition on GSCs under glucose-restricted conditions.

2. Materials and Methods
2.1. Cell Culture and Glucose Starvation

We used three GSCs models in our study: GBM1 cells (generously provided by
A. Vescovi, San Raffaele Hospital, Milano, Italy), JHH520 cells (generously provided by
G. Riggins, Johns Hopkins, Baltimore, MD, USA), and BTSC233 cells (generously provided
by M.S. Carro, Freiburg University, Freiburg im Breisgau, Germany). As a standard
protocol for glioblastoma stem-like cancer cell enrichment, we cultured these cell lines in
Neurobasal™-A medium without D-glucose and sodium pyruvate, and substituted glucose
equivalent to the standard cell culture glucose concentration (450 mg/dL) using a glucose
solution (200 g/L; Gibco BRL). The starvation protocol was conducted as follows: 5 mL of
cells cultured in standard cell culture glucose concentration (450 mg/dL) were collected
and centrifuged for 5 min (min) at 1000 rpm. The supernatant was then removed and the
harvested cells were resuspended in NeurobasalTM-A complete medium without D-glucose
for a defined period of time. In addition, 2% B27 supplement (Gibco), 20 ng/mL human
bFGF (Peprotech, Rocky Hill, NJ, USA), 20 ng/mL human EGF (Peprotech), 5 µg/mL
heparin (Sigma, Merck KGaA, Darmstadt, Germany), and 1% penicillin–streptomycin–
fungicide mixture (Gibco) were added to the medium. The cell lines were cultured at 37 ◦C
and 5% CO2.

2.2. Cell Viability

To evaluate cell viability, 5 × 103 cells of each glioblastoma cell line were resuspended
in 100 µL Neurosphere complete medium and seeded to a 96-well flat-bottom suspension
plate. The 100 µL of Neurosphere complete medium was adjusted to different glucose
concentrations: 100% (450 mg/dL), 50% (225 mg/dL), 25% (112.5 mg/dL), 10% (45 mg/dL),
and 0% (0 mg/dL) of standard cell culture glucose concentration using Gibco glucose
solution 200 g/L (Gibco BRL) and cultured for 2, 24, and 48 h. Cell viability was determined
using the thiazolyl blue tetrazolium bromide assay (MTT, Sigma-Aldrich). The samples
were measured on a Paradigm™ multiplate reader (Beckman Coulter, Brea, CA, USA) at
wavelengths of 570 nm and 650 nm.

2.3. Invasion Assay

The ability of glucose-starved GSCs to invade through a Matrigel-coated membrane
was evaluated using a modified Boyden chamber assay, as previously described in refer-
ence [18]. The inserts (Falcon) were coated with Matrigel before cells (1 × 105/500 µL)
were resuspended in Neurobasal complete medium either with or without glucose. The
inserts were placed in a 24-well plate and coated with 500 µL of growth factor-reduced
Matrigel (BD, Franklin Lakes, NJ, USA) diluted in Neurobasal glucose-depleted medium
(1:100). The bottom of the 24-well plate was also coated. Following an incubation period
of 1 h at 37 ◦C, the Matrigel was removed, the cells were seeded into the inserts, and the



Cancers 2022, 14, 3165 4 of 17

chambers were filled with 800 µL Neurobasal complete medium containing glucose at a
standard concentration (450 mg/dL) and 10% FBS. After 48 h, the cell suspensions inside
the inserts were removed and the non-invaded cells on the inner membrane of the inserts
were cautiously stripped off with a cotton swap drenched in PBS. Next, cells that invaded
through the membrane were fixed by adding ice-cold methanol for 10 min. The inserts
were washed twice with PBS and cells were stained with hematoxylin for 5 min. Images
were taken on a Zeiss microscope (objective: Zeiss Plan S 1.0 × FWD 81 mm), and the
number of cells invaded was evaluated with ImageJ 1.8.0. (Rasband, W.S., U.S. National
Institutes of Health, Bethesda, MD, USA).

2.4. Soft Agar Colony Formation Assay

The clonogenic capacity of GSCs was determined as previously described in refer-
ence [17]. Briefly, six-well plates were coated with 1.5 mL of 1% agarose (Life Technologies)
in Neurobasal medium (as a bottom layer) and incubated at 37 ◦C for 1 h. Then, the middle
layer containing 0.6% agarose, 5 × 103 cells/well in Neurobasal complete medium (with
and without 10% standard glucose concentration) was added. After solidification at room
temperature (RT) for 1 h, the top layer was then prepared and incubated at 37 ◦C and
5% CO2 for 4 weeks. Subsequently, 1 mg/mL 4-nitro-tetrazolium chloride (NBT) solution
(Sigma-Aldrich) in PBS was added overnight (37 ◦C) to stain the colonies. ImageJ 1.8.0.
(Rasband, W.S., U.S. National Institutes of Health, Bethesda, MD, USA) was used to count
the colonies.

2.5. Luciferase Reporter Assay

The luciferase reporter assay was performed as previously described in reference [19].
After transfection of GSCs with a stable lentiviral reporter construct comprising seven TCF
binding sites trailed by a luciferase cassette, puromycin selection (2 µg/mL) was performed.
Subsequently, transfected cells were cultured under standard glucose concentrations and
glucose deprivation (48 h). The emitted luminescence was measured at a wavelength
of 490 nm on a Paradigm™ multiplate reader (Beckman Coulter, Brea, CA, USA) and
normalized to β-galactosidase activity.

2.6. Western Blot

Cells were washed with PBS and lysed in ice-cold RIPA buffer. Protein concentrations
were quantified using the DC Protein Assay Kit (BioRad, Hercules, CA, USA) and readout
was performed using the Paradigm™ Multiplate Reader (Beckman Coulter, Brea, CA, USA)
at a wavelength of 750 nm. The subsequent steps were performed as previously described in
reference [20]. Primary antibodies: active β-catenin 1:1000 (non-phospho/active β-catenin,
Ser33/37/Thr41, rabbit mAb, Cell Signaling, Danvers, MA, USA) and GAPDH 1:5000
(GAPDH, D4C6R, mouse mAb; Cell Signaling, Danvers, MA) were diluted in 5% BSA and
incubated overnight at 4 ◦C on the membranes. Secondary antibodies: goat anti-rabbit
IRDye800CW (1:10,000, LI-COR #926-32211) and goat anti-mouse IRDye680RD (1:10,000,
LI-COR #926-68070) were diluted in 5% BSA and incubated for 1 h at RT. The fluorescence
was assessed using LI-COR Odyssey CLx imager followed by densitometry. GAPDH was
used as a housekeeping protein for normalization. Original western blot images can be
found in the Supplementary Materials.

2.7. Immunostaining for Active β-Catenin

Immunostaining for active β-catenin was performed in standard cell culture conditions
(450 mg/dL) and under glucose deprivation for 48 h. Briefly, we harvested the cells (10,000
cells/200 µL), counted, washed thoroughly with PBS, and centrifuged on microscope slides
using a Cytospin. Samples were then dried, fixated in 4% PFA, incubated in Tween 20 and
blocked using 5% BSA. Primary antibody was incubated over night at 4 ◦C (active β-catenin
1:1000 in 5% BSA/TBST (non-phospho/active β-catenin, Ser33/37/Thr41, rabbit mAb; Cell
Signaling, Danvers, MA, USA)). Subsequently, the samples were washed thoroughly using
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TBST and incubated for 1 h at room temperature with a secondary antibody goat anti-rabbit
IRDye800CW (1:10,000, LI-COR #926-32211)). The cells were stained using DAPI, pictures
were taken with a fluorescence microscope (Axiovision Apotome. Two-confocal microscope
(Zeiss, Jena, Germnay)) and assessed by the software ZEN. The assessed fluorescence
signals (green) translated into the amount of stained active β-catenin.

2.8. Quantitative Real-Time PCR (RT qPCR)

RNA isolation was performed using the RNeasy Mini Kit (Qiagen, Hilden, Germany),
and cDNA synthesis using the M-MLV reverse transcriptase (Promega, Madison, WI, USA),
M-MLV buffer (Promega), random hexamer primers, and Ribolock for RT-qPCR. SYBR
Green Supermix (BioRad, Hercules, CA, USA), 10 ng cDNA, and 10 pmol primers were
combined and run in a CFX Connect thermal cycler (BioRad). The expression of target genes
was normalized to beta-2-microglobulin. Primer sequences used in this study were as follows:
β-catenin: Fwd-GGGCCTCAGAGAGCTGAGTA, Rev-TGAGCAGCATCAAACTGTGTAG;
Axin2: Fwd- AGCCAAAGCGATCTACAAAAGG, Rev-GGTAGGCATTTTCCTCCATCAC;
ZEB1: Fwd-AAGAATTCACAGTGGAGAGAAGCCA, Rev-CGTTTCTTGCAGTTTGGGATT;
C-Myc: Fwd-CCTTAATTAAAATGCCCCTCAACGTTAGCT, Rev- GGAATTCCATATGT-
TACGCACAAGAGTTCCGTA; and MCT-1: Fwd- GCTGGGCAGTGGTAATTGGA, Rev-
CAGTAATTGATTTGGGAAATGCAT.

2.9. Whole Transcriptome Analysis

To obtain differential expression of genes, RNA was extracted and whole transcriptome
analysis (3′ mRNA sequencing) was performed at the NGS Core Facility (Bonn, Germany).
We applied the R package Deseq2 to identify differentially expressed genes in the con-
trol group versus the test/inhibitor group (dimethyl sulfoxide (DMSO) and/or LGK974)
and used the R package clusterProfiler to recognize differentially expressed genes en-
riched in the KEGG pathways. Since DMSO alone has been shown to influence gene
expression [21,22], we first attempted to exclude those genes which were primarily affected
by the DMSO treatment. For this, we first filtered out the altered genes from the datasets
that were only associated with DMSO treatment (standard glucose concentrations (Glc+)
versus glucose withdrawal (Glc−). Subsequently, the obtained values were compared to
the LGK974 treatment datasets (Glc+ versus Glc−).

2.10. LGK974 and DMSO Treatment

We assessed the viability of GSCs cultivated in glucose-depleted conditions and
in the presence of the pharmacological WNT inhibitor LGK974 (a porcupine inhibitor
(no. 1241454); Peprotech, Hamburg, Germany). LGK974 was dissolved in DMSO (Sigma-
Aldrich) and used according to the manufacturer’s instructions. Specifically, we performed
MTT assays on GSCs grown with and without glucose (450 and 0 mg/dL, respectively)
and treated with five different LGK974 concentrations (GBM1 and JHH520: 20 µM, 10 µM,
5 µM, 2.5 µM, and 1.25 µM; BTSC233: 80 µM, 40 µM, 20 µM, 10 µM, and 5 µM). DMSO
solvent controls (Glc+/Glc−) were used for normalization. We normalized the treatment
groups to their corresponding controls after a 48 h incubation period.

2.11. In Vitro Drug Screening

An in vitro drug screen was conducted as previously reported in reference [23]. Using
the Tecan D300e Digital Dispenser, a drug library, comprising 231 clinically approved
chemotherapeutic drugs, was distributed in 384-well plates (Corning, Corning, NY, USA;
Tecan, Männedorf, Switzerland). To determine the optimal number of cells to use in the
screen, the growth curves of each cell line were analyzed before seeding them into the
drug-coated plates. Cell viability was assessed by a GUAVA MUSE cytometer (Count and
Viability, Luminex, Austin, TX, USA). Subsequently, an aliquot of 30 µL of cell suspension
was dispensed into the prepared 384-well plates and incubated for 72 h. The CellTiter-Glo
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luminescent cell viability assay (Promega, Germany) was used to determine cell viability
according to the manufacturer’s protocol and readout.

2.12. Gas Chromatography Mass Spectrometry: Cell Harvesting and Metabolite Extraction

Cells were cultivated under standard glucose concentration (450 mg/dL) (37 ◦C,
5% CO2) and washed twice with PBS before glucose-free Neurobasal medium was added
to induce starvation. Starved cells were treated with LGK974 or DMSO for 48 h before being
harvested by centrifugation (4 ◦C, 5 min, and 1000 rcf), counted, and washed with ice-cold
0.9% (w/v) sodium chloride (NaCl) solution. For cell disruption and metabolite extraction,
350 µL of a methanol: chloroform (10:4.28) solution was added. The samples were vortexed
and incubated for 1 h at −20 ◦C. Subsequently, 560 µL of water containing the internal
standard (5 µM ribitol) was added and the samples were vortexed and incubated on ice for
10 min. Samples were then centrifugated at maximum speed (12,000 rpm) for 2 min and
two phases were obtained (an aqueous upper phase and a hydrophobic lower phase). The
upper aqueous phase was dried by lyophilization. After resuspension in 250 µL methanol
(50%), an aliquot of 50 µL was dried in a glass inlet for analysis by gas chromatography.

2.13. Gas Chromatography Mass Spectrometry

The samples were prepared and analyzed by gas chromatography mass spectrometry
(GC-MS) analysis as previously reported in references [24,25]. Metabolites were identified by
comparing obtained spectra to spectra in the NIST14 Mass Spectral Library
(https://www.nist.gov/srd/nist-standard-reference-database-1a-v14) (retrieved on 10 May
2021) using the MassHunter Qualitative program (v.b08.00; Agilent Technologies, Santa Clara,
CA, USA). In addition, a quality control sample including all target substances was analyzed.
The MassHunter Quantitative program was used to combine the peaks (v.b08.00; Agilent
Technologies). For relative quantitation, all metabolite peak areas were normalized to the
peak area of the internal standard ribitol. A defined dose of LGK974 was used in all cell lines
(GBM1: 10 µM, JHH520: 20 µM, BTSC233: 40 µM) in these experiments.

2.14. Statistical Analyses

All statistical tests were performed using unpaired Student’s t-tests using GraphPad-
Prism software, version 8.0 (GraphPad Software, San Diego, CA, USA). All results are
presented as mean + SD of a minimum of three independent biological replicates. For all
experiments, significance was defined as a p value below 0.05.

3. Results
3.1. Glucose Starvation Impacts Cell Viability and Invasive Potential of GSCs

First, we cultured GSCs in a Neurobasal medium containing glucose at varying concen-
trations (450 mg/dL, 225 mg/dL, 112.5 mg/dL, and 45 mg/dL) for 24 and 48 h (Figure 1A).
In GBM1 and JHH520 cells, reduction in glucose levels (450 mg/dL–45 mg/dL) did not
significantly affect cell viability. However, reducing the glucose concentration to 45 mg/dL
significantly decreased the viability of BTSC233 cells (p < 0.05). When compared to the control
(non-starved cells cultured at a standard glucose concentration of 450 mg/dL), reduced glu-
cose levels showed little effect; however, complete glucose deprivation significantly reduced
GSC’s viability. In addition, glucose-depleted cultures of JHH520 and BTSC233 cells displayed
significantly enhanced invasion after 48 h compared to the control (JHH520 p < 0.05, BTSC233
p < 0.001) (Figure 1B). Interestingly, all cell lines showed a significant increase in clonogenic
capacity when cultivated in reduced glucose concentration media (45 mg/dL) as opposed to
standard cell culture conditions (450 mg/dL glucose) (GBM1 p < 0.001, JHH520 p < 0.01, and
BTSC233 p < 0.05) (Supplementary Figure S1A).

https://www.nist.gov/srd/nist-standard-reference-database-1a-v14
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Figure 1. Glucose starvation decreases cell viability and enhances invasion in glioblastoma cell
lines. (A) Glioblastoma cell lines (GBM1, JHH520, and BTSC233) were cultivated in standard cell
culture glucose concentrations (450 mg/dL), decreased glucose concentrations (225 mg/dL, 112,
5 mg/dL, and 45 mg/dL) and in a glucose-depleted cell culture medium. The glucose concentration
reduced to 45 mg/dL significantly decreased cell viability (p < 0.05) in BTSC233, whereas glucose
depletion significantly inhibited viability in all cell lines (p < 0.0001). (B) A Boyden chamber assay
was performed with all cell lines (GBM1, JHH520, and BTSC233) cultivated in standard (450 mg/dL)
as a control condition (ctrl) and were compared to the corresponding starved samples (0 mg/dL) for
48 h (d2-). Glucose deprivation significantly enhanced invasion in JHH520 (p < 0.05) and BTSC233
cells (p < 0.001). The data are represented as mean + SD (n = 3). Statistical significance was calculated
using an unpaired Student’s t-test. * p < 0.05, *** p < 0.001, and **** p < 0.0001.

3.2. Glucose Starvation Enhances WNT Activity and Induces Alterations in β-Catenin and
Associated Genes

WNT signaling plays an important role in mediating metabolic resistance in neoplastic
tissues [14]. Therefore, we assessed the activity of the canonical WNT pathway in GSCs
using the TCF luciferase reporter assay. A significant increase in luciferase signal intensity
was observed in TCF luciferase-transfected GBM1 and JHH520 cells after 48 h of glucose
withdrawal compared to controls (non-starved TCF luciferase-transfected cells) (p < 0.05).
No change was observed in BTSC233 cells (Supplementary Figure S1B). The findings in
GBM1 and JHH520 cells suggested that glucose deprivation in GSCs may be associated
with the activation of the canonical WNT pathway. Therefore, we investigated the direct
effect of glucose deprivation (24, 48 h) on β-catenin protein levels in wildtype GSCs. We
observed significantly increased levels of β-catenin in JHH520 cells after 24 h of starvation
(p < 0.05) (Supplementary Figure S1C). Both starved GBM1 and BTSC233 cells showed
no significant change in β-catenin protein levels compared to the control group. Since
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transcription-related changes can be more sensitive compared to stable/conserved protein
levels, we extended our analysis by evaluating the mRNA expression of β-catenin and
WNT/β-catenin downstream genes (AXIN2, ZEB1, MYC, and MCT1) after 24 and 48 h
of glucose deprivation (Figure 2). In GBM1 cells, we detected significantly upregulated
CTNNB1 (β-catenin), AXIN2, ZEB1, and MYC mRNA expression levels after starvation
for 48 h (p < 0.01). A 24 h period of starvation in GBM1 cells also induced a significant
upregulation of CTNNB1, AXIN2, and MYC mRNA expression, but not of ZEB1 transcripts.
It was also found that ZEB1 was significantly downregulated (24 h of treatment), while
MYC was upregulated at the mRNA level in JHH520 cells (48 h). BTSC233 cells did not
show alterations in the mRNA expression of these selected genes. The transcript levels of
MCT1 were not altered in any of these cell lines.

Figure 2. Differential mRNA expression of CTNNB1 and β-catenin target genes in glucose-starved
GSCs. (A–C) Differential mRNA expression of β-catenin and downstream genes of WNT signaling
were assessed in three GSCs: GBM1, JHH520, and BTSC233 after 24 h (d1-) and 48 h (d2-) of glucose
starvation. The data are presented as mean + SD (n = 3). Statistical significance was calculated using
an unpaired Student’s t-test. * p < 0.05, ** p < 0.01.
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3.3. Pharmacological WNT Inhibition Sensitizes GSCs to Glucose Starvation-Induced Cell Death
and Moderately Affects Gene Expression of β-Catenin and Associated Genes

Next, we assessed the viability of cell lines cultivated in glucose-depleted conditions
and under pharmacological WNT inhibition with LGK974 (Figure 3A). In JHH520 cells,
treatment with LGK974 (10 µM and 20 µM) significantly decreased the viability of glucose-
depleted cells (p < 0.01). In BTSC233 cells, high concentrations of LGK974 (80 µM, 40 µM,
and 20 µM) and glucose starvation significantly reduced cell viability (p < 0.01–p < 0.0001),
suggesting that WNT signaling mediates metabolic resilience to maintain viability under
nutrient/metabolic stress. Transcriptional changes in WNT/β-catenin target genes (AXIN2,
ZEB1) were observed in JHH520 and BTSC233 cells (p < 0.05) upon treatment with LGK974
or control (DMSO) and simultaneous glucose deprivation (Figure 3B).

Figure 3. LGK974 sensitizes GSCs to glucose starvation-induced cell death and affects the mRNA
expression of CTNNB1 and associated genes AXIN-2 and ZEB1. (A) We assessed the viability of our
GSC lines cultured in standard glucose concentrations of 450 mg/dL (Glc+) or in a glucose-depleted
standard cell culture medium of 0 mg/dL (Glc−) and simultaneously performed the pharmacological
inhibition of WNT signaling with LGK974 (LGK) for a time period of 48 h. DMSO solvent controls
were used for normalization. In order to normalize to the solvent control, equivalent amounts
of DMSO were used in all conditions per cell line. LGK974 significantly decreased the viability of



Cancers 2022, 14, 3165 10 of 17

glucose-deprived JHH520 cells at 10 µM and 20 µM (p < 0.01), and at 20 µM, 40 µM (p < 0.01), and
80 µM (p < 0.0001) in BTSC233 compared to cells that have been treated with LGK974 but which
have not been depleted of glucose (LGK Glc+). GBM1 glucose-starved cells that were simultaneously
treated with LGK974 displayed increased viability (p < 0.01) when treated with 10 µM LGK974
compared to cells that have been treated with LGK974 but which have not been depleted of glucose
(LGK Glc+). (B) We also assessed the mRNA expression of AXIN2, CTNNB1 (β-Catenin), and ZEB1
of our GSC lines GBM1, JHH520, and BTSC233 after a time period of 48 h of treatment with DMSO
(equivalent in all conditions per cell line) and in a standard glucose concentration of 450 mg/dL
as a control (DMSO). Additionally, cells have been depleted of glucose and cultivated in DMSO
(DMSO Glc−), treated with LGK974 (LGK) in defined (assessed concentrations inducing significant
change of viability when depleted of glucose per cell line: GBM1: 10 µM LGK974; JHH520: 10 µM
LGK974; and BTSC233: 40 µM LGK974) standard glucose concentrations (LGK Glc+) and under
glucose withdrawal (LGK Glc−). AXIN2 mRNA levels were significantly increased in JHH520
and BTSC233 cells treated with LGK974 and depleted of glucose (p < 0.05–p < 0.01). The data are
presented as mean + SD (n = 3). Statistical significance was calculated using an unpaired Student’s
t-test. * p < 0.05, ** p < 0.01, and **** p < 0.0001.

To obtain a comprehensive overview of the transcriptional changes beyond WNT/
β-catenin target genes, we next performed a genome-wide transcriptional analysis. When
comparing samples treated with DMSO (Glc+/−) and/or LGK974 (Glc+/−), both upreg-
ulated and downregulated gene clusters were found in all three cell lines (Figure 4A,B).
Among them, significantly altered genes were: GBM1: up-regulated genes: RYR1, HS6ST2,
and C14orf132, down-regulated genes: TACSTD2, VAMP8, and BPIFA1; JHH520: up-
regulated genes: PAWR, TIMP3, and HOXB7, down-regulated genes: ABCG2, TSACC, and
PYY; BTSC233: upregulated genes: NCAN, SHC2, and NF1, downregulated genes: SDK1,
TFPI2, and NBDY. Furthermore, KEGG pathway analysis showed that these differentially
expressed genes (DEGs) were highly associated with pathways ranging from metabolism to
cancer (Figure 4C). Of interest, we also identified DEGs within the WNT/β-catenin pathway
that were induced by glucose deprivation (Supplementary Figure S2). In addition, we eval-
uated the expression of β-catenin-dependent and independent target genes, retrieved from
a recent study [26], and found them altered in our datasets (Supplementary Figure S3).

We next performed immunostaining for active β-catenin in GSCs (GBM1, BTSC233)
under glucose deprivation for 48 h (Supplementary Figure S4). Staining increased in
cells deprived of glucose, indicating a quantitatively higher amount of transcriptionally
active β-catenin. Likewise, TCF luciferase activity was increased significantly in GBM1 and
JHH520 cells after 48 h of glucose deprivation, whereas a tendency toward the upregulation
of TCF luciferase activity was observed in BTSC233 cells.
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Figure 4. Transcriptome-wide gene expression analysis of GBM1, JHH520, and BTSC233 cells.
(A) A heatmap showing variations in gene expression in cells treated with DMSO as solvent
control and LGK974 in standard cell culture glucose concentration (450 mg/dL) and under com-
plete glucose deprivation. (B) Altered genes in treated compared to untreated cell lines and (C)
KEGG-associated pathways.

3.4. Treatment with LGK974 and/or Glucose Starvation Alters Intracellular Metabolite
Concentrations

Next, we performed gas chromatography mass spectrometry (GC-MS) to analyze
intracellular metabolites in GSC lines treated with LGK974 or DMSO for a time period
of 48 h under standard (450 mg/dL) and depleted glucose concentrations (0 mg/dL)
(Figure 5). The intracellular level of the glucogenic amino acid alanine was significantly
(p < 0.0001–p < 0.05) reduced under glucose deprivation in our GSC lines irrespective of
LGK974 treatment (Figure 5A). We also observed a reduction of valine (GBM1 p < 0.05,
JHH520 p = 0.67, and BTSC233 p < 0.05). Other glucogenic amino acids such as gluta-
mate, 5-oxoproline, methionine, and aspartate showed no changes. Treatment with LGK974
combined with glucose deprivation impacted ketogenic amino acids (leucine, lysine, pheny-
lalanine, isoleucine, and threonine) (Figure 5B). Leucine (in BTSC233 p < 0.05) and lysine
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(JHH520: p = 0.051, BTSC233: p = 0.058) were found to be reduced upon LGK974 treatment
alone. Isoleucine was reduced upon LGK974 treatment in BTSC233 cells (p < 0.05), while si-
multaneous WNT inhibition and glucose deprivation resulted in the reduction of isoleucine
in all cell lines (GBM1 and BTSC233: p < 0.05; JHH520: p = 0.099). Both phenylalanine and
threonine were not changed significantly.

Figure 5. LGK974 treatment and/or glucose starvation-altered intracellular metabolite concentrations
as determined by GC-MS. The effect on intracellular metabolite concentrations in cells treated with
DMSO and LGK974 in standard cell culture glucose concentration (450 mg/dL) (DMSO Glc+ (as a
solvent control) and LGK974 Glc+) and under complete glucose deprivation for a time period of 48 h
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(DMSO Glc− and LGK974 Glc−) is shown. Quantitative characterization of diverse intracellular
metabolites such as (A) glucogenic amino acids (alanine, glycine, serine, glutamate, (5-oxo-)proline,
valine, methionine, and aspartate), (B) ketogenic amino acids (leucine, lysine, phenylalanine,
isoleucine, and threonine), (C) oncometabolites (hydroxyglutarate, myo-inositol, glucose, lactate,
fumarate, and succinate), (D) tricarboxylic acid (TCA) metabolites (alpha-ketoglutarate, citrate, isoc-
itrate, malate, fumarate, and succinate) and (E) lipophilic metabolites (glycerol(-P), aminoadipate,
and phosphoethanolamine) were evaluated. The data are presented as mean + SD (n = 3). The
y-axis depicts the relative metabolite concentration in the intracellular compartment (normalized to
the corresponding solvent control (DMSO Glc+)). Statistical significance was calculated using an
unpaired Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

WNT inhibition by LGK974 also reduced the intracellular concentration of the on-
cometabolite hydroxyglutarate, particularly in JHH520 cells (p < 0.0001) and BTSC233
cells (p < 0.05) (Figure 5C). Succinate levels were increased by DMSO and glucose depri-
vation in BTSC233 cells; however, the combined use of LGK974 and glucose starvation
resulted in the suppression of succinate levels. Starvation resulted in decreased intracellular
levels of glucose, lactate, and fumarate in JHH520 cells (p < 0.0001) and BTSC233 cells
(p < 0.05), irrespectively of LGK974 treatment. Myoinositol, a well-known oncometabolite
in glioblastoma, was significantly elevated in starved GBM1 cells (p < 0.001). Glucose
starvation also led to significantly reduced levels of tricarboxylic acid (TCA) metabolites,
such as alpha-ketoglutarate, in GSCs treated with DMSO (GBM1: p < 0.01, JHH520: p < 0.01,
and BTSC233: p < 0.05) and LGK974 (JHH520: p < 0.05, BTSC233: p < 0.05) (Figure 5D).
Some TCA metabolites (citrate, isocitrate, malate, and fumarate) were significantly reduced
after the glucose starvation of JHH520 and BTSC233 cells (p < 0.001–p = 0.057). Glucose
deprivation led to an increased intracellular level of phosphoethanolamine in all cell lines
(p < 0.0001–p < 0.001), irrespectively of WNT inhibition (Figure 5E).

3.5. In Vitro Drug Screen in Glucose-Deprived GSCs

To determine the effects of nutritional stress on chemosensitivity, we performed an
in vitro drug screen comprising 231 proven chemotherapeutic drugs using two GSCs
enriched cell lines (GBM1, BTSC233) grown in standard cell culture conditions and under
glucose deprivation (Supplementary Figure S5). Staurosporin, a global kinases inhibitor
was used as a positive control. The analysis showed that eleven drugs sensitized the
GSCs to starvation-induced cell death—including LGK974 and berberine, which both
impair the WNT pathway. In addition to these, disulfiram (aldehyde dehydrogenase
inhibitor), andrographolide (NFkB inhibitor), auranofin bacterial (inhibitor of bacterial
thioredoxin reductase), pazopanib (multitargeted tyrosine kinase inhibitor), entinostat
(histone deacetylase inhibitor), honokiol (ERK inhibitor), ravoxertinib (ERK inhibitor),
rigosertib sodium (PI3K- and Polo-like Kinase inhibitor), and masitinib mesylate (c-Kit,
FGFR, PDGFR, Scr inhibitor) were also identified as drugs that sensitize to starvation-
induced cell death.

4. Discussion

Although aberrant WNT activation has been associated with malignant transforma-
tion in various cancers, its role in glioblastoma is yet to be fully unveiled. WNT signaling
mediates the clonogenicity and growth of neural progenitor cells and mediates chemore-
sistance to alkylating agents such as Temozolomide (TMZ) in glioblastoma [27]. Due to
its role in promoting metabolic plasticity, WNT upregulation has been postulated as a
mediator of metabolic resilience in malignant tissues [28]. Thus, our study focused on the
WNT-mediated response to glucose deprivation in GSCs. Initially, we assessed the viability
of glucose-starved GSCs by performing an MTT assay, thereby determining the percentage
of cells surviving extreme metabolic stress. A small subpopulation of cells managed to
survive in a glucose-deprived microenvironment (Figure 1). In our next experiment, we
assessed invasive capacities after glucose starvation and showed that the depletion of
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glucose led to the acquisition of an invasive phenotype, possibly by inducing a mesenchy-
mal transition (Figure 3). This acquisition of an invasive phenotype in nutrient-limiting
microenvironments has been shown across various cancer tissues before [29].

Furthermore, we performed a soft agar colony formation assay and quantified the self-
renewal properties as a surrogate of the stem-like cell phenotype, observing the increased
clonogenic potential of GSCs that were exposed to low glucose concentrations for four
weeks. This indicates an enrichment of GSCs by nutrient deprivation. A similar advantage
in survival leading to the selection of stem-like cancer cells has already been observed
after chemo- and radiotherapy [30]. The impact of glucose starvation in our analysis was
also evident on both the local (β-catenin and target genes) and the global (whole-genome
transcriptome) genomic level. Moreover, the significant increase in luciferase signal also
suggested an increased activity of the canonical WNT pathway following glucose starvation.
Based on our observations, we concluded that glucose-depleted GSCs activate canonical
WNT signaling in response to metabolic stress. Indeed, simultaneous WNT inhibition
with the porcupine inhibitor LGK974, which interferes with the endoplasmatic release
of WNT molecules, led to significantly decreased viability under glucose starvation in a
dose-dependent manner. Although this phenomenon can predominantly be attributed
to direct WNT/β-catenin inhibition, off-target effects of LGK974 cannot be excluded.
Furthermore, heterogenic transcriptional characteristics of GSCs used in this study (GBM1:
adult male, classical, TP53 p.L130I, IDH-wildtype; JHH520: adult female, mesenchymal,
TP53 p.H179D, IDH-wildtype; and BTSC233: adult female, mesenchymal, IDH-wildtype)
may contribute to minor differences in observed responses towards metabolic stress. Such
inherited heterogeneity between cancer cell lines leading to experimental discrepancies has
previously been discussed [31].

In vitro drug screening identified LGK974 and berberine (WNT inhibitor used for
hypercholesterinemia, diabetes, and hypertension [32]) as drugs that sensitize cells to
starvation-induced cell death. In addition to that, we characterized the metabolic profile un-
der glucose starvation, WNT inhibition, and a combination of WNT inhibition and glucose
starvation, by utilizing GC-MS. We observed significant changes in various metabolites
under WNT inhibition alone and in combination with glucose depletion. The glucogenic
amino acid alanine was significantly reduced in starved cell lines, most likely due to
anaplerosis [33], whereas other glucogenic amino acids (such as glutamate, 5-oxoproline,
methionine, and aspartate) showed no changes. Whether these effects are confined to
the metabolic microenvironment of gliomas or common to other cancers requires further
studies. Notably, in all cell lines, ketogenic amino acids lysine and leucine were reduced,
even more significantly under simultaneous WNT inhibition and glucose starvation. This
indicates an additional role of WNT signaling in ketogenesis by fatty acid oxidation, which
has also previously been reported [34]. Our results contribute to a more comprehensive
understanding of WNT signaling as an important player in the regulation of ketogenesis
not only through the beta-oxidation of fatty acids but also by the utilization of ketogenic
amino acids. The impaired survival of glucose-deprived GSCs by simultaneous WNT
inhibition may be due to the limited availability of ketogenic amino acids for the con-
sequent utilization of anaplerotic reactions in the tricarboxylic acid cycle. In particular,
alpha-ketoglutarate, citrate and isocitrate, malate, and fumarate were decreased in starved
GSCs independent of WNT inhibition, suggesting a general mechanism, such as the rapid
incorporation into the reaction chains of the tricarboxylic acid cycle. In addition, WNT
inhibition of glucose-deprived GSCs affected several oncometabolites, such as hydroxyglu-
tarate, myo-inositol, succinate, and fumarate. Hydroxyglutarate is an oncometabolite that
accumulates in IDH-mutant glioma cells and correlates with poor prognosis [35]. In our
study, hydroxyglutarate was significantly reduced under LGK974 treatment, suggesting a
role of the WNT pathway in regulating oncometabolic-driven cancer growth. WNT inhibi-
tion decreased the phosphoethanolamine concentration, which was elevated by glucose
starvation. A recent study showed that mutant IDH1 gliomas downregulate the synthesis
of phosphocholine and phosphoethanolamine in a 2-hydroxyglutarate-dependent man-
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ner [36]. Although WNT activation played an important role in maintaining cell survival
under extreme nutrient restriction, the exact mechanism by which glucose deprivation
can enhance β-catenin activity remains unclear. Previously, it has been discussed that the
degradation of β-catenin upon glucose deprivation is GSK3β-independent and mainly
involves the protein kinase C (PKC)-dependent pathway [37]. Likewise, AMP-activated
protein kinase (AMPK) phosphorylates β-catenin at Ser 552 [38] and further regulates its
transcriptional level via phosphorylated histone deacetylase 5 (HDAC5) [39].

In summary, our findings reveal novel pleiotropic effects of WNT signaling on metabolic
activity in glioblastoma stem-like cell lines. Metabolic fingerprints might possibly comple-
ment classic biomarkers, allowing for the better prediction of tumor behavior and clinical
prognosis. Considering that in vitro tumor models do not closely mimic the in vivo tumor
microenvironment, further analysis of patient-derived samples, especially from perinecrotic,
oxygen- and nutrient-deprived tumor compartments is of paramount importance for the
development of more efficient therapeutic strategies.

5. Conclusions

Our findings suggest that WNT activation plays an important role in promoting the
survival of glioblastoma cells under extreme nutrient restrictions. Whether this is limited
to malignant glioma-derived cell lines or is a general mechanism in cancer biology requires
further attention.
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activity (WNT activity); Figure S5: in silico drug screen in GBM cell lines with (A) staurosporin, (B)
berberine, and (C) LGK974. (D) Other potential chemotherapeutics assessed via robot technology are
also shown. Original western blot images from Figure S1C are included.

Author Contributions: Conceptualization, S.Y. and J.M.; methodology, S.Y., P.A., A.-C.N., P.W., N.Q.,
M.R., D.H., H.L. (Hongjia Liu) and H.L. (Hongde Liu); formal analysis: A.S., H.-J.S., G.R. and S.N.;
writing—original draft preparation, S.Y., A.S. and J.M.; supervision, J.M. All authors have read and
agreed to the published version of the manuscript.

Funding: S.Y. is supported by a scholarship from the Rosa Luxemburg Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article (and
supplementary material).

Acknowledgments: We thank our dear colleagues Constanze Uhlmann and Michael Hewera, who
provided insight and expertise that greatly assisted the research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Axin2: axis inhibition protein 2; CNS: central nervous system; CSC: cancer stem-like
cells; DMSO: dimethyl sulfoxide; EGF: epidermal growth factor; FGF: fibroblast growth
factor; Fwd: forward; GC-MS: gas chromatography mass spectrometry; GLUT1: glucose
transporter 1; IDH1: isocitrate dehydrogenase 1; LDH-A: lactate dehydrogenase A; MCT-1:

https://www.mdpi.com/article/10.3390/cancers14133165/s1


Cancers 2022, 14, 3165 16 of 17

monocarboxylate transporter 1; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide; NBT: nitro blue tetrazolium chloride; PDH: pyruvate dehydrogenase; PKM2:
pyruvate kinase M2; Rev: reverse; rpm: rounds per minute; RT-qPCR: real-time quantitative
PCR; TCA: tricarboxylic acid; TCF/LEF: T cell factor/lymphoid enhancer factor family;
TMZ: temozolomide; WHO: World Health Organization; WNT: wiSuadngless and Int-1;
ZEB1: zinc finger E-box binding homeobox 1.

References
1. Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; et al.

Glioma. Nat. Rev. Dis. Primers 2015, 1, 15017. [CrossRef] [PubMed]
2. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.;

Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021,
23, 1231–1251. [CrossRef] [PubMed]

3. Dirkse, A.; Golebiewska, A.; Buder, T.; Nazarov, P.V.; Muller, A.; Poovathingal, S.; Brons, N.H.C.; Leite, S.; Sauvageot, N.;
Sarkisjan, D.; et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the
microenvironment. Nat. Commun. 2019, 10, 1787. [CrossRef] [PubMed]

4. Garnier, D.; Renoult, O.; Alves-Guerra, M.C.; Paris, F.; Pecqueur, C. Glioblastoma Stem-like Cells, Metabolic Strategy to Kill a
Challenging Target. Front. Oncol. 2019, 9, 118. [CrossRef]

5. Li, Y.; Sharma, A.; Maciaczyk, J.; Schmidt-Wolf, I.G.H. Recent Development in NKT-Based Immunotherapy of Glioblastoma:
From Bench to Bedside. Int. J. Mol. Sci. 2022, 23, 1311. [CrossRef]

6. Koch, K.; Hartmann, R.; Suwala, A.K.; Rios, D.H.; Kamp, M.A.; Sabel, M.; Steiger, H.J.; Willbold, D.; Sharma, A.;
Kahlert, U.D.; et al. Overexpression of Cystine/Glutamate Antiporter xCT Correlates with Nutrient Flexibility and ZEB1
Expression in Highly Clonogenic Glioblastoma Stem-like Cells (GSCs). Cancers 2021, 13, 6001. [CrossRef]

7. Wek, R.C.; Staschke, K.A. How do tumours adapt to nutrient stress? EMBO J. 2010, 29, 1946–1947. [CrossRef]
8. Alzial, G.; Renoult, O.; Paris, F.; Gratas, C.; Clavreul, A.; Pecqueur, C. Wild-type isocitrate dehydrogenase under the spotlight in

glioblastoma. Oncogene 2022, 41, 613–621. [CrossRef]
9. Mondal, S.; Bhattacharya, K.; Mandal, C. Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by

PTEN/Wnt/Hedgehog axis: A stochastic model of cancer stem cells. Cell Death Discov. 2018, 4, 110. [CrossRef]
10. Patel, S.; Alam, A.; Pant, R.; Chattopadhyay, S. Wnt Signaling and Its Significance Within the Tumor Microenvironment: Novel

Therapeutic Insights. Front. Immunol. 2019, 10, 2872. [CrossRef]
11. Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [CrossRef] [PubMed]
12. Latour, M.; Her, N.G.; Kesari, S.; Nurmemmedov, E. WNT Signaling as a Therapeutic Target for Glioblastoma. Int. J. Mol. Sci.

2021, 22, 8428. [CrossRef] [PubMed]
13. Aretz, P.; Maciaczyk, D.; Yusuf, S.; Sorg, R.V.; Hänggi, D.; Liu, H.; Liu, H.; Dakal, T.C.; Sharma, A.; Bethanabatla, R.; et al.

Crosstalk between β-Catenin and CCL2 Drives Migration of Monocytes towards Glioblastoma Cells. Int. J. Mol. Sci. 2022, 23,
4562. [CrossRef] [PubMed]

14. Mo, Y.; Wang, Y.; Zhang, L.; Yang, L.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Zeng, Z.; Xiong, W.; et al. The role of Wnt signaling pathway
in tumor metabolic reprogramming. J. Cancer 2019, 10, 3789–3797. [CrossRef]

15. Sprowl-Tanio, S.; Habowski, A.N.; Pate, K.T.; McQuade, M.M.; Wang, K.; Edwards, R.A.; Grun, F.; Lyou, Y.; Waterman, M.L.
Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer
Metab. 2016, 4, 20. [CrossRef]

16. Frey, J.L.; Kim, S.P.; Li, Z.; Wolfgang, M.J.; Riddle, R.C. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of
Male Mice. Endocrinology 2018, 159, 272–284. [CrossRef]

17. Li, R.; Wang, W.; Yang, Y.; Gu, C. Exploring the role of glucose-6-phosphate dehydrogenase in cancer (Review). Oncol. Rep. 2020,
44, 2325–2336. [CrossRef]

18. Koch, K.; Hartmann, R.; Schröter, F.; Suwala, A.K.; Maciaczyk, D.; Krüger, A.C.; Willbold, D.; Kahlert, U.D.; Maciaczyk, J.
Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells. Oncotarget 2016, 7,
73414–73431. [CrossRef]

19. Suwala, A.K.; Koch, K.; Rios, D.H.; Aretz, P.; Uhlmann, C.; Ogorek, I.; Felsberg, J.; Reifenberger, G.; Köhrer, K.; Deenen, R.; et al.
Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to
reduce resistance against temozolomide in glioblastoma in vitro. Oncotarget 2018, 9, 22703–22716. [CrossRef]

20. Kahlert, U.D.; Suwala, A.K.; Raabe, E.H.; Siebzehnrubl, F.A.; Suarez, M.J.; Orr, B.A.; Bar, E.E.; Maciaczyk, J.; Eberhart, C.G.
ZEB1 Promotes Invasion in Human Fetal Neural Stem Cells and Hypoxic Glioma Neurospheres. Brain Pathol. 2015, 25, 724–732.
[CrossRef]

21. Sumida, K.; Igarashi, Y.; Toritsuka, N.; Matsushita, T.; Abe-Tomizawa, K.; Aoki, M.; Urushidani, T.; Yamada, H.; Ohno, Y. Effects
of DMSO on gene expression in human and rat hepatocytes. Hum. Exp. Toxicol. 2011, 30, 1701–1709. [CrossRef] [PubMed]

http://doi.org/10.1038/nrdp.2015.17
http://www.ncbi.nlm.nih.gov/pubmed/27188790
http://doi.org/10.1093/neuonc/noab106
http://www.ncbi.nlm.nih.gov/pubmed/34185076
http://doi.org/10.1038/s41467-019-09853-z
http://www.ncbi.nlm.nih.gov/pubmed/30992437
http://doi.org/10.3389/fonc.2019.00118
http://doi.org/10.3390/ijms23031311
http://doi.org/10.3390/cancers13236001
http://doi.org/10.1038/emboj.2010.110
http://doi.org/10.1038/s41388-021-02056-1
http://doi.org/10.1038/s41420-018-0126-6
http://doi.org/10.3389/fimmu.2019.02872
http://doi.org/10.4161/org.4.2.5851
http://www.ncbi.nlm.nih.gov/pubmed/19279717
http://doi.org/10.3390/ijms22168428
http://www.ncbi.nlm.nih.gov/pubmed/34445128
http://doi.org/10.3390/ijms23094562
http://www.ncbi.nlm.nih.gov/pubmed/35562953
http://doi.org/10.7150/jca.31166
http://doi.org/10.1186/s40170-016-0159-3
http://doi.org/10.1210/en.2017-00850
http://doi.org/10.3892/or.2020.7803
http://doi.org/10.18632/oncotarget.12337
http://doi.org/10.18632/oncotarget.25210
http://doi.org/10.1111/bpa.12240
http://doi.org/10.1177/0960327111399325
http://www.ncbi.nlm.nih.gov/pubmed/21339255


Cancers 2022, 14, 3165 17 of 17

22. Moskot, M.; Jakóbkiewicz-Banecka, J.; Kloska, A.; Piotrowska, E.; Narajczyk, M.; Gabig-Cimińska, M. The Role of Dimethyl
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