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The lymphoid system is equipped with a network of specialized platforms located at strate-
gic sites, which grant strict immune-surveillance and efficient immune responses. The
development of these peripheral secondary lymphoid organs (SLO) occurs mainly in utero,
while tertiary lymphoid structures can form in adulthood generally in response to persis-
tent infection and inflammation. Regardless of the lymphoid tissue and intrinsic cellular
and molecular differences, it is now well established that the recruitment of fully func-
tional lymphoid tissue inducer (LTi) cells to presumptive lymphoid organ sites, and their
consequent close and reciprocal interaction with resident stroma cells, are central to SLO
formation. In contrast, the nature of events that initially prime resident sessile stroma cells
to recruit and retain LTi cells remains poorly understood. Recently, new findings revealed
early phases of SLO development putting emphasis on mesenchymal and lymphoid tissue
initiator cells. Herein we discuss the main tenets of enteric lymphoid organs genesis and
focus in the most recent findings that open new perspectives to the understanding of the
early phases of lymphoid morphogenesis.
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INTRODUCTION
The lymphoid system possesses highly specialized peripheral
organs formed at strategic anatomical sites that constitute three-
dimensional platforms ensuring efficient immune-surveillance,
rapid immune responses and maintenance of protective immu-
nity. Secondary lymphoid organs (SLO), such as lymph nodes
(LN) and Peyer’s patches (PP), develop during the embryonic
life, but can also assemble after birth as it occurs with enteric
cryptopatches and isolated lymphoid follicles (Randall et al.,
2008; Eberl and Sawa, 2010; van de Pavert and Mebius, 2010;
Neyt et al., 2012).

Remarkably, while LN develop at strictly invariable loca-
tions along lymphatic vessels, PP develop in variable number
and position in the anti-mesenteric side of the mid-intestine
(5–12 in mice; Nishikawa et al., 2003). Similarly, cryptopatches
appear confined to intestinal lamina propria but they also dis-
tribute randomly within the gut wall (Kanamori et al., 1996).
Despite these intrinsic differences, SLO development relies on
an antigen-independent process where presumptive regions are
colonized by lymphoid tissue inducer (LTi) cells that cross-
talk with resident mesenchymal cells through lymphotoxin
(LT) α1β2 and LTβ receptor (LTβR) interactions, thus creat-
ing a positive feed-back loop that culminates on the anlagen
formation.

Although the mechanisms of SLO development have been
extensively characterized throughout the years (Randall et al.,
2008; van de Pavert and Mebius, 2010; Cupedo, 2011), most stud-
ies have been powerless to scrutinize early events preceding LTi cell
colonization and clustering. Thus, putative early triggering events
preceding LTi cell ingress into lymphoid organ anlagen remain
poorly understood (Nishikawa et al., 2003).

GENESIS OF LYMPHOID ORGAN PRIMORDIA:
THE LTi PARADIGM
Fetal hematopoietic cells colonize pre-defined sites between
embryonic day 9.5 (E9.5) and 16.5 (E16.5) according to the
type and location of the prospective lymphoid organ (Rennert
et al., 1996; Adachi et al., 1998; Mebius et al., 2001; Yoshida et al.,
2001; Veiga-Fernandes et al., 2007; Possot et al., 2011; Tachibana
et al., 2011; Cherrier et al., 2012). Hematopoietic cells include
CD3−CD4−/+cKit+IL7Rα+α4β7+Rorγt+/− LTi cells (Kelly and
Scollay, 1992; Adachi et al., 1997, 1998; Mebius et al., 1997; Yoshida
et al., 1999; Sawa et al., 2010; Possot et al., 2011; Cherrier et al.,
2012) and a distinct population of CD3−CD4−cKit+IL7Rα−
CD11c+ lymphoid tissue initiator (LTin) cells (Hashi et al., 2001;
Fukuyama and Kiyono, 2007; Veiga-Fernandes et al., 2007; Patel
et al., 2012). PP development depends on LTi and LTin cells,
while LN genesis relies on LTi cells although the role of LTin
in LN formation remains elusive. Upon arrival to prospective
sites, LTin and LTi cells are believed to establish an inter-
play with their mesenchymal cell counterparts, lymphoid tis-
sue organizers (LTo) cells, in order to trigger lymphoid organ
formation.

The presence of fully functional LTi and LTin cells is neces-
sary for the development of enteric SLO. Absence of LTi cells, as
described in mice deficient for Ikaros, Inhibitor of DNA-binding
2 (Id2), retinoic acid-related orphan receptor γ t (Rorγ t), and
RUNT-related transcription factor 1 (Runx1)/core-binding factor,
beta 2 subunit (Cbfb2), result in PP developmental failure (Wang
et al., 1996; Yokota et al., 1999; Sun et al., 2000; Tachibana et al.,
2011). Similarly, depletion of LTin cells or deficiency of Ret expres-
sion on these cells results in impaired PP formation (Fukuyama
and Kiyono, 2007; Veiga-Fernandes et al., 2007).
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Lymphoid tissue inducer cells express the chemokine recep-
tors CXCR5 and CCR7 that specifically bind to the homeo-
static chemokines CXCL13 and CCL21/19, respectively. These
chemokines create gradients that coordinate LTi cell migration
and colonization of presumptive lymphoid organ sites (Forster
et al., 1996, 1999; Honda et al., 2001; Luther et al., 2003; Mebius,
2003). In addition, the expression of the adhesion molecules
ICAM-1, VCAM-1, and MAdCAM-1 by stroma organizer cells
ensures retention of hematopoietic cells through the ligation of
the integrin receptors α4β1 and α4β7 expressed by LTi and LTin
cells surface (Mebius et al., 1996; Hashi et al., 2001; Finke et al.,
2002; Veiga-Fernandes et al., 2007). Thus, it is commonly accepted
that chemokines and adhesion molecules contribute to a produc-
tive and persistent communication between hematopoietic and
mesenchymal cells (van de Pavert and Mebius, 2010).

The engagement of LTα1β2 expressed by LTi cells with stromal
cell LTβR leads to activation of the classical and alternative NF-κB
signaling pathways, which are critical to stroma cell maturation
and lymphoid organ development (Weih et al., 1995; Yamada et al.,
2000; Alcamo et al., 2001, 2002; Paxian et al., 2002; Yilmaz et al.,
2003; Carragher et al., 2004; Lovas et al., 2008). In agreement, mice
deficient for LTα, LTβ, LTβR, or molecular players of the NF-κB
signaling pathways fail to develop LN and PP (Rennert et al., 1996,
1997, 1998).

The activation of LTβR results in the maturation of stroma
cells, inducing the expression of adhesion molecules MAdCAM-
1, VCAM-1, and ICAM-1 (Cuff et al., 1999; Dejardin et al., 2002;
Yoshida et al., 2002; Ame-Thomas et al., 2007; Vondenhoff et al.,
2009a), as well as the homeostatic chemokines CCL19, CCL21,
and CXCL13 (Ansel et al., 2000; Luther et al., 2003). In addition,
IL-7 and TRANCE induce the expression of LTα1β2 and generate a
positive feed-back loop that sustains a continuous supply of signals
between stroma and LTi cells granting maturation of the former
(Ansel et al., 2000; Honda et al., 2001; Yoshida et al., 2002; Luther
et al., 2003; Mebius, 2003).

MATURATION OF MESENCHYMAL CELLS:
THE STROMACENTRIC VIEW
The general mechanism of SLO development, whereby LTi cells
colonize lymphoid organ primordia, is similar among PP and LN
anlagen (Yoshida et al., 2002; Randall et al., 2008; van de Pavert
and Mebius, 2010; Cupedo, 2011). However, despite the obvi-
ous parallels there are also remarkable differences between the
morphogenesis of these organs. Examples of such differential
processes are provided by IL7/IL7R and TRANCE/TRANCE-R sig-
naling. Thus, while IL7R signal is critical to PP development, as
revealed by Il7r−/− mice, brachial, axillary, and mesenteric LN
develop normally in these animals (Adachi et al., 1998; Yoshida
et al., 1999; Luther et al., 2003). Furthermore, while in Trance−/−
and Traf6−/− mice LN development is severely compromised, PP
form normally in these mice (Dougall et al., 1999; Naito et al.,
1999). Finally, the tyrosine kinase receptor RET also plays a differ-
ential role in LN and PP genesis. This is revealed by the absence of
PP in Ret null embryos, which have seemingly normal LN anlagen
development (Veiga-Fernandes et al., 2007).

Interestingly, mesenchymal organizer cells from LN and PP also
exhibit distinctive genetic features (Yoshida et al., 2002; Cupedo

et al., 2004; Okuda et al., 2007). This genetic heterogeneity,
suggests that LTo cells may also provide different cues to
hematopoietic cells. Nevertheless, it remains unclear whether the
acquisition of such divergent genetic profiles are cell autonomous
or derived from paracrine cellular interaction with different
hematopoietic cell subsets.

The distribution of mesenchymal cells within lymphoid organs
differs between PP and LN. In the intestine, stromal cells are
distributed throughout the gut tissue that becomes colonized by
highly motile hematopoietic cells between day E12.5 and E15.5. At
this stage rare VCAM-1+ cells are detected in the gut wall (Adachi
et al., 1997). However, by E16.5, VCAM-1+/ICAM-1+ clusters
of stroma cells are clearly visible forming PP primordia (Adachi
et al., 1997; Yoshida et al., 1999; Hashi et al., 2001; Veiga-Fernandes
et al., 2007). Conversely, LN invariably develop within lymph
sacs, where ICAM-1+VCAM-1+ mesenchymal stromal cells ini-
tially surround endothelial cells and by E16.5 start to invade the
endothelium core to form a proper compartment of the anlagen
(Okuda et al., 2007). Surprisingly, although lymphatic endothelial
cells are essential to the correct formation of LN and lymphatic
vasculature, they are dispensable for the initial aggregation of
LTi and LTo cells (Cupedo et al., 2004; Vondenhoff et al., 2009b;
Benezech et al., 2010).

Interestingly, mounting evidence indicates that LTo cells are
very heterogeneous. In PP genesis, VCAM-1+/ICAM-1+ orga-
nizer cells express LTβR, CCL19, and CXCL13 (Adachi et al.,
1997; Yoshida et al., 1999; Hashi et al., 2001; Honda et al., 2001;
Veiga-Fernandes et al., 2007), and further analysis revealed that
this cell population comprises VCAM-1inICAM-1in and VCAM-
1hiICAM-1hi subpopulations (Okuda et al., 2007). Similarly, these
populations were also identified in LN (Cupedo et al., 2004; Okuda
et al., 2007; Benezech et al., 2010). The comparison of genetic
expression between PP and LN VCAM-1hiICAM-1hi cells shows
that mesenteric LN LTo cells have surface expression of TRANCE,
whereas their PP counterparts lack the expression of this ligand
(Cupedo et al., 2004; Okuda et al., 2007). Furthermore, microar-
ray analysis revealed that their genetic signatures are distinct.
Mesenteric LN stroma cells express significantly higher levels
of cytokines and chemokines such as IL6, IL7, CCL7, CXCL1,
and CCL11 (Okuda et al., 2007). Conversely, the homeostatic
chemokines CCL21, CCL19, and CXCL13 are more abundant
in enteric stroma cells. Interestingly, genes implicated in mor-
phogenesis, such as Meox2, Lhx8, and Prrx1, were significantly
higher in mesenteric LN when compared to PP counterparts, yet
their functional relevance in lymphoid organogenesis is unclear
(Okuda et al., 2007).

In addition to previously described VCAM-1inICAM-1in and
VCAM-1hiICAM-1hi stroma cells, another population of VCAM-
1negICAM-1neg, expressing PDGFRα but gp38/podoplanin and
VEGFR3 negative was identified in LN (Benezech et al., 2010).
Although, VCAM-1inICAM-1in and VCAM-1hiICAM-1hi cells
have been described in PP, the existence of a VCAM-1negICAM-
1neg counterpart remains to be investigated (Cupedo et al., 2004;
Okuda et al., 2007). VCAM-1negICAM-1neg stroma cells express
Ccl21 and Tnfr1 while VCAMhiICAMhi express the highest lev-
els of Ccl21, Ccl19, Cxcl13, Trance, and Il7, as compared with
VCAM-1inICAM-1in, confirming their greater potential to attract
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LTi (Cupedo et al., 2004; Okuda et al., 2007; Benezech et al.,
2010). Interestingly, the treatment of LN with αLTβR Ab agonist
significantly increased the frequency of VCAM-1hiICAM-1hi cells
(Benezech et al., 2010). In addition, Ltbr−/− and Rorc(γt)−/−
mice absolutely lacked these VCAM-1hiICAM-1hi cells in inguinal
and mesenteric LN (Benezech et al., 2010), thus confirming the
implication of LTi cells and the engagement of LTβR on the mat-
uration of residential stroma cells. Surprisingly, the emergence
of VCAM-1inICAM-1in is seemingly normal in the absence of
LTβR and LTi cells (White et al., 2007; Benezech et al., 2010).
These data indicate that while the maturation of VCAM-1inICAM-
1in into VCAM-1hiICAM-1hi absolutely depends on LTβR and
LTi cells, the transition from VCAM-1loICAM-1lo to VCAM-
1inICAM-1in is LTβR and LTi cell independent (Benezech et al.,
2010). These conclusions are supported by the fact that the
recruitment of LTi cells to lymphoid organ is observed in the
absence of LTβR signaling (Yoshida et al., 2002; Coles et al., 2006;
Vondenhoff et al., 2009a; Benezech et al., 2010), and by the LTβR-
independent expression of homeostatic chemokines CCL21 and
CXCL13, and the cytokine IL7 (Ansel et al., 2000; Luther et al.,
2003; Cupedo et al., 2004; Moyron-Quiroz et al., 2004; Benezech
et al., 2010). Finally, while agonist anti-LTβR treatment rescues
LN development in LTα−/− mice, the same treatment in LTi
deficient Rorc(γ t)−/− mice, fail to promote SLO development
(Rennert et al., 1998; Eberl et al., 2004). Altogether, these obser-
vations suggest that early LTβR-independent events precede LTi
cell arrival, initiating a specific genetic expression profile in
mesenchymal cells.

In agreement with this hypothesis, it was shown that CXCL13
can be induced by the vitamin A metabolite retinoic acid inde-
pendently of LTα1β2/LTβR signaling (van de Pavert et al., 2009).
Interestingly, analysis of mice deficient for RALDH-2, a cru-
cial retinoic acid-synthesizing enzyme, revealed that at E14.5
the majority of LN were absent and CXCL13 expression was
undetectable (van de Pavert et al., 2009). Additionally, neurons-
expressing RALDH-1/2 were observed near the LN anlagen,
suggesting potential neuronal source of retinoic acid (van de Pavert
et al., 2009). Whether this signaling axis has a functional rele-
vance for PP development remains unclear. However, Gdnf and
Gfra1 null embryos fail to develop a myenteric nervous system but
still have normal PP development arguing against such hypothesis
(Moore et al., 1996; Cacalano et al., 1998; Veiga-Fernandes et al.,
2007). Nevertheless, the presence of parasympathetic and/or sym-
pathetic neurons still present in the guts of these mutants, may
provide such retinoic acid cues for PP formation. Interestingly,
given the role of retinoic acid role in intestinal immune responses,
a direct effect of retinoic acid in LTin and/or LTi cell subsets cannot
be discarded at this stage (Hall et al., 2011a,b).

THE EARLY PRIMING EVENTS OF ENTERIC SLO: THE LTin
CELL REIGN
In the intestine CD3−CD4+IL7Rα+ LTi cells and VCAM-
1+/ICAM-1+ stromal organizer cells cluster together with
CD3−CD4−IL7Rα−cKit+CD11c+ cells (Fukuyama and Kiyono,
2007; Veiga-Fernandes et al., 2007). Mice partly depleted of
CD3−CD4−IL7Rα−cKit+CD11c+ cells have impaired PP devel-
opment and mice deficient for the receptor tyrosine kinase

RET (Ret−/−), expressed by this population do not develop PP
(Veiga-Fernandes et al., 2007). Thus, CD3−CD4−IL-7Rα−cKit+
CD11c+ cells were suggested to be involved in early phases of
enteric lymphoid tissue formation and were named LTin cells
(Fukuyama and Kiyono, 2007; Veiga-Fernandes et al., 2007). Sup-
porting this concept, the RET ligand ARTN induces the formation
of ectopic lymphoid structures, and LTin cells are the first
hematopoietic cellular entity to cluster together with VCAM-1
expressing stroma cells (Veiga-Fernandes et al., 2007; Patel et al.,
2012). Although, LTi cells are scarcely detected at very early phases
of enteric organ formation, an extensive accumulation of LTi cells
occurs subsequently to LTin cell aggregation (Patel et al., 2012).
Interestingly, LTin cells respond unconventionally in trans to all
RET ligands, reducing their motility upon contact with mes-
enchymal cells, in an adhesion-dependent manner (Patel et al.,
2012). Furthermore, while Ccl19, Ccl21, and Cxcl13 chemokine
expression is not required in this early triggering phase, VCAM-1
blockage results in a profound reduction of cell clustering effi-
ciency, indicating that subsequent up-regulation of VCAM-1 in
stroma organizer cells is essential to recruit and retain the first
coming LTi cells (Patel et al., 2012). Thus, in opposition to the
LTi action mechanism, where chemokines and LT/LTβR are key
(Hashi et al., 2001; Finke et al., 2002; Luther et al., 2003; Ohl
et al., 2003), LTin cells act at very early phases determining early
maturation of enteric mesenchymal cells in a RET-dependent,
chemokine-independent manner (Patel et al., 2012). Strikingly,
in agreement with previous reports in the LN, the initial induc-
tion of VCAM-1 expression in enteric stroma cells might not
rely on the engagement of LTβR, since RET ligand stimulation
does not up-regulate LTβ on LTin cells and blockage of LTβR
signaling does not impair VCAM-1 induction on stromal cells
(Patel et al., 2012). Thus, we would like to propose that PP
development is a multi-step, multi-cellular process relying on
an initial RET-dependent and adhesion-dependent interaction
between LTin and mesenchymal cells, which result in stroma
cell priming, ultimately leading to efficient LTi cell recruitment
(Figure 1). Although, CD11c+ cells have been detected in anla-
gen LN, Ret−/− mice develop peripheral LN (Veiga-Fernandes
et al., 2007). Thus it remains unknown whether LTin cells are also
implicated in early stroma cell priming of LN. LTin cells have
been phenotypically characterized. These cells present some fea-
tures of dendritic cells, expressing CD11c, CD11b, and MHC
class II, but lack DEC205 and express NK1.1 and Gr-1 (Veiga-
Fernandes et al., 2007). Thus, it would be very interesting to
understand the precursor-product relationship between LTin cells
and other cell lineages. Finally, it would be exceedingly exciting
to determine whether LTin and RET responses may also initi-
ate enteric cryptopatches or lymphoid tissue induced in chronic
inflammation.

CONCLUDING REMARKS
Over the last two decades, remarkable findings have con-
solidated our knowledge on lymphoid organogenesis. Despite
differences between diverse lymphoid organs, we can now
appreciate that recruitment of fully functional LTi cells is
central in LN and PP organogenesis and that, upon their
arrival, an intimate and productive cross-talk is established with
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FIGURE 1 | Model of Peyer’s patch development. Peyer’s patch
development relies on a multi-step, multi-cellular process. Step 1:
RET-dependent, adhesion-dependent interaction between LTin
and mesenchymal cells, results in stroma cell priming and VCAM1
induction (immature LTo cell). Step 2: retention of resident LTi cells

through a VCAM1 mediated process; LTi/LTo interaction through LTαβ/
LTβR inducing a chemokine and adhesion molecule competent LTo
cell (mature LTo cell). Step 3: Positive feed-back loop generating fully
mature LTo cells and additional LTi cell recruitment and retention into
the primordium.

stroma cells. However, new insights have recently shed light
on early initiating events that imprint stroma cells to create
an attractive milieu for LTi cell recruitment. These findings
emphasize a subtle phase, yet crucial to enteric stroma cell mat-
uration, this is the step where LTin cells reign. We foresee the
identification of early key players to stroma cell priming in adult-
hood and inflammatory settings as important challenges in the
future.
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