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Abstract: Forests are critical ecosystems for environmental regulation and ecological security main-
tenance, especially at high altitudes that exhibit sensitivity to climate change and human activities.
The Qinghai-Tibet Plateau—the world’s largest water tower region—has been breeding many large
rivers in Asia where forests play important roles in water regulation and water quality improvement.
However, the vulnerability of these forest ecosystems at the regional scale is still largely unknown.
Therefore, the aim of this research is to quantitatively assess the temporal–spatial variability of
forest vulnerability on the Qinghai-Tibet Plateau to illustrate the capacity of forests to withstand
disturbances. Geographic information system (GIS) and the spatial principal component analysis
(SPCA) were used to develop a forest vulnerable index (FVI) to assess the vulnerability of forest
ecosystems. This research incorporates 15 factors covering the natural context, environmental distur-
bances, and socioeconomic impact. Results indicate that the measure of vulnerability was unevenly
distributed spatially across the study area, and the whole trend has intensified since 2000. The three
factors that contribute the most to the vulnerability of natural contexts, environmental disturbances,
and human impacts are slope aspect, landslides, and the distance to the farmland, respectively.
The vulnerability is higher in forest areas with lower altitudes, steeper slopes, and southerly direc-
tions. These evaluation results can be helpful for forest management in high altitude water tower
regions in the forms of forest conservation or restoration planning and implementation towards
sustainable development goals.

Keywords: forest vulnerability; Qinghai-Tibet Plateau; SPCA; forest vulnerability index

1. Introduction

Forest ecosystems, which cover about one-third of the global land area, are among
the most biologically rich and genetically diverse ecosystems on the Earth [1]. The com-
mon forest ecosystem services to be listed are timber, non-timber forest products, wildlife
habitat, water quantity and quality, carbon sequestration and storage, recreational opportu-
nities, life-support, and the climatizing function of a cooling and later warming effect [2].
Among them, forests play a highly important role in carbon storage for about 76–78% of
the organic carbon in global terrestrial ecosystems [3]. Forests are of great significance for
mitigating carbon emissions and regulating regional and global climate stability. However,
researchers have argued that the forests are vulnerable to the changing climate, occurrence
of extreme climatic events, and human-induced disturbances [4,5].

Mountain ranges and plateaus, the major freshwater sources for sustaining the down-
stream environmental and human water demands, are called the world’s “water tow-
ers” [6,7]. Forests in these water tower regions function critically for provisioning the
water-related ecosystem services besides the above-mentioned carbon-related services.
Unfortunately, the most important water towers are also found to be among the most
vulnerable, subject to significant disturbances from climatic and socioeconomic changes [7].
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However, the vulnerability of the forest ecosystems in these water tower regions remains
largely unknown.

The Qinghai-Tibet Plateau (QTP), located in southwestern China, is the world’s largest
water tower region and feeds many large rivers in Asia and benefits billions of people [7].
The forests of QTP that cover 12.5% of the region are experiencing potential ecological
risks that may exacerbate their vulnerability. First, QTP is the largest ecologically fragile
area in China with the characteristics of high altitudes, low temperatures and precipita-
tion, simple ecosystem structure, and weak resistance and susceptibility to environmental
changes [8]. Second, forest ecosystems are mainly distributed in the southeastern part of
the QTP, where they are more severely disturbed by human activities such as the expansion
of infrastructure [9] and wood extraction [10]. Researchers have shown that human distur-
bances in some areas will even reduce forests’ net primary productivity [8,11,12]. Moreover,
the natural conditions of the southeastern QTP, comprising mainly high mountains and
deep valleys, are conducive to the development of natural disasters such as landslides.
The number and scale of these disasters are huge, and they often form hazard chains,
which have extremely serious impacts on the natural ecosystems and social economy of the
region [13]. Disasters such as landslides and mudflows occur frequently in forest areas [14].
Therefore, the forest ecosystems tend to be vulnerable under the influence of the natural
and social disturbances, which will have a profound impact on the future distribution,
productivity, and health of the forests.

Assessing the forests’ vulnerability has become a prerequisite and an important basis
for smart forest management decision-making. In recent years, various methods and
models have been applied for the assessment of forests’ vulnerability. The vegetation
parameter of net primary production (NPP) was often used to describe the changes in
ecosystem sensitivity and vulnerability [15]. However, this method cannot fully consider
background factors such as climate and human interference. Some scholars calculated the
vulnerability of forest ecosystems by constructing an index system [16], and many other
methods used to integrate these factors have been proposed, such as the comprehensive
evaluation method, the fuzzy evaluation method [17,18], the gray system evaluation
method [19], the artificial neural-network evaluation method [20], the osculation value
method, and the landscape metrics based evaluation method [21]. However, the variables
required for these methods are sometimes difficult to acquire and apply, especially for large
remote areas such as the QTP. For example, the artificial neural network evaluation model
requires a large amount of historical data, and some evaluation models cannot quantify the
contribution rates of each influencing factor.

Therefore, to integrate the multi-source influencing factors of vulnerability and the
multi-dimensional evaluation method, we choose spatial principal component analysis
(SPCA) as the main integration method for forest vulnerability assessment. SPCA is an
organic combination of the principal component analysis (PCA) method and GIS, in which
GIS can map the spatial attributes and distribution characteristics of multiple variables,
but it cannot quantify the relationship between them [21–23]. PCA, or factor analysis, is a
robust statistical analysis technique that reduces the dimensionality of data and extracts the
innate relationship by developing composite variables [24]. Thus, the combined method of
SPCA can quantitatively address the spatiotemporal variability of forest vulnerability.

Our study built an FVI using remote sensing, GIS, and SPCA to evaluate the forest
ecosystem’s vulnerability in the QTP. Our objectives were as follows:

(1) Detect where and during which time periods forests are likely becoming increasingly
vulnerable to natural context stress, environmental disturbances, and socioeconomic impacts.

(2) Map forest vulnerability across the QTP region and delimit the degree of protection
required in different areas based on the FVI.

(3) Understand the behavior of the vulnerability relative to its driving factors.

An FVI at spatial and temporal scales relevant to land management must be regularly
updated to provide managers with knowledge about where and when forests are under
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stress so that proactive remedial actions can be prioritized better to maintain, or even
improve, forests’ health and resilience.

2. Materials and Methods
2.1. Study Site

The Qinghai-Tibet Plateau, located in western part of China (25◦59′–39◦49′ N,
73◦29′–104◦40′ E; Figure 1), extends over 2.54 × 106 km2 and occupies almost 26% of
the total area of China. The mean altitude approximately 4430 m. Permafrost extends 40%
of the QTP (above around 6000 m above sea level). Due to the special alpine environment,
this region is highly sensitive to climate change, and the growing temperature rate is
higher than the global average [25]. A series of changes have taken place in vegetation
characteristics to adapt to the high elevation, cold and high radiation. The vegetation types
from west to east are alpine grasslands, meadow grasslands, shrubs, subtropical coniferous
forests, subtropical evergreen broad-leaved forests, and mid-temperate deciduous broad-
leaved forests. The interior of the Qinghai-Tibet Plateau is almost dominated by grassland,
while forests are mainly distributed in the southeast and marginal areas. Among them,
the average altitude of alpine grassland is the highest (about 4906 m), and its average
annual temperature is about 4.6 ◦C. The average altitude of forest areas is about 3470 m,
and their annual average temperature is about 8.2 ◦C. Due to the special climate environ-
ment, the population density of the different provinces that make up the Qinghai-Tibet
Plateau differ greatly. For example, Xizang has about 3 persons per km2, however, Sichuan
has a population density of nearly 200 persons per km2.
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The total forest land, covering approximately 12.5% of the region, is dominated by
Pinaceae (Pinus densata et al.), Cupressaceae (Sabina convallium et al.), Fagaceac (Lithocarpus
cleistocarpus et al.), and Betulaceae (Betula platyphylla et al.), etc. The forest ecosystem
spans a large vertical gradient with large undulations, ranging from 391–4900 m, which are
surrounded by the Hengduan Mountains, Tanggula Mountains, Qilian Mountains, and Hi-
malayas, etc. Compared with the central part of the QTP, there is a higher average annual
temperature (7.4 ◦C/year) and annual precipitation (612 mm/year), which belongs to the
southeastern Tibet temperate humid plateau monsoon climate.

According to different geographical locations, various topographical conditions,
and daily fluctuation in temperature, such climate conditions can weather rocks extremely
fast. As a result, this region is prone to soil erosion, landslides, and mountain hazards.
At the same time, the complex habitat conditions allow the forest ecosystem to nurture a
variety of human welfare. Therefore, protecting the forest of the QTP is not only for the
biodiversity habitat, but also for the healthy and sustainable development of human society.

2.2. Data Collection and Processing

The data analyzed in this paper (Figure 2) were compiled from a digital elevation
model (spatial resolution of 90 m × 90 m provided by the Geospatial Data Cloud site,
Computer Network Information Center, Chinese Academy of Sciences, http://www.
gscloud.cn (accessed on 8 August 2020)); climate statistics are from meteorological stations
(http://www.nmic.cn/ (accessed on 16 August 2020)); data on land use and land cover
(provided by the Institute of Geographic Sciences and Natural Resources Research, CAS).
Other data included the boundary of QTP, NPP data, forest coverage data, road map data,
soil organic matter data, and points of geological disaster data were provided by the Insti-
tute of Geographic Sciences and Natural Resources Research, CAS (http://www.resdc.cn/
(accessed on 8 August 2020)).

The monitoring data from meteorological stations were used to produce the raster data
of annual average temperature, annual precipitation, and annual maximum wind speed by
using the Kriging interpolation method in ArcGIS 10.3. Slope and aspect raster data were
generated from DEM by the slope and aspect tools of ArcGIS 10.3. The shortest distances
to the residential areas, roads, and farmland were calculated by the Euclidean distance
method. Finally, we unified all the raster data resolutions to 250 m× 250 m. The calculation
of soil erosion was an assessment by an empirical erosion model named Revised Universal
Soil Loss Equation (RUSLE). The model can be mathematically expressed as [26]:

A = R×K× LS×C× P (1)

where A is the mean annual soil loss rate (tha−1year−1), R is the rainfall erosivity
(MJmm.m−2h−1), K is the soil erodibility factor (dimensionless), LS is slope length and
slope steepness factor (dimensionless), C is the cover and management factor (dimension-
less), and P is the support practice factor (default is 1 in this article).

The method of landslide assessment revolves around the determination of some
important landslide risk factors (i.e., hazard possibility, slope, rainfall, DEM, geomorphic
type, NDVI, distance to the road, and river net). According to the topographic and climatic
characteristics of the forest ecosystem on the QTP, as well as the weight assignment of
different factors in the previous literature [27], the impact of different factors on landslides
was integrated and a landslide risk map was formed by ArcGIS 10.3.

The risk of floods is mapped by a GIS-based spatial multi-index model. One part is
the construction of multi-index system, another one is an analysis procedure in ArcGIS.
We assigned weights to different influencing factors based on the characteristics of the
study area and the existing literature on flood risk assessment. Eventually, the index
system was included by vegetation coverage, river network density, population density,
GDP, slope, DEM, and precipitation.

http://www.gscloud.cn
http://www.gscloud.cn
http://www.nmic.cn/
http://www.resdc.cn/
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Figure 2. Schematic representation of the forest vulnerability evaluation.

In order to remove the influence of unit differences among different indices, the nor-
malization of selected indicators was implemented following the methodology developed
for the Human Development Index (HDI) in 1990, which has also been widely used in the
standardization of indicators in forest vulnerability assessment in recent years [3,16,28].
The following mathematical equation is used when an indicator has a positive functional
relationship with vulnerability:

Yij =
Xij − Xmin,j

Xmax,j − Xmin,j
(2)

However, if an indicator has a negative functional relationship with vulnerability,
then normalization of the indicator is done by following equation:

Yij =
Xmax,j−Xij

Xmax,j − Xmin,j
(3)

where Yij is the standardized value of index j in grid cell i and varies from 0 to 1, Xij is
the measured value of variable j in grid cell i, and Xmax,j and Xmin,j are the maximum and
minimum values of index j in grid cell i, respectively.

2.3. Framework of Index System for Forest Vulnerability Evaluation

Based on some previous qualitative analyses of environmental features in the study
area, we selected 15 independent factors representing the environmental variability to
assess the forests’ vulnerability for the study area. Figure 2 shows an integrated evaluation
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criteria system. Natural contexts, including climate, topography, soil, and vegetation,
are important determinants of vulnerability evaluation. Precipitation and temperature are
the key factors for the quality of the environment, and affect the soil and forest ecosystem
services, which represent the environmental situation [29]. The difference of elevation
can impact vegetation evapotranspiration, regional climate, soil types, soil erosion and
also affect forest vulnerability [23]. Therefore, we selected slope, aspect, and elevation
to determine the vulnerability arising from topographic factors. Soil organic matter was
a fundamental soil factor and key element for the growth of vegetation [30]. NPP and
vegetation coverage have reflected the spatial heterogeneity of forest biomass and were
important parameters that affect forest vulnerability [31].

Soil erosion, landslides, and floods are considered environmental disturbances because
the study area is severely suffering from these earth surface processes and environmental
problems. The occurrence of natural disasters had direct and powerful damage to the forest
ecosystem. Therefore, the judgment of natural disaster risk was an important basis for
forest vulnerability assessment [21].

The regional forests’ vulnerability is also strongly related to socioeconomic impact,
since human activities can greatly influence the evolution of numerous environmental
characteristics, and the socioeconomic impact is formed by the distance to residential areas,
roads, and farmlands. These variables can represent human–environment interactions
(such as economic development and environmental pollution), which can reflect the degree
of human disturbance on the forest ecosystem.

2.4. Operation of Indices and Factors

As a general guideline, a positive correlation between the value awarded and vulner-
ability was employed. Then, rating maps of the vulnerability by natural factors (VNF),
environmental disturbances (VED), and socioeconomic impacts (VSI) were generated for
2000, 2010, and 2015 for SPCA-based evaluation. The relevant coefficient matrix of each vari-
able was calculated, and the eigenvalue of the matrix and its corresponding eigenvectors
were computed. The results of SPCA eigenvalues are shown in Table 1. This was followed
by linear grouping of eigenvectors and the computation of principal components [22,24].
The final vulnerability for three factors was graded as:

Fi = R1Y1 + R2Y2 + R3Y3 + · · ·+ RnYn (4)

where Fi is i th factor of forest vulnerability, Rn represents the contribution ratio of principal
component Yn, and n is the significant number of the remaining principal components.
The higher the pixel value, the stronger the vulnerability.

Ri =
λi

∑n
i=1 λi

(5)

where Ri is the contribution ratio of the i th principal component, and λi is the eigenvalue
of the i th principal component.

For the accurate evaluation of three factors vulnerability, the contribution of each of
the variables was calculated [22]:

C =
∑n

j=1 µJ
IλJ

∑n
I=1 ∑n

j=1 µJ
IλJ

(6)

where λJ is eigenvalue of the J th principal component, and µJ
I is the I th corresponding

eigenvector of J th principal component.
Combining the vulnerability assessment results of three factors, the forest vulnerability

index (FVI) was evaluated based on the distance index model. The FVI reflects a multi-
dimensional space, and the minimum vulnerability of a factor is treated as a spatially
determinate point used to calculate the distances between each of the other points and the
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minimum point; consequently, the forest vulnerability result is determined based on these
distances [23]. The shorter the distance, the better the forest will be and vice versa.

FVI =
√
(VNF−VNFmin)

2 + (VED−VEDmin)
2 + (VSI −VSImin)

2 (7)

where VNF, VED, and VSI represent the vulnerability of nature context factors, environ-
mental disturbances factors, and socioeconomic factors, respectively, and VNFmin, VEDmin,
and VSImin represent the minimum vulnerabilities of nature context factors, environmental
disturbances factors, and socioeconomic factors, respectively.

Table 1. SPCA results of VNF, VED and VSI from 2000 to 2015 (×10−2).

PC Layers

Eigenvalue

VNF VED VSI

2000 2010 2015 2000 2010 2015 2000 2010 2015

1 0.58 0.57 0.61 0.27 0.26 0.26 0.11 0.08 0.08
2 0.55 0.52 0.49 0.05 0.06 0.05 0.06 0.05 0.05
3 0.23 0.34 0.27 0.00 0.00 0.00 0.02 0.03 0.03
4 0.17 0.12 0.12
5 0.11 0.10 0.12
6 0.11 0.07 0.11
7 0.07 0.05 0.06
8 0.03 0.04 0.04
9 0.03 0.03 0.03

VNF, VED, VSI, and FVI values were divided into five categories based on the natural
break classification method [22,32–34], namely, slightly vulnerable, moderately vulnerable,
vulnerable, highly vulnerable, and extremely vulnerable.

2.5. Method for Determining Ecological Protection-Oriented and Vulnerability-Based Spatial
Pattern of Forest Protection

The forest vulnerability assessment was designed to provide decision makers with
recommendations to improve environmental quality. Therefore, we combined the change
rate of forest vulnerability from 2000 to 2015 and the spatial distribution of forest vul-
nerability in 2015 to formulate optimal spatial protection zoning (Figure 3). The map of
the optimal spatial division was represented as three regions: (1) strict protection region,
(2) focal protection region, and (3) composite protection region.
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3. Results
3.1. Spatiotemporal Characteristics of Forest Vulnerability Relevant to Natural and Human Factors

The forest vulnerability by natural factors (VNF) intensified to a certain extent from
2000 to 2015, and the mean VNF value changed from 0.41 to 0.46 (Table 5). The forests
in southern and western Tibet were more vulnerable than those in Sichuan and Yunnan
provinces, which were dominated by moderately vulnerable and vulnerable levels. However,
13% of slightly vulnerable, moderately vulnerable, and vulnerable forest areas were transferred
to highly and extremely vulnerable in the past 15 years, resulting in an increase in overall
vulnerability (Figure 4). Among them, the moderately vulnerable had the largest reduction
(7.8%), followed by the vulnerable (3.6%). The highly vulnerable and the extremely vulnerable
levels have increased by 4.7% and 8.3%, respectively. Although part of the local forest
vulnerability has increased, the moderately vulnerable proportion of the total area was still
the largest. However, there was still a potential aggravated risk of vulnerability. From the
effect of different variables, the highest contributing factor to the VNF was ASPECT
(52.66%), followed by PERCIPITAION (18.33%) and TEMPERATURE (13.27%) (Table 2).
Thus, it is clear that the aspect, annual mean precipitation, and temperature were the
dominant factors.

Figure 4. VNF spatial distribution (left) and area statistics of the five vulnerability levels (right) from 2000 to 2015.
The histogram represents the area of each level, and the line chart represents the percentage area of each level.

Table 2. The different index contribution of VNF.

Factors Principal Components Contribution (%)

I II III IV V VI VII VIII IX

Eigenvalue (10−2)

0.61 0.49 0.27 0.12 0.12 0.11 0.06 0.04 0.03

Eigenvectors

ASPECT 0.6923 0.7187 −0.0633 0.0096 −0.0066 0.0052 −0.0033 0.0022 −0.0035 52.66
FOREST

COVERAGE −0.4490 0.4777 0.5256 0.1596 0.1937 −0.1169 −0.4172 −0.1976 −0.0643 7.15

SOIL OGANIC
MATTER −0.0718 0.0828 0.0806 0.2447 0.1338 −0.7345 0.5773 0.0696 0.1618 1.94

TEMPERATURE 0.2145 −0.1770 0.4096 0.1977 0.0303 −0.0275 −0.1588 0.7939 −0.2424 13.27
WIND SPEED −0.2585 0.1873 −0.6645 0.3378 0.4556 0.0578 −0.1115 0.2652 −0.2209 −10.13

PERCIPITATION 0.3048 −0.2786 0.2217 0.6000 0.4080 0.3170 0.1207 −0.3623 0.0865 18.33
NPP −0.2465 0.2554 0.2073 −0.1374 0.0320 0.4829 0.6609 0.0870 −0.3655 7.35

SLOPE 0.1323 −0.1023 0.1057 −0.6168 0.7537 −0.0749 −0.0166 0.0288 0.0751 4.67
DEM −0.1730 0.1696 0.0256 0.0443 0.0220 0.3217 0.0579 0.3405 0.8458 4.75
Total 100
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The spatial and temporal variations of environmental disturbances vulnerability
(VED) are shown in Figure 5, and the mean VED value did not change significantly (0.56
to 0.52) (Table 5). During the study period, VED showed a higher forest vulnerability
on the boundary of the eastern and southern parts of the QTP than the inside ones, es-
pecially in the Yunnan and Sichuan regions. However, the forest vulnerability of the
southern edge significantly decreased during 2010–2015. The statistical data show that
the proportion of the slightly vulnerable increased during 2000–2015, while the extremely
vulnerable proportion decreased, and other vulnerability levels of forest areas did not
change significantly, which suggests that the environmental disturbances’ vulnerability
has been slightly alleviated. Landslides showed the greatest contribution rates to VED
(Table 3). Their main influencing factors included geological conditions, precipitation,
rivers, roads, and vegetation. Compared with the interior of the QTP, the boundary part
showed a richer precipitation, and the topography fluctuates greatly, which makes it prone
to natural disasters.

Figure 5. VED spatial distribution (left) and area statistics of the five vulnerability levels (right) from 2000 to 2015.
The histogram represents the area of each level, and the line chart represents the percentage area of each level.

Table 3. The different index contributions of VED.

Factors Principal Components Contribution (%)

I II III

Eigenvalue

0.26 0.05 0.00

Eigenvectors

SOIL EROSION 0.0007 0.0031 0.9999 0.09
FLOOD 0.6620 −0.7495 0.0019 37.63

LANDSLIDE 0.7495 0.6620 −0.0026 62.28
Total 100

Figure 6 illustrates the results of the vulnerabilities of socioeconomic factors (VSI).
With the change of the VSI mean value from 0.89 to 0.92 (Table 5), the overall vulnerability
has deteriorated during the recent 15 years. The spatial distribution shows that the highly
and the extremely vulnerable categories occupy almost 80–90% of the whole forest area.
Serious vulnerability areas were mainly distributed in places close to buildings, farmlands,
and roads. The temporal series indicates that changes of the moderately, highly, and extremely
vulnerable ones were in opposite trends. The highly and the moderately vulnerable proportions
significantly decreased (25.8%), while the extremely vulnerable proportion greatly increased
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(25.8%). Changes on the slightly vulnerable and the moderately vulnerable were not obvi-
ous. According to the C values (Table 4), farmland (45.09%) and building construction
(43.56%) both have higher influences on forest vulnerability, which are distributed through
intersections with forest patches.

Figure 6. VSI spatial distribution (left) and area statistics of the five vulnerability levels (right) from 2000 to 2015. The his-
togram represents the area of each level, and the line chart represents the percentage area of each level.

Table 4. The different index contributions of VSI.

Factors Principal Components Contribution (%)

I II III

Eigenvalue

0.08 0.05 0.03

Eigenvectors

ROAD 0.7136 −0.6559 −0.2463 11.35
FARMLAND 0.5306 0.7355 −0.4212 45.09

BUDING LAND 0.4574 0.1699 0.8729 43.56
Total 100

3.2. Comprehensive Forest Vulnerability in the QTP

The FVI results were graded as shown in Figure 7, with larger values representing
higher vulnerability. The FVI was classified into five levels of vulnerability: slightly vul-
nerable (<0.45), moderately vulnerable (0.45–0.60), vulnerable (0.60–0.68), highly vulnerable
(0.68–0.76), and extremely vulnerable (>0.76). It can be recognized from the spatial distri-
bution that the worsening conditions of forests located in southeastern Tibet, northern
Yunnan, and western Sichuan were exacerbated from 2000 to 2015.

From more accurate statistical results, the vulnerability of the forest ecosystem showed
a trend of gradually being aggravated. The FVI value had changed from 0.59 (2000) to
0.67 (2015) (Table 5). Additionally, the vulnerable, highly vulnerable, and extremely vulnerable
levels all showed an increasing trend, with the area proportions increased by 7.44%,
14.20%, and 12.65%, respectively. Inversely, the slightly vulnerable and moderately vulnerable
levels expressed decreasing trends with the area proportions decreased by 6.12% and
28.14%, respectively. However, the spatial distribution of FVI rate of change expressed
the heterogeneity of forest vulnerability among the whole area (Figure 8d). Vulnerability
changes in Yunnan were relatively weak. However, the forests in southern Tibet showed a
trend of increasing vulnerability. The increased and decreased forest lands were alternately
distributed in Sichuan Province. Overall, 89% of the forests experienced vulnerability
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intensification. The spatial change rates of the three vulnerability factors (VNF, VED and
VSI) (Figure 8a–c) indicate that the alternating distribution of VSI value has a greater impact
on the overall forest vulnerability.

Figure 7. FVI spatial distribution (left) and area statistics of the five vulnerability levels (right) from 2000 to 2015. The his-
togram represents the area of each level, and the line chart represents the percentage area of each level.

Table 5. Average vulnerability values of the total forest areas in different years.

Vulnerability Index 2000 2010 2015

VNF 0.41 0.45 0.46
VED 0.56 0.52 0.52
VSI 0.89 0.91 0.92
FVI 0.59 0.65 0.67
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3.3. Heterogeneity of Forest Vulnerability under Different Terrains

In order to further explore the impact of topography on forest vulnerability, the vul-
nerability at different altitudes, slopes, and aspects was evaluated. It was observed that
most of the forest areas under high and extreme vulnerability came under the elevation
ranges of <2500 m and 2500 m–3500 m. A clear tendency can be seen that, as the altitude
increased, the ratio of highly and extremely vulnerable levels gradually decreased, which was
opposite to the change of the slightly vulnerable, moderately vulnerable, and vulnerable levels.
High forest vulnerability was observed in steeper areas, while the lower vulnerability was
found in relatively flat areas. The proportion of highly and extremely vulnerable levels in-
creased with improving slope; on the contrary, the ratio of slightly and moderately vulnerable
levels gradually decreased. Besides, the forest vulnerability was more robust in southeast,
southwest, and southern aspects. The forest areas under low environmental vulnerability
classes were more in the north, northwest, and northeast aspects (Figure 9).
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3.4. Ecological Protection-Oriented Spatial Pattern of Forest Vulnerability
3.4.1. Strict Protection Region

This region was delineated by combining the areas of highly and extremely vulnerable
levels with a positive FVI change rate from 2000 to 2015, and it accounts for approximately
111,078.5 km2 (43.5% of the whole forest area). The forest ecosystem in this region was
relatively vulnerable, and the degree of vulnerability showed an increasing trend within
15 years. Additionally, the overall ecological potential risk was higher than other areas.
This was mainly distributed in the southeastern edge of the QTP (Figure 10).

3.4.2. Focal Protection Region

This region was generated by combining the two kinds of zones that account for
137,453.6 km2 of the total area and occupies the highest proportion of forest ecosystems
(53.9%). One kind of region was delineated as the levels of vulnerable, highly, and extremely
with a negative FVI change rate, indicating that although the forest vulnerability was
relatively high, it has shown a mitigatory tendency in recent years. Another kind of area
was defined as the vulnerability of slightly, moderately, and vulnerable levels with a positive
FVI change rate, indicating that although this area was less vulnerable, it has the potential
to intensify its vulnerability (Figure 10).
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3.4.3. Composite Protection Region

This region is mainly composed of the slightly and moderately vulnerable areas, with an
FVI change rate of less than zero. This region accounts for approximately 6608.6 km2,
which is only 2.6% of the whole forest ecosystem. Its distribution is in a few forest plots in
western and southern Tibet. These areas are sparsely populated and distributed at high
altitudes (Figure 10).

4. Discussion
4.1. Drivers of Forest Vulnerability Change

Three groups of factors—natural factors, environmental disturbances, and socioeco-
nomic impacts—were synthesized through the distance index model in our research to
reflect the comprehensive characteristics of forest vulnerability in the QTP. The background
environmental characteristics and socioeconomic impacts of a region had a decisive effect
on the vulnerability of the ecosystem [35]. Changes in climate, terrain, and other natural
factors have exceeded or changed the threshold of the environmental carrying capacity
for human populations and vegetation communities. Additionally, the impact of human
activities has gradually increased, which has manifested with the increased potential risk
of natural disasters in some areas.

The results of the contribution rate of different factors indicated that the terrain and
climate factors are the most important driving factors for VNF (Table 2). During the study
period, the proportion of the highly and extremely vulnerable areas increased, which means
the vulnerability has intensified. Taking the small inter-annual changes in topography
into account, changes in precipitation and temperature have profoundly affected the
development trend of VNF. The climate of the QTP has developed generally in a warm
and humid direction [36]. The increase in temperature has caused the melting of glaciers
and an increase in runoff [37]. At the same time, the increase in precipitation made the
rainfall erosivity more severe [38]. The soil layer was easy to loosen and prone to incur
nature disasters such as soil erosion, which puts pressure on the originally complex terrain
and ultimately increased the vulnerability. From the results of VED, it can be seen that the
vulnerability of the southeastern edge of the QTP was still high. Mountain disasters such
as landslides occurred frequently, and climate was still one of the important driving factors.
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The increases in precipitation and runoff, combined with the steep mountain topography,
make the potential energy conditions more forceful, which then gives rise to unstable rocks
and soil that slide down, causing collapses and landslides [39,40].

In addition to the background natural factors, the interference of human social and
economic activities was also an important driving factor for the escalation of vulnerability.
VSI represented the destruction of forests caused by human beings in the process of road
and building construction and farmland reclamation, which have all led to a significant
increase in forest vulnerability during the study period. Among them, the construction of
building lands and the expansion of farmlands were the most important driving factors for
the change of VSI (Table 4). In the southeastern part of the QTP, forests were staggered with
residential areas and farmland, which deeply affected the integrity of the internal and edge
structures of the forest ecosystem and reduced the area of a single forest patch, while in-
creasing the number of patches, leading to serious regional fragmentation [41]. This is also
a significant factor affecting the health of forest ecosystems [42]. Simultaneously, artificial
surfaces and farmland can reduce the stability of the surrounding ecosystems [43], change
geological and hydrological conditions, increase the probability of natural disasters [44,45],
which threaten the forest ecosystems that are close to artificial surfaces.

The spatial distribution and change trends of QTP forest vulnerability are the result
of multiple driving factors. The FVI integrates a variety of influencing factors, including
natural factors, environmental disturbances, and socioeconomic impacts, which can display
spatial distributions of forest vulnerability in a comprehensive perspective. Under the
integrated drive of multiple factors, the degree of forest vulnerability in different regions
and the proportion and change of the five vulnerability levels are different from the results
obtained by a single type of driving factor. Therefore, when mitigating vulnerability
through forest management, it is necessary to understand the mechanism of each driving
factor as well as the mechanism of multiple driving factors. However, it is not enough to
make short-term judgments of vulnerability through the calculation of indicators. Long-
term classified monitoring and predictions of driving factors are needed to gain a complete
understanding of forest vulnerability.

4.2. Management Implications for Forest Ecosystem Management in Large Water Tower Regions

The purpose of forest management is to integrate ecology, sociology, management,
and other multidisciplinary technologies to maintain forest ecosystems and social stability
on a regional scale to obtain sustainable ecosystem products and services [46]. However,
as the most important water tower in Asia, the QTP is highly vulnerable to climate change
and human activities [47,48], which makes it a challenge to maintain the health and
sustainability of forest ecosystems [49]. The vulnerability assessment indicator system of
this study fully considered the above two aspects and is an important index to describe the
status of forests under climate change and socioeconomic development impacts [50].

Taking the topographic characteristics into account, the vulnerability index interprets
the response of the forest ecosystems to the current comprehensive effects of natural
contexts, environmental disturbances, and socioeconomic impacts. According to the
results of this paper, the ecologically more vulnerable areas should be protected over
all others. These vulnerable areas were defined as strict protection regions (Figure 10).
During the study period, the main reasons for the increased vulnerability caused by
natural contexts were the warm and humid climate conditions and the complicated terrain.
Under the combination of climate change and topography, the water retention capacity
of forests has also declined [51]. Therefore, the improvement of soil retention capacity is
needed in the regions with higher vulnerability [36,52,53]. It is also critical to strengthen
the monitoring and prediction of climate changes and consider the impact of climate
changes in forest resource assessment, monitoring, investigation, analysis, and long-term
planning [54]. In terms of environmental disturbance, the vulnerability tends to decrease,
but the vulnerability risk of the southeastern marginal area is still high. Among natural
disasters, the landslide factor contributes the most, so the forest vulnerability risk can
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be reduced by preventing and controlling mountain disasters such as landslides and
mudflows [55]. This is also an important part of maintaining the health of forest ecosystems.
The disturbance by human activities has greatly increased the vulnerability of forests.
Artificial surfaces, including roads, farmlands, and residential areas, have destroyed the
integrity of forest ecosystems, especially in areas suitable for human settlements such
as the lower altitudes, lower slopes, and southerly regions. In this regard, an ecological
security pattern [56] can be constructed through the intervention of forest protection
and restoration policies. Improving the protected area systems can be a key approach
to limiting human logging and other activities to prevent the ecosystem from losing its
resilience [57]. More importantly, the QTP plays an indispensable role in water supply
for social economic activities, while the feedback from human activities has increased the
QTP’s risk of vulnerability. To adjust the relationship between water yield and forests,
it is necessary to balance the development trend of forest habitats from the perspective of
vulnerability and the threshold of water ecosystem services that can be provided.

In summary, the forest ecosystems’ vulnerability is an important basis for forest man-
agement decision-making [58]. The degree of vulnerability can be used to distinguish the
management requirements of forests in different locations [59]. Moreover, the vulnerability
can be reduced through targeted forest management programs to adapt to climate change
and reduce the interference caused by social and economic development. Additionally,
the management of the forest ecosystem on the QTP requires long-term comprehensive
monitoring of multiple influencing factors from the perspective of vulnerability to find a
balance between forest resources and ecosystem service requirements, which can provide a
scientific basis for the sustainable development of mountain forest ecosystems and their
service capabilities.

5. Conclusions

Forests are crucial ecological components in global water tower regions that provide
ecosystem services to human society across local to global scales. QTP is one of the most
important water tower regions in Asia, and it is also the largest ecologically vulnerable
area in China. The special climate and geological conditions in QTP have bred rich
biodiversity and diverse ecosystem services. However, the combined effect of its natural
and socioeconomic conditions made the QTP prone to natural disasters, making the forest
ecosystem sensitive to environmental changes and likely to lose ecosystem stability.

Using a quantitative forest vulnerability assessment framework based on nature
context, environmental disturbances, and socioeconomic impact, this research revealed
the spatiotemporal variability of forest vulnerability and its main contributors in the QTP.
We found that the measure of vulnerability was unevenly distributed spatially across the
study area, and the whole trend has intensified in the past 15 years. The areas that tend to
be severe were dominated by steep mountain valleys and rivers that carve down strongly.
These areas are prone to natural disasters such as landslides. The factors that contribute
the most to the vulnerability of natural contexts, environmental disturbances, and human
impacts were slope aspect, landslides, and farmlands, respectively. In addition, the forest
vulnerability has obvious distribution patterns with changes in altitude, slope, and aspect.
The vulnerability of regions with lower altitudes, steeper slopes, and southerly directions
was higher.

According to the FVI index and its change rate, the forest ecosystem of the QTP
was divided into three kinds of protection areas: strict protection area, focal protection
area, and composite protection area. These vulnerability-based results can be used as an
important basis for sustainable forest management in QTP.
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