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Glassiness and exotic entropy scaling induced
by quantum fluctuations in a disorder-free
frustrated magnet
I. Klich1,*, S-H Lee1,* & K. Iida1

When spins are arranged in a lattice of triangular motif, the phenomenon of frustration leads

to numerous energetically equivalent ground states, and results in exotic states such as spin

liquid and spin ice. Here we report an alternative situation: a system, classically a liquid,

freezes in the clean limit into a glassy state induced by quantum fluctuations. We call such

glassy state a spin jam. The case in point is a frustrated magnet, where spins are arranged in a

triangular network of bipyramids. Quantum corrections break the classical degeneracy into a

set of aperiodic spin configurations forming local minima in a rugged energy landscape. This

is established by mapping the problem into tiling with hexagonal tiles. The number of

tessellations scales with the boundary length rather than its volume, showing the absence

of local zero-energy modes. Low-temperature thermodynamics is discussed to compare it

with other glassy materials.
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I
t is well known, since the classical work of Pauling on ice1, that
certain systems can exhibit an extensive number of
energetically equivalent ground states, leading to finite

entropy at low temperatures2,3. In a spin ice, states are
separated by local energy barriers, and the spins freeze into one
of the equivalent states at low-enough temperatures4,5. In
pyrochlore with large spins, locally confined zero-energy
motions of spins are possible, which can lead to a classical spin
liquid state6. When quantum effects are taken into account, for
small spins, such systems may settle into a super-position of
states, forming a quantum spin-liquid5, as suggested by
Anderson7. A closely related but distinct type of systems is
glassy systems. One example is amorphous alloys in which the
atoms are arranged in a disordered way8,9. Another is spin glass
systems in which low concentration of magnetic impurities
interact via random long-range interactions10,11. In such systems,
randomness (or quenching) is the driving force for the freezing
phenomena. The randomness, however, makes it difficult to fully
understand the complex physics of the freezing phenomenon.
Interesting effective models for glassy behaviour without disorder
have been presented to understand various types of glasses. For
example, glassy behaviour has been explored in systems with
long-range interactions12 and in models with hard-core classical
constraints and stochastic dynamics known as kinetically
constrained models13, as well as in certain quantum plaquette
and quantum dimer models14,15.

Here we show that a glass state, a spin jam, can actually arise
from simple nearest neighbour Heisenberg interactions with full
O(3) rotational symmetry at low temperatures owing to quantum
effects. Moreover, this behaviour may be present in real
materials, and may provide a framework to understand the
unconventional16 glassy behaviours found in classes of frustrated
magnets, such as SrCr9pGa12-9pO19 (SCGO(p))2,17–19 and qs-
ferrites like Ba2Sn2ZnGa3Cr7O22 (BSZGCO)20, with spin 3/2 that
are highly crystalline and their glassiness seems to be insensitive
to disorder18,21.

Motivated by the seemingly intrinsic nature of the glassy
behaviour in such crystalline spin glasses, we explore a
Heisenberg model on a magnetic lattice realized in SCGO and
qs-ferrites. The magnetic lattice of interest is a triangular network
of bipyramids that are formed by two corner-sharing tetrahedra
and are connected by linking triangles (see Fig. 1a and
Supplementary Fig. 1). Here we study a simple nearest
neighbour-spin interaction Hamiltonian H¼J

P
NN Si � Sj. Classi-

cally, any spin configuration in which each tetrahedron and
linking triangle has a total zero spin is a ground state. There are
infinite number of energetically equivalent configurations.

An important subset of these states is the set of states in which
the spins in each bipyramid are collinear22. It is well established
that collinear configurations are commonly favored in frustrated
magnets23 such as pyrochlore. The mechanism for such a
selection is known as order from disorder24. In other examples,
such as the Heisenberg kagome antiferromagnet, extensive
analysis25,26 were carried out showing the selection of planar
spin configuration, whose close relation to SCGO has been also
discussed there. Our lattice, on the other hand, contains both
tetrahedra favoring collinearity as well as linking triangles
preferring planar 120� configurations. Note, in passing, that in
most cases with co-linear spin configurations the collinearity is
global over the entire lattice, whereas here the collinear direction
is not global. Henceforth, we will refer to such states simply as
locally collinear (LC) states. We would also like to emphasise
one of our main results is the identification of metastable
states generated by the order-by-disorder mechanism, rather
than the, perhaps more common, search for the global ground
state.

Our main results are the following. When taking into account
the order-by-disorder quantum corrections, the classical degen-
eracy is broken into a set of local minima in a rugged energy
landscape, which are separated by large energy barriers, over a
finite number of degenerate, periodic, ground states. The
appearance of large barriers is owing to the absence of local
zero-energy modes that are typical in spin-liquid candidate
systems. We establish this by mapping the set of local energy
minima states into a tiling with coloured hexagonal tiles. We
show that the system exhibits a large number of aperiodic
tessellations. The configuration entropy of the local minima is
extremely sensitive to boundary conditions, scaling with the
boundary length rather than its volume. Characteristics of the
resulting state, that is, a rugged energy landscape, where
tunnelling from one local minimum to another requires the
flipping of a number of spins that grows with system size makes
this a distinct state from ordinary spin glass, which we call a spin
jam. The low-temperature thermodynamics is also discussed to
compare the resulting state with other glassy materials.

Results
A tiling problem and the absence of local modes. LC states can
be conveniently explored as a simple problem of two degrees of
freedom: tri-colour (representing the three types of spins for the
120� configuration for the antiferromagnetic linking triangle) and
binary sign (representing the parallel (þ ) or antiparallel (� )
direction of each spin within a collinear bipyramid of given
colour (Fig. 1b))22. The triangular network of the bipyramids
forces the tri-colour to order long range in a
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structure as
shown by circles in blue, green and red in Fig. 1d. There are 18
possible sign configuration per bipyramid (see Supplementary
Fig. 2), and the sign degrees of freedom are constrained to have
the same sign for each linking triangle that connects each three
neighbouring bipyramids (see Supplementary Fig. 3)22.

Spin liquid candidate systems, such as pyrochlore, where any
spin configurations with zero spin tetrahedra are ground states
have local zero-energy modes, and thus their ground state
degeneracy is extensive and scales with the volume. Below,
however, we give an entropic argument using a tiling approach to
the absence of local zero modes in our model. Absence of such
modes greatly enhances the dynamical barrier to transitions
between LC states, and facilitates freezing.

We map each sign state into a hexagon tile as shown in Fig. 1c.
The six corners of the hexagon tile represent the six spins forming
the upper and the lower triangles of the bipyramid. The tiles are
chosen to have the exact matching and enumeration properties of
the sign representation (Fig. 1b and Supplementary Fig. 4), spins
on the boundary are associated with black and blue colours
according to their sign. The middle spin of the bipyramid does
not interact with other bipyramids, and thus we are free to choose
the colour of the centre of the hexagon so as to create the simplest
patterns that preserve the topology of the network of positive and
negative spins on the boundary.

Even within the subset of the LC states (sign states), there are
numerous ways of covering the entire lattice. With the hexagon
representation, the problem of counting the number of sign states
in the system becomes a tiling problem (see Supplementary
Figs 5 and 6). Our tiling problem seems new and bears a remote
visual resemblance with a two coloured piecewise Herringbone
tiling. To investigate how the degeneracy increases with the size of
the system, we first identified numerically all possible sign states
with varying the number of columns and rows of bipyramids, and
thus varying the size of the system (see Fig. 2a). As shown in
Fig. 2b, for a given column the number of the possible sign states,
N, increases with the number of rows in a slower rate than
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exponentially, which indicates that N does not scale with the
volume (area in this quasi-two-dimensional case) of the system.
Surprisingly, as shown in the inset, N seems to scale with the
number of bipyramids on the boundary, that is, the perimeter of
the system. This scaling starkly contrasts with the volume scaling
of N of the kagome and pyrochlore systems in which local zero-
energy modes exist. This nonextensive scaling may be viewed as a
consequence of the absence of local zero-energy modes. Instead,
the smallest unit of zero-energy modes scales with the linear

dimension of the system, as it involves bipyramids along a line, as
shown in Fig. 3a and Supplementary Figs 7 and 8.

Transfer matrix estimates. The nonextensive entropy of the
allowed LC states can be examined by using transfer matrix
methods. Let us describe the problem as follows. We consider
an array of the bipyramids. It may be viewed as alternating two
zig-zag columns, which are shifted with respect to each other
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Figure 1 | The triangular network of bipyramids and its classical ground states. (a) The kagome-triangular-kagome tri-layer, forming the triangular

network of bipyramids. Each bipyramid is composed of two corner-sharing tetrahedra. The blue and red spheres represent kagome and triangular sites,

respectively. (b) The internally collinear states for each bipyramid are categorised by assigning for each spin a binary sign (representing a parallel

(þ ) or antiparallel (� ) direction relative to the colour). These states may be viewed as the 18 elements of Z2�Z3�Z3 by first specifying the sign of the

central spin, and specifying one spin in the upper and the lower layers of the bipyramid with the same sign. For visualisation, we simply label the first nine

states numerically 1..9, and the counterpart (associated with flipping all the signs) as 10..18. (c) The hexagon tiles. The six corners of the hexagon tile

represent the six spins forming the upper and the lower triangles of the bipyramid. The black and blue colours on the boundary represent (þ ) and

(� ) signs on the boundary, respectively. (d) A
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collinear bipyramid spin state constructed from the combination of the
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long-range

ordered 1-6-8 sign state and a
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3
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order of the tri-colour (the red, blue, green represent the three spin directions of a 120o configuration). The unfilled

arrows in the middle represent the spins in motion, and the colour-shadowed circles represent the affected bipyramids. Such spaghetti excitations

can act as domain boundaries. (e) The 1-6-8 state as in d, but shown as a periodic tiling in the hexagon representation.
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Figure 2 | Counting the possible collinear bipyramid spin states (sign states). (a) One of the possible sign states constructed numerically for the

3� lx bipyramids where lx is the number of rows. Each circle with a number represents one bipyramid with the sign state assigned by the number. (b) The

number of all possible sign states, N, was obtained numerically for different sizes of the system, and plotted in a logarithmic scale as a function of lx.

In the inset, N is plotted as a function of the number of bipyramids on the boundary. The straight line is a guide to eye.
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vertically. We enumerate the possible signs along the zig-zag
columns as follows. We consider adding another column in two
steps: we first add sites at even levels and then the sites at odd
levels as depicted in the Fig. 4. In this procedure, all the sites in
the first stage can be added independently of each other, and after
it is completed the second stage shares the same property.

We are now left with the task of transferring this into a
formula. For the bipyramids in the first move, we note that the
signs s1,s2,s5,s6,y and in general s4nþ 1, s4nþ 2, where n is an
integer, remain unchanged. The sites that might change after the
move are of the form s4n� 1, s4n. Each such pair only depends on
the states of s4n� 2,.., s4nþ 1. Let us denote by m the number of
possible sign states with the signs on the left s4n� 2,.., s4nþ 1 and
sites on the right s04n� 1, s04n, as described in Fig. 4. We can view
this as a linear transformation M with matrix elements:

os4n� 2; s04n� 1; s
0
4n; s4nþ 1 Mj js4n� 2; s4nþ 1; s4nþ 1; s4nþ 1;4¼m;

ð1Þ
(in particular, m¼ 0 if no move of this type is allowed). For a
column of Ny bipyramids, there are 2Nyþ 1 signs on the border
that participate in the counting. In the first stage, we can combine
all the moves into a larger matrix:

T1¼I � M � M::: � M � I � I ð2Þ
Next, we note that the transformation governing the added
bipyramids in step 2 is described in the same way, albeit shifted
by two sites. In addition, it involves adding boundary bipyramids,
which require special counting. We can summarise this as:

T2¼M3 � M::: � M � M03 ð3Þ
For Nx columns, the number of states may now be computed as
N ¼ Rh jðT2T1ÞNx Lj i, where Lj i; Rj i specify boundary conditions
on the left and on the right, respectively. The number of states in

a large strip, with Nx-N scales as lmax (Ny)Nx, where lmax (Ny)
is the largest eigenvalue of the matrix T2T1.

Next, we consider the eigenvalues of T2 and T1 separately.
These are determined by M. The matrix M is special, and its
eigenvalues can be determined analytically. To do so, we first
determine the invariant subspaces of this matrix. M is a 16 by 16
matrix, acting on four Ising spins. It turns out more convenient to
write it using two double spins, in basis four by assigning:

fa1;a2;a3;a4;g ! fa1þ 2a2þ 1; a3þ 2a4þ 1g; ai¼ 0; 1 ð4Þ
We now find the cycles of the matrix (involving closed
subspaces). Explicitly, these consist of the moves (written in
basis four) summarised in Table 1. Interestingly, the six largest
eigenvalues are j;

ffiffiffi
2
p

; 1, each doubly degenerate. Here the largest
eigenvalue j ¼ 1

2ð1þ
ffiffiffi
5
p
Þ is the golden ratio. As we can bound

the norm T2T1k k by T2k k T1k k, we immediately conclude that the

largest eigenvalue of T1 and of T2 scale as lmaxðNyÞ � j
1
2Ny .

From this, we have a rough estimate that the number of states
scales at most as jNxNy .

The two largest eigenvalues of the transfer matrix T1 T2 up to
11 rows are summarised in Table 2. The numerical results show
that, at least up to 11 rows, the largest eigenvalue goes down. This
means, that for a long enough strip, the number of LC states of 11
rows, will be smaller than, say the number of states of three rows.
This behaviour of l1 reflects the highly constrained nature of the
system, which is consistent with our numerical counting of the
allowed LC states shown in Fig. 2. In the next section, we will put
analytical bounds for the entropy of the LC states.

Proving the perimeter scaling of entropy. The hexagon
representation for the sign state of each bipyramid allows us to
establish bounds on the number of LC states, N(L, V), for a

ba

Figure 3 | An arbitrary collinear bipyramid spin state or a random hexagon tiling. (a) An LC state is shown. At the mean field level, the spins on the black

line can rotate collectively without costing any energy, realizing an one-dimensional zero-energy mode. (b) The same state as in a, but shown as a random

tiling in the hexagon representation. We have marked to elbows by red to show how lines always switch between thin and thick when changing direction, as

long as no junction is involved. A couple of junctions are marked by the green arrows.
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Figure 4 | Construction of a transfer matrix. Counting of allowed LC configurations can be systematically done using a two step transfer matrix as

described above. Given the signs on the right of the first zig-zag column (blue bipyramids on the left), we add an additional column (red), satisfying

the ferro-sign constraint in the linking triangles. In the first step, the signs s1, s2, s5, s6,.. s4nþ 1, s4nþ 2, where n is an integer, remain unchanged.

The sites that might change after the move are of the form s4n� 1, s4n. A similar addition of a column can then be applied, and the process repeated to cover

the lattice.
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system of volume V and circumference L. We find that
KL

1oN L;Vð ÞoKL
2 VLþ 1 , where K1, K2 are constants. In parti-

cular, for VBL2, we have: N L;Vð ÞoKL
2 eLlogð2LÞ, concluding that

(up to a possible logarithmic correction) the number of states is
extensive in the boundary length.

The lower bound is easy to establish: for a given boundary
length L, we can construct explicitly a number of states which
scales as KL

1 . One way of doing so is by starting from one of the
long-range structures as shown in Fig. 1d,e and Supplementary
Fig. 6. These structures support straight quasi one-dimensional
modes that change the state of the bipyramid along them. For a
square sample of side L, we can put up to L-independent parallel
modes of this type, which supplies us with the lower bound.

To show the upper bound, we recast the sign states as a tiling
problem. We use the hexagonal tiles depicted in Fig. 1c to obtain
a representation of the system as a network of lines (see also
Supplementary Figs 5 and 6). The resultant network may be
considered as a fully packed network of rectilinear stripes of
alternating colour on a lattice, made of straight lines, p/6 degree
turns (‘elbows’) and junctions as shown in Fig. 3b. The network
has the following properties (for detailed discussion, see
Supplementary Note 1): P1. Lines cannot terminate, and P2.
There are no closed loops. Property P1 can be verified by
inspection of possible termination points, and ruling each of them
out. To prove property P2, assume the contrary and consider a
closed loop of black colour, inside which there must be loops of
smaller and smaller sizes. As the colours alternate, we must have
an enclosed simply connected region that is entirely black or
entirely blue. As we do not have an entirely blue or entirely black
hexagon in our disposal, such a region must be of limited
thickness, therefore the inner region must be made of lines with
termination points. By property P1, such termination points are
not allowed.

To proceed, we define a ‘laminar region’ as a region where no
junctions are present. Property P3: in a laminar region all lines
are locally parallel; moreover, for each of the lines parallel to a
chosen reference line (not necessarily a straight one), the
thickness at any point along it can be deterministically inferred
if the thickness at any other point is known. Property P3 is
established by classifying all possible elbow points that do not
involve a junction (Fig. 3b). Properties P1 and P2 imply that each
line must go through the boundary. Property P3 shows that in a
laminar region, the thickness degree of freedom of each pattern
can be pushed to the boundary; moreover, any elbow must be
reflected at two points on the boundary of the sample, a detailed
study of these properties shows that for a laminar region we can
systematically reconstruct the internal state given the boundary of
the region.

Next, we consider the presence of junctions and show that
NJoL for any network, where NJ is the number of junctions. By
properties P1 and P2, the network is a graph with the only
possible termination points on the boundary, and no closed
circles: it is thus a forest (disjoint union of trees), with leaves only
on the boundary. An elementary fact of graph theory27 is that the
number of nodes in a full binary tree cannot exceed the number

of leaves, therefore NJoL. We can have at most
V
L

� �
locations

for placing junctions in the sample. There is a finite number
of possible junction elements. Once the locations and nature
of the junctions have been established, the sample excluding
the junctions is a laminar region by definition, with
effective boundary length proportional to LþNJ. Following
observation P3, the state is determined by its boundary.
Summing over possible numbers of junctions, we have

N L;Vð Þo
PL

NJ¼0
V
NJ

� �
ckþNJ , which yields the aforementioned

upper bound. Thus, we have proved that the configurational
entropy of the LC states scales with its perimeter rather than its
volume.

Rugged energy landscape and low-temperature thermo-
dynamics. Let us now turn to the energetics of the sign states.
Among the myriad of the sign states, there are six long-range
ordered states where three types of sign bipyramids are arranged
in a

ffiffiffi
3
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�
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p

structure, one of which is the 1-6-8 state shown in
Fig. 1d. Once a sign state is constructed over the entire lattice, the
corresponding LC state is constructed by imposing the colour
ordering (see Supplementary Fig. 3). From the ordered LC states,
one can generate noncollinear coplanar bipyramid states (hen-
ceforth coplanar states) by collectively rotating each pair of
antiparallel spins in each tetrahedron that can be parameterized
by three angles (see Supplementary Fig. 9)22. As listed in Table 3,
the ordered LC states are continuously connected with each other
by the collective global rotations through their resulting coplanar
states. This rotation can be carried through entirely within the
manifold of classical minimum energy spin configurations. On
the classical level, such collective motions do not cost any
energy, leading to an energy landscape with infinitely large flat
bottom formed by collinear and coplanar state and thus, to
low-temperature spin liquid behaviours28,29.

To investigate what happens when quantum fluctuations are
taken into account, we have calculated the energy cost of the
quantum fluctuations, within the harmonic (Holstein–Primakoff)
approximation around numerous classical spin configurations of
minimal energy, with up to 400 bipyramids per sample (involving
as many as 2,800 spins). This is done by carrying out numerically
a symplectic transformation to diagonalise the resultant bosonic
Hamiltonians in real space for each state, without assuming

Table 1 | Results I of transfer matrix counting.

Involved
states

Moves Eigenvalues

3 2; 1 1 3 2 -3 2; 3 2 -1 1; 1 1 -3 2 1
2 1 �

ffiffiffi
5
p� �

2 1; 4 1; 4 2 2 1 -4 1; 4 1 -2 1; 4 2 - 4 1;
4 1 - 4 2

�
ffiffiffi
2
p

; 0

3 1; 1 2 3 1 -1 2; 1 2 -3 1 ±1

3 4; 1 4; 1 3 3 4 -1 4; 1 4 -3 4; 1 4 -1 3; 1
3 -1 4

�
ffiffiffi
2
p

; 0

2 3; 4 4 1
2 1 �

ffiffiffi
5
p� �

1
2 1 �

ffiffiffi
5
p� �

2 4; 4 3 2 4 -4 3; 4 3 -2 4 ±1

Allowed moves contained in the transfer matrices expressed in basis four, and the eigenvalues
associated with closed subspaces.

Table 2 | Results II of transfer matrix counting.

Ly k1 k2

1 j ¼ 1
2 ð5þ

ffiffiffiffiffi
17
p
Þ � 4:56 � 2

3 6.7966 6.7966
5 6.26138 6.26138
7 6.04937 6.04937
9 5.99248 5.99248
11 5.95587 � 2.62806þ4.77494 i

The two largest eigenvalues of the transfer matrix T1 T2 up to 11 rows are summarised.
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long-range order. It is worth noting that for a material like SCGO,
the spin-freezing phenomena occurs at temperatures of a few
Kelvin, which are smaller by two orders of magnitude than the
typical Heisenberg exchange coupling J, which sets the energy
scale for the spin waves. In this regime, thermal fluctuations are
negligible.

An illustrative example of the procedure is shown in Fig. 5 for
6� 6 bipyramids with several different LC states as local minima.
As the long-range ordered sign state is special, we considered the
LC states near the

ffiffiffi
3
p
�

ffiffiffi
3
p

1-6-8 state that are connected with
each other through coplanar states. Figure 5 shows the results; the
degeneracy between the collinear and the coplanar states is lifted,

making the LC states local minima and creating energy barriers
by the coplanar states. The degeneracy among LC states is also
lifted; the
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sign state has a lower energy than the other
sign states, making the
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long-range ordered state a global
minimum and the other LC states local minima. Explicit
enumeration shows that there are six possible
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sign
states, giving 36 possible
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spin states when combined
with the six possible colour configurations. Thus, quantum
fluctuations lift the mean field ground state degeneracy to form 36
global minima of the long-range ordered LC states and numerous
local minima of other LC states, the number of which scales with
the perimeter of the system. Note that, as explained above, the
selection of the

ffiffiffi
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sign states as global minima is an
example of a common feature of the order-by-disorder mechan-
ism: that is, the preference of states with the highest symmetry,
that is, the smallest magnetic unit cell.

As there are no local spin reorientations that connect between
the mean field minima, the dynamical energetic barriers between
different states are huge. As a result, on cooling, the system gets
trapped in one of the local minima of collinear bipyramids
without a long-range order. The spin-freezing explicitly breaks
the O(3) invariance of our Heisenberg Hamiltonian. As a result of
this symmetry breaking, and the finite spin stiffness for
deforming the aperiodic static antiferromagnetic spin texture,
its thermodynamics at low temperatures will be governed by low-
energy hydrodynamic Halperin–Saslow modes25,30,31 (see
Supplementary Note 2 for a discussion). Such modes are
linearly dispersive and lead to a Cv / T2 behaviour for a quasi-
two-dimensional system such as ours. Here we make the point
that the Halperin–Saslow scenario still holds for the spin jam
state, and moreover, is more effective without doping disorder. In
conventional spin glasses, where dilute magnetic ions are
embedded in a nonmagnetic metal, there is also a linear in T
contribution to the specific heat owing to localised two-level

Table 3 | Connections among the sign states though the
global spin rotations.

Initial sign state Rotation angles Final sign state

(1-6-8) (90,�90,� 90) (3-5-7)
(1-6-8) (90,�90,90) (1-6-8)
(1-6-8) (90,90,90) (4-9-2)
(1-6-8) (90,90,� 90) (1-6-8)
(2-4-9) (90,�90,� 90) (1-6-8)
(2-4-9) (90,�90,90) (2-4-9)
(2-4-9) (90,90,90) (3-5-7)
(2-4-9) (90,90,� 90) (2-4-9)
(3-5-7) (90,�90,� 90) (3-5-7)
(3-5-7) (90,�90,90) (2-4-9)
(3-5-7) (90,90,90) (3-5-7)
(3-5-7) (90,90,� 90) (1-6-8)

The global collective spin rotations, described in Supplementary Fig. 9, starting from an initial
collinear bipyramid (LC or sign) state generate coplanar bipyramid states. When the rotation
continues to 90 degrees, then the spin structure becomes the same that is shifted in space or a
different LC state. The connections between the different LC states are listed here.
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Figure 5 | Rugged energy landscape induced by quantum fluctuations. The magnetic energy of the quantum fluctuations was calculated for several LC

(sign) states near one global minimum. The energy barriers between the minima are composed of the coplanar bipyramid spin states that connect

the sign states.
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systems32, which dominates its thermodynamics as observed
experimentally11. In our system, however, such a linear
contribution is negligible at low doping (a point elucidated in
ref. 32), leading to a Cv / T2 behaviour at low temperatures33.
Another consequence of HS modes is the linear dependence on o
of the imaginary part of the dynamic susceptibility w00(o) at low
frequencies, which contrasts with the frequency-independent w00

of the ordinary spin glass11. Both features are consistent with the
experimentally observed behaviour in SCGO16,33.

While obtaining the freezing temperature precisely in a
complex system such as ours is challenging, we can expect the
following effect of nonmagnetic doping. For a clean material, the
transition temperature to the spin jam state is determined
by a competition between the quantum energy cost to flip a
set of spins, ESW, and temperature. We therefore expect
Tf / FðESW; xÞ, where x(T) is the correlation length in the
system. On doping with nonmagnetic impurities, we expect Tf to
remain unchanged until the typical distance between nonmag-
netic impurities becomes comparable to x, at which point Tf will
drop as function of doping concentration. Tf behaviour observed
in SCGO is consistent with this scenario21,34. However, in SCGO
the Heisenberg coupling J is not uniform, which is manifested in
the momentum dependence of elastic neutron scattering22. Thus,
more work is needed to establish the precise relation to our spin
jam state, taking into account specifics of the real material.

Discussion
The concept of a rugged energy landscape was originally
proposed to explain freezing phenomenon found in classic spin
glass in which dilute magnetic ions in a nonmagnetic metal
interact via long-range Ruderman-Kittel-Kasuya-Yosida interac-
tions that change with distance between the magnetic ions and
even change in sign11. The random magnetic interactions induce
frustration, which leads to many states of nearly identical energy
and a rugged energy landscape. Since then, it has also been
suggested to be responsible for other quenching processes that are
ubiquitous in nature, ranging from gelation35 to metallic glass8, to
protein folding36. In such systems, precise mapping of the
complex energy landscape as a function of configurations and
thus the microscopic mechanism for the freezing phenomena has
been challenging. The triangular network of bipyramids, on the
other hand, does not possess the problem of randomness, and
thus provides a unique opportunity to microscopically determine
the rugged energy landscape and study the mechanism of the spin
freezing, as shown in this work.

An important ingredient in our treatment was the tiling-based
proof that classical local zero modes are absent in the system. We
remark that the relevance of tiling as model systems for glassy
behaviour has been extensively studied for glasses in the context
of kinetically constrained models13. As dynamics is usually
allowed only when vacancies in the system are present37,38, a
system that is highly packed (or fully packed as in our discussion
here) will be ‘stuck’ in a configuration for a very long time. Sub-
extensive entropy appears in some kinetically constrained models.
For example, the Ising plaquette model on the square lattice
exhibits a nonextensive entropy at low temperatures39. In this
model, glassiness is present on the classical level, and O(3)
symmetry is broken on the Hamiltonian level. The system is
gapped, rendering trivial low-temperature thermodynamics. This
type of models may also be viewed as spin jam models. We would
like to stress that our spin jam is induced by quantum
fluctuations from clean nearest neighbour Heisenberg
interactions, and has non-trivial low-temperature behaviours.
Perimeter scaling ground state degeneracy appears in certain
compass models as well (for a recent review, see ref. 40), where an

order-by-disorder mechanism leads to a selection of nematic
ground states. In the context of spin liquids, a checkerboard
model was studied41, where in a valance bond solid phase, bond
configurations are stripe-like, and carry entropy that is extensive
in boundary length. However, we note that their individual spins
have no static moment (in fact, spin configurational entropy is
extensive in volume in that model). A valance bond solid state
was also suggested on a structurally different but related lattice to
ours, a {111} slice of pyrochlore42, which has also a volume
scaling entropy. A nematic phase of pseudo-spin was explored
in S¼ 1 kagome antiferromagnet with a strong single-ion
anisotropy43,44, which is realized without a static spin moment.

Finally, we note that similar exotic entropy scaling has been of
great interest in other branches of physics, from cosmology,
where the entropy of black holes has been argued by Bekenstein
and Hawking to scale as the boundary area45,46, to more recently,
in many body quantum mechanical model systems at zero
temperature. For example, boundary extensive ground state
degeneracy is a feature of some supersymmetric lattice models47.
A related phenomena is the scaling of entanglement entropy with
the boundary area for free scalar fields46, that obtains logarithmic
corrections when a Fermi surface is present48,49. In our case, the
perimeter scaling entropy is owing to the fact that the local
minima of the energy landscape are not separated by local spin
rotations (which would typically result in an extensive entropy),
but rather are connected with each other by a continuous
extended collective rotations of spins, which are sensitive to the
states on the boundary. It would be interesting to see if other
physical systems possess similar properties.

Methods
Spin wave calculations. To explore the energy landscape generated by quantum
fluctuations, we evaluated the spin wave energy contribution to the energy of
collinear bipyramid (LC) states and coplanar bipyramid states that are connected
by collective spin rotations. The calculations have been done in the framework of
the Holstein–Primakoff representation, which we now briefly recall. Consider the
Heisenberg Hamiltonian:

H¼J
X
/i;jS

~Si �~Sj ð5Þ

First, we pick a classical spin configuration that is a local energy minimum, and
denote Ŝclassical;i the direction of the spin at position i. In the next step, we replace
the spin operator ~Si by the Holstein–Primakoff form:

~Si ¼ �hðS� aþi aiÞ Ŝclassical;i þ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S� aþi ai

q
aiê1;iþ �h aþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S� aþi ai

q
ê2;i ð6Þ

where aþi ; aiare boson creation/annihilation operators, and ê1;i; ê2;i are any couple
of unit vectors which combine into an orthogonal frame with the classical direction
Ŝclassical;i . At this point, to get a tractable theory, the square roots are expanded to
lowest order in 1/S. For a classical spin configuration Ŝclassical;i that is at a classical
minimum, this procedure yields in the leading order a quadratic Holstein–
Primakoff Hamiltonian HHP in the bosonic operators ai:

HHP¼EMFþ JS
X
/i;jS

hð1Þij aþi aj þ hð2Þij aþi aþj þ h:c:

 !
ð7Þ

Where EMF is the mean field energy of the spin configuration. For our semi-
classical treatment here, we do not consider higher order terms in 1/S, responsible
for magnon–magnon interactions, as it is well established in practice that for even
moderately large spins (such as the S¼ 3/2 for SCGO), quadratic spin wave theory
works exceedingly well. For a general spin configuration, the resultant terms
hð1;2Þij appearing in the Hamiltonian are not invariant under translations. However,
long-range ordered states have a translational invariant Holstein–Primakoff
Hamiltonian HHP. Such states are studied, as usual, by rewriting the Hamiltonian
in momentum space. The number of degrees of freedom is then determined simply
by the unit size. Bringing the Hamiltonian to a diagonal form, using a Bogolubov
transformation yields the form:

HHP¼EMF þ
X
k;a

�hok;aðbþk;abk;a þ
1
2
Þ ð8Þ

Where the sum is over the Brillouin zone, and the ‘band’ index a. The contribution
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of the quadratic terms to the free energy of the system is given by the usual form:

F ¼ EMF � kBT
X
k;a

log ð1� e
�hok;a
kBT Þþ

X
k;a

�hok;a

2
ð9Þ

where the second term is the thermal corrections and the third term is the zero-
point energy. In the case at hand, we assume that J 44 kBT, and it follows that the
thermal correction is negligible. An example of such a calculation is exhibited in
the figure Fig. 6a–d, where different long-range ordered states obtained from 6-1-8
are compared.

The study of states that are not ordered requires a real space treatment. To
diagonalise the Hamiltonian, on a lattice with N¼ Lx Ly bipyramids, we get a 7 LxLy

quadratic boson Hamiltonian. As HHP is non-interacting in this approximation, the

problem is tractable numerically, and amounts to finding a symplectic
diagonalisation for a 2*7 Lx Ly dimensional matrix. To compute the spin wave
energies of an arbitrary state of the system, we wrote a programme affecting the
symplectic transformations needed to diagonalise the Hamiltonian numerically.
We then computed the spin wave energy for the Hamiltonian for various system
sizes (as large as 24� 24 bipyramids, involving a total of 4,032 spins). Fig. 6e shows
the insertion of a spaghetti mode into an ordered state, and Fig. 6f shows the
energy cost as a function of the angle of the rotation of the spaghetti.
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