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Abstract

The Na+/H+ Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein
that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na+/H+ exchange activity
in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during
activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using
an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na+/H+ exchange in atRBCs is mediated by an
NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is
exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation.
Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA)
increase Na+ transport capacity without affecting transport affinity (Km = 44 mM) in atRBCs. CLA and OCS act non-additively
to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ 32P labeling
and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding
with a more than 2-order increase in Na+ transport activity. This is the first reported evidence of increased NHE1
phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS)
analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues,
suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events.
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Introduction

The type 1 Na+/H+ exchanger (NHE1) is a ubiquitously

distributed plasma membrane protein that is centrally involved in

many physiological processes including fluid secretion, apoptosis,

cell growth/proliferation, cell pH regulation and cell volume

regulation (for review see [1,2,3,4,5,6,7]. NHE1 mediates cell

volume regulation in response to osmotic cell shrinkage (OCS) in a

process known as regulatory volume increase (RVI). Appropriate

activation of NHE1 during RVI depends upon signaling mech-

anisms that are very poorly understood [2,3,5,7,8,9,10,11,12,13].

In general, control of NHE1 transport activity involves multiple

intracellular signaling molecules, including MAP/ERK kinases

and Ca++/calmodulin, as well as phosphorylation (or dephosphor-

ylation) at one or more serine (S) residues of the cytosolic

C-terminus of NHE1, including (human numbering) S648,

S703, S723, S726, S729, S770, S771, S785, and S796

[14,15,16,17,18,19,20,21,22]. Phosphorylation of NHE1 in situ in

living cells occurs in response to treatment with growth factors,

okadaic acid, phorbol esters, sustained intracellular acidification or

angiotensin II [15,18,23,24,25,26]. However, phosphorylation of

NHE1 has never been demonstrated in response to OCS

[23,27,28], suggesting that OCS increases NHE1 transport activity

through a mechanism that differs from other forms of activation.

Although net phosphorylation of NHE1 is not increased during

OCS in mammalian cells, it is possible that failure to observe

increased NHE1 phosphorylation is due to the modest increases in

NHE1 activity that are typical of the volume regulation response

in mammalian cells [29]. Because patterns of NHE1 phosphor-

ylation are complex in response to various stimuli, increases in

phosphorylation of NHE1 may be masked by simultaneous

dephosphorylation at separate serine loci within the C-terminal

cytosolic domain of NHE1 [23]. We reasoned that modest

increases in net phosphorylation of NHE1, if present, would be

more readily observed in a cell type with more robust inducible

NHE1 activity, the Amphiuma tridactylum RBC (atRBC).

The atRBC is an ideal model for the study of Na+/H+ exchange

activity during RVI [13,30]. In contrast to mammalian cells,

NHE1 transport activity is virtually nonexistent in quiescent

atRBCs. Following suspension in hyperosmotic media, atRBCs

exhibit an increase in NHE1-mediated Na+ flux activity that is

nominally 2-orders of magnitude greater than that of cells at

normal resting volume in isosmotic medium [31,32,33]. In

addition, the atRBC NHE1 homolog (atNHE1) is 79% identical
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to human NHE1 at the amino acid level, retains the hallmark

housekeeping characteristics of mammalian NHE1: cell pH and

volume regulation, and is expressed in abundance in atRBCs

compared to cell types known to over-express NHE1 (e.g., tumor

cells) [33,34]. Therefore the atRBC is an excellent model in which

to study both physiological and biochemical basis for NHE1

activation.

Recently we proposed a model in which OCS activates NHE1

via a rate-limiting phosphorylation-dependent signal transduction

event consisting of forward (activating) kinase activity that is

activated by OCS, and reverse (inactivating) phosphatase activity

that is inactivated by OCS [32]. This model is based on analysis of

relaxation kinetics describing activation and inactivation of NHE1

transport activity, in response to acute osmotic shrinkage or re-

swelling after OCS, respectively. The notion that phosphorylation

is involved in control of NHE1 activity during OCS is based on the

observation that NHE1 inactivation is prevented under various

osmotic conditions by treatment with the protein phosphatase

(PP1/PP2A) inhibitor calyculin-A (CLA) [31]. These functional

studies provide a detailed kinetic description of the rate-limiting

biochemical events in NHE1 activation and inactivation during

osmotic cell volume perturbation, and while strongly suggestive of

a phosphorylation-dependent mechanism, do not firmly establish a

role for phosphorylation in NHE1 activation by OCS, or that

CLA treatment affects the same cell signaling events as OCS.

In the present study, we use the atRBC model to provide kinetic

and biochemical evidence that activation of NHE1 during OCS

involves phosphoryation-dependent signaling as well as direct

phosphorylation of the NHE1 protein. Na+ transport kinetics

confirms that OCS and CLA increase NHE1 activity using an

identical biochemical mechanism, and through convergent

upstream signaling. Because CLA is a phosphatase inhibitor, this

implies that phosphorylation is involved in these processes. We

further examine the net phosphorylation status of the NHE1

protein directly with 32P-orthophosphate labeling, and provide

the first reported evidence that NHE1 is phosphorylated in situ

in response to OCS. Candidate sites of phosphorylation or

dephosphorylation are subsequently identified using NHE1

immunoprecipitated from atRBCs and mass spectrometry (LC-

MS/MS). These studies confirm that phosphorylation is involved

in activation of NHE1 during OCS, and demonstrate the

complexity of NHE1 phosphorylation in situ in living cells.

Results

Na+ transport kinetics of Na+/H+ exchange in osmotically
shrunken cells

We previously demonstrated that activation of NHE1-mediated

Na+ transport activity in osmotically shrunken atRBCs is

dependent upon a rate-limiting phosphorylation-dependent bio-

chemical event [31]. The behavior of this rate-limiting event is

consistent with that of a simple kinase and phosphatase pair, where

the NHE1-inactivating phosphatase activity is inhibited by

treatment with the protein phosphatase inhibitor CLA. The

activities of both the activating kinase and the inactivating

phosphatase are cell volume-dependent. In unstimulated cells at

normal volume, phosphatase activity is dominant and maintains

NHE1 in a tonic inactivated state. NHE1-inactivating phosphatase

activity decreases precipitously with cell shrinkage upon suspen-

sion of cells in hyperosmotic media [32]. In contrast, NHE1-

activating kinase activity increases as a graded function of cell

shrinkage in increasingly hyperosmotic media, imparting exquisite

volume sensitivity to Na+/H+ exchange activity. Because the rate-

limiting event in shrinkage-activation of NHE1 is sensitive to the

phosphatase inhibitor CLA, a major implication of the model is

that this rate-limiting event involves protein phosphorylation.

Furthermore, OCS and CLA treatment are presumed to affect

identical downstream phosphorylation-dependent events in the

activation of NHE1. Thus, it follows that the endpoint biochemical

mechanisms controlling NHE1 activity are identical in response to

OCS or CLA treatment. To test the notion that OCS and CLA

treatment utilize the same biochemical mechanisms to increase

NHE1 activity, we examined NHE1 activity, including Michaelis-

Menten Na+ transport kinetics in osmotically shrunken atRBCs.

First, we assessed the shrinkage-dependent Na+ transport

activity by NHE1 in atRBCs suspended in hyperosmotic media.

Na+ transport activity was determined following complete activa-

tion of NHE1 by pre-incubation in thermodynamically nulled (n)

media (with respect to Na+/H+ exchange) of matched hyperos-

molarity, thereby clamping RBCs at their initial shrunken volumes

prior to flux determinations (described previously [31,32]). Briefly,

in nulled solutions, low medium Na+ concentration prohibits net

Na+ uptake and precludes cell volume recovery, allowing Na+/H+

exchange to become fully activated and to remain in the activated

state. NHE1 activity was then assessed by tracer 22Na+ uptake in

media of fixed Na+ concentration (100 mM), to determine initial

Na+ influx rates over a broad range of media osmolarities. These

Na+ influx rate data conformed well to a sigmoidal stimulus-

response relationship between media osmolarity and Na+ flux

activity (Figure 1), though with a steep Hill coefficient (nH = 4)

reflecting cooperativity in the cell volume-dependent signal trans-

duction. The data demonstrate a more than 2-order of magnitude

increase in inducible Na+/H+ exchange activity (180-fold) (maxi-

mal Na+ influx rate = 13.2360.43 mmoles Na+ kg dcs21 min-

ute21) relative to basal Na+ flux rates for NHE1 in unstimulated

RBCs in isosmotic medium (0.07360.041 mmoles Na+ kg dcs21

minute21 (n = 9; 6SEM)).

CLA does not affect Na+ transport activity of NHE1
following maximal shrinkage-activation

Next we determined if OCS and CLA activate NHE1 through

independent or convergent activation mechanisms. In the most

extreme example of divergence, CLA and OCS might activate

Figure 1. The stimulus-response relationship between medium
osmolarity and NHE1 Na+ transport activity in atRBCs.
Unidirectional Na+ influx rates (22Na+ initial rates) were measured in
hyperosmotic media at a fixed media [Na+] = 100 mM, following
complete activation of NHE1 by pre-incubation in thermodynamically
nulled media of matched osmolarity. The data are fit to a sigmoidal
curve by non-linear regression (Hill slope = 4.1), yielding a maximal Na+

influx rate of 13.2 mmoles Na+ kg21 dcs minute. (data are n$5 each;
6 SE).
doi:10.1371/journal.pone.0029210.g001

Phosphorylation of NHE1 in Hyperosmotic Medium
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separate pools of NHE1 within the cell through entirely

independent signaling mechanisms. We reasoned that if the

stimuli affect separate populations of NHE1 then the effects of

CLA and OCS should be strictly additive with respect to NHE1

activity, regardless of the extent of NHE1 activation by OCS. To

assess this more precisely, we examined the Michaelis-Menten Na+

transport kinetics of NHE1 in atRBCs following induction of

maximal NHE1 activity in hyperosmotic medium with or without

CLA treatment. Based on the stimulus-response information in

Figure 1, NHE1 reached maximum activity following suspension

of RBCs in hyperosmotic (nulled 1.66IR) medium. Km and Jmax

were then determined with or without CLA present (Figure 2). Km

values were similar with or without CLA (Km = 42.068.4 or

52.163.9 mM Na+, respectively) (Table 1). In addition, the Jmax

values for maximally shrinkage-stimulated NHE1 were virtually

identical with or without CLA treatment (Jmax = 23.261.8 or

23.960.8 mmoles Na+ kg dcs21 minute21, respectively) (Table 1).

Therefore, under conditions of maximal NHE1 activation by

OCS, CLA treatment does not further activate NHE1. This

indicates that OCS and CLA treatment activate the same

population of NHE1, and suggests that OCS and CLA treatment

activate NHE1 through convergent signaling.

Osmotic cell shrinkage and calyculin-A treatment
synergistically activate NHE1

Although CLA and OCS clearly activate the same population of

NHE1 protein, these data cannot rule out the possibility that

NHE1 is activated through separate upstream signaling events

terminating in a common mechanism of NHE1 activation (e.g.,

increased surface expression, etc.), such that NHE1 cannot be

further activated once in the maximally activated state. If this were

true, then the two treatments would be strictly additive under

conditions of modest NHE1 activation [35,36]. In contrast, if

effects on NHE1 activity are not strictly additive, this indicates

convergence of the signaling pathways upstream of NHE1

activation. To thoroughly assess this relationship, we suspended

atRBCs in mildly hyperosmotic (1.26IR) medium, with or without

CLA treatment, and compared NHE1 activity (Michaelis-Menten

Na+ transport kinetics) to that in response to CLA treatment alone

in isosmotic medium (Figure 3). As seen before, basal NHE1

activity in isosmotic medium is virtually non-existent (estimated

Jmax = 0.0260.01 mmoles Na+/kg21 dcs min21; Km could not be

reliably determined in the unstimulated state). Consistent with the

transport kinetics of NHE1 in the maximally activated state, the

Km values for NHE1 were identical (Km>44 mM) in all three

stimulated conditions (Table 2). In contrast, CLA treatment and

OCS were supra-additive with respect to NHE1 activity, in that

the Jmax for NHE1 in osmotically shrunken RBCs in the presence

of CLA (19.862.5 mmoles Na+ kg21 dcs min21) was significantly

greater than the sum of the individual mean Jmax values for

osmotic cell shrinkage and CLA stimulation (13.8 mmoles Na+

kg21 dcs min21) (p,0.05) (Figure 3; Table 2). These data are

consistent with the notion that CLA and OCS activate NHE1 via

convergence on identical upstream signaling events. Because CLA

is a phosphatase inhibitor, these data suggest that shrinkage

activation of NHE1 is phosphorylation-dependent, however it

remains unclear whether activation involves direct phosphoryla-

tion of NHE1.

NHE1 phosphorylation during osmotic cell shrinkage
To determine if NHE1 activation involves direct NHE1

phosphorylation, we assessed the net phosphorylation status of

NHE1 by in situ [32P]-orthophosphate labeling. RBCs were pre-

equilibrated with [32P]-orthophosphate and then exposed to

isosmotic, or hyperosmotic medium (1.66IR) with or without

CLA treatment (the same treatment conditions as in Figure 2). 32P-

labeled NHE1 was then immunoprecipitated from RBC mem-

branes, and analyzed by autoradiography to quantify 32P

incorporation into NHE1. Net phosphorylation of NHE1 was

increased 4-fold (4.061.9; 6 SE; n = 6) by suspension of atRBCs

in hyperosmotic medium alone, and 5-fold (5.362.4; 6 SE; n = 6)

with inclusion of CLA. These values were not significantly

different from each other (p.0.05), however they were signifi-

cantly increased relative to baseline in isosmotic medium

(*p,0.05, **p,0.01; 1.060.9; 6 SE; n = 6) (Figure 4). Notably,

earlier experiments suggested that treatment with CLA in

isosmotic medium alone yields a 2-fold increase in NHE1

phosphorylation with this treatment compared to isosmotic

medium in the absence of CLA (2.060.3 (mean 6 SE); n = 3;

p = 0.1). Therefore, NHE1 is phosphorylated during OCS. These

phosphorylation results are also consistent with the Na+ transport

activity data in Figure 2 showing no further effect of CLA

exposure for cells where NHE1 is maximally activated in extreme

hyperosmotic (1.66IR) medium. However there is an enormous

difference between the more than 2-order increase in Na+

transport activity and the corresponding net increase in NHE1

Figure 2. Na+ transport kinetics of NHE1 in hyperosmotic
medium. Michaelis-Menten Na+ transport kinetics were determined for
NHE1 in atRBCs following complete activation in hyperosmotic (1.66IR)
media, with (closed triangles) or without (open triangles) 500 nM CLA
(data are compiled from n$3 independent experiments; means 6 SE).
The data are fit by regression to a simple hyperbola, and the
corresponding kinetic constants are reported in Table 1. The Na+

transport kinetics (activity) are virtually identical in the two conditions.
doi:10.1371/journal.pone.0029210.g002

Table 1. Na+ transport kinetic constants for NHE1 in
Amphiuma RBCs maximally stimulated to steady-state in
hyperosmotic (1.66IR) media with or without 500 nM CLA
treatment.

Treatment
Km

(mM Na+)
Jmax (mmoles
Na+/Kg dcs minute)

Hyperosmotic (1.66IR) 52.163.9 23.960.8

Hyperosmotic (1.66IR) + CLA 42.068.4 23.261.8

Kinetic constants are expressed as Km or Jmax 6 SEM. Values for Km and Jmax are
virtually identical in both treatment conditions.
doi:10.1371/journal.pone.0029210.t001

Phosphorylation of NHE1 in Hyperosmotic Medium
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phosphorylation (4-fold) during OCS, suggesting that the molec-

ular mechanism of NHE1 activation is more complex than that of

a simple unimolecular phosphorylation event.

Phosphorylation sites on NHE1 identified by mass
spectrometry

The discrepancy between the amount of net NHE1 phosphor-

ylation and the magnitude of inducible NHE1 activity strongly

suggests that NHE1 activation involves synergistic effects of multi-

ple phosphorylation sites, including the possibility of simultaneous

phosphorylation and dephosphorylation of NHE1. To identify

exact sites of NHE1 phosphorylation in situ, we qualitatively

examined the post-translational modifications of NHE1 by liquid

chromatography (LC) and tandem mass spectrometry (MS/MS).
The immunoprecipitation products of three in situ treatments were

examined: IR, 1.66IR, and CLA treatment (as described for

Figures 2 and 3). NHE1 was identified (100% probability) in all

samples by amino acid sequence data comprising $26% coverage

of the NHE1 protein, including .60% coverage of the cytosolic C-

terminal amino acids, and multiple post-translational modifications.

Analysis of y and b ions in MS2 spectra from tryptic peptides

identified 9 phosphorylated serine/threonine sites: with greater than

90% probability (Figure 5; Table 3; Complete spectra are on file at

ProteomeCommons.org). Phosphorylated peptides containing the

following phosphorylated sites were found in all samples (Amphiuma

numbering): S607, S610, S711, and S783. Four additional sites were

identified from phosphorylated peptides found only in the 1.66IR,

and CLA treatments, but not in the IR (unstimulated) condition:

S613, T693, T727, and S794. The phosphorylation site S701 was

also identified, though only in one sample due to lack of coverage of

this residue in the MS/MS data. A table summarizing the

qualitative identification of phosphorylated peptide fragments is

included as Table S1. Together, the data support the conclusion

that NHE1 is phosphorylated on multiple residues of the cytosolic

C-terminus, and that the phosphorylation pattern is similar in

response to OCS or CLA treatment.

Figure 3. Na+ transport kinetics of NHE1 in mildly hyperos-
motic medium. The Michaelis-Menten Na+ transport kinetics were
determined for NHE1 in atRBCs following complete activation in mildly
hyperosmotic (1.26IR) medium alone (closed triangles), hyperosmotic
(1.26IR) medium with 500 nM CLA (open triangles), or CLA treatment
alone in IR (squares). Data for resting atRBCs in isosmotic medium are
shown for comparison (small squares, dashed curve). The data are fit by
regression to a simple hyperbola, and the corresponding kinetic
constants are reported in Table 2. The Na+ transport affinity is not
significantly different across the three conditions. However, the
maximal transport rate Jmax is significantly increased in hyperosmotic
media together with CLA treatment, relative to either treatment alone
(p,0.05). (data are compiled from n$3 independent experiments;
means 6 SE).
doi:10.1371/journal.pone.0029210.g003

Table 2. Na+ transport kinetic constants for NHE1 in
Amphiuma RBCs stimulated to steady-state in isosmotic
solution with 500 nM CLA, or mildly hyperosmotic (1.26IR)
solution 6 CLA.

Treatment
Km
(mM Na+)

Jmax (mmoles Na+/
Kg dcs minute

Isosmotic (16IR) NA 0.0260.01*

Isosmotic (16IR) + CLA 44.367.7 10.461.4

Hyperosmotic (1.26IR) 43.3636.8 3.461.4

Hyperosmotic (1.26IR) + CLA 44.4611.8 19.862.5

Kinetic constants are expressed as Km or Jmax 6 SEM. Values for Km are similar in
all 3 conditions, while Jmax is increased by CLA treatment relative to
hyperosmotic medium alone. Estimated* (by hyperbolic curve-fit) Jmax activity
in the unstimulated isosmotic condition is also shown.
doi:10.1371/journal.pone.0029210.t002

Figure 4. In situ [32P]-orthophosphate labeling of NHE1 during
cell suspension in hyperosmotic medium. (upper) 32P incorpora-
tion into immunoprecipitated NHE1 from atRBCs. autoradiograph
images corresponding to immunoprecipitated NHE1 from membrane
fractions of [32P]-orthophosphate labeled atRBCs suspended in
isosmotic medium, or hyperosmotic media (n1.66IR) with or without
CLA treatment. Below each autoradiograph band is the corresponding
NHE1 Western blot band detected on the same PVDF membrane.
(lower) A quantitative comparison of data from the autoradiograph
bands described in panel A (normalized to NHE1 Western blots from the
same PVDF membrane). Relative phosphorylation of immunoprecipi-
tated NHE1 is significantly increased by suspension of cells in
hyperosmotic (n1.66IR) solution with or without CLA treatment relative
to the isosmotic control (*p,0.05 , **p,0.01; n = 66SEM). No
significant difference is detected between the two treatment conditions
(hyperosmotic 6 CLA; n.s.).
doi:10.1371/journal.pone.0029210.g004

Phosphorylation of NHE1 in Hyperosmotic Medium
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Discussion

Biochemical mechanisms and control of NHE1 activity
during OCS or CLA treatment

Control of volume regulatory inorganic ion transport activity in

response to cell volume disturbances depends upon fundamental

cell physiological processes that are very poorly understood. The

biochemical and molecular events involved in OCS-induced

NHE1 activation are completely unknown. In the present study,

we first described NHE1 transport activity using enzyme kinetics

as a basis for understanding upstream cell signaling and the

putative role of phosphorylation in OCS-induced NHE1 activa-

tion. We found that two treatments, OCS and CLA, increase

NHE1 activity via the same biochemical mechanism: increased

maximal Na+ transport rate (Jmax), with no effect on Na+ transport

affinity (Km). Several laboratories, including ours, have noted that

NHE1 activity can also be increased through increased Na+

transport affinity, e.g., in response to decreased intracellular pH

[33]. The Na+ transport kinetics for NHE1 in the present study

(Figures 2, 3; Tables 1, 2) support our earlier studies of NHE1 in

atRBCs in hyperosmotic media, at physiological pH in and out

[33]: the apparent Km for Na+ is approximately 45 mM (at normal

physiological pHin = 7.1), and Na+ transport activity is manifest

entirely as an increase in Jmax, and further demonstrate that these

transport kinetic properties are the same in response to CLA

treatment. Therefore the biochemical mode of NHE1 activation is

the same whether induced by OCS or CLA treatment, yet

fundamentally differs from that of intracellular acidification.

Because CLA is a protein phosphatase inhibitor this further

implies that activation of NHE1 by OCS is phosphorylation-

dependent, however other possible mechanisms may exist to

explain this behavior.

Previously we proposed a model for control of NHE1 activity in

which NHE1 is activated by OCS or CLA through effects on a

single rate-limiting activation event consisting of an activating

kinase and an opposing phosphatase [31,32]. Although our kinetic

and functional analyses in the present study fully support this

model, the assumption that phosphorylation is involved in OCS-

induced signaling is based solely on the observation that CLA

treatment activates NHE1, coupled with the fact that CLA is a

protein phosphatase inhibitor. To further validate the volume-

Figure 5. Ion Trap MS/MS spectrum of a fragmented peptide containing phosphorylated serine 711 of atNHE1. NHE1 was
immunoprecipitated from atRBC membranes, SDS-PAGE purified and in-gel digested with trypsin. The resulting peptides were extracted an analyzed
by LC-MS/MS. MS/MS spectra were generated by collision-induced dissociation of individual peptides, which preferentially fragments peptides at
peptide bonds to generate N-terminal (b ions) and C-terminal (y ions) fragments with characteristic charge/mass (m/z) ratios identifying the amino
acid composition of the collection of fragments. In this representative spectrum, the (2+) y ions are labeled in red and positioned above the b ions
labeled in blue. Phosphorylation of serine 711 is shown as a gain of 80-kDa corresponding to H3PO4. MS/MS spectra identifying other sites of NHE1
phosphorylation are on file in the Tranche database at ProteomeCommons.org (see Methods).
doi:10.1371/journal.pone.0029210.g005

Table 3. NHE1 phosphorylation sites detected in situ in
atRBCs by LC-MS/MS.

Phospho-site,
Amphiuma NHE1

Peptide detected,
Amphiuma NHE1

Corresponding
sites,
human NHE1

S607, S610 605IPsAVsTVSMQNIQPK620 S599, S602

S613 605IPSAVSTVsMQNIQPK620 S605

T693, S701 688MNNYLtVPAHKMDsPTMTR706 T685, S693

S711 709VGsDPMAYEPK719 S703

T727 724DLPtITIDPASPESVDIVNEEKK746 V716

S783 766EPPSPGTDDVFTPGAGDsPNNQR788 S785

S794 792CLsDPGPQPEPEEQDPFIKK811 S796

Phosphorylation sites (lower case, bold) detected from immunoprecipitated
Amphiuma NHE1 are listed along with the specific tryptic peptide identified by
LC-MS/MS, and the corresponding amino acid loci in the human NHE1
sequence (right column).
doi:10.1371/journal.pone.0029210.t003

Phosphorylation of NHE1 in Hyperosmotic Medium
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sensitive kinase/phosphatase model it was necessary to demon-

strate unequivocally that CLA and OCS activate NHE1 through

the same biochemical mechanisms and upstream cell signaling

events. In the present study, we observed that CLA treatment and

OCS are supra-additive with respect to NHE1 activity under

conditions of modest OCS (Fig. 3), yet there is no additional

activity elicited by CLA treatment during maximal shrinkage

activation of NHE1 (Fig. 2). Therefore identical cell signaling

events are affected by these treatments with respect to NHE1

activation. While this is not absolute evidence, these data strongly

support the conclusion that NHE1 activation by OCS involves

protein phosphorylation. However the notion that activation

involves direct phosphorylation of the NHE1 protein remained to

be tested.

Phosphorylation of NHE1 during osmotic cell shrinkage
In an earlier study of NHE1 phosphorylation in cultured

mammalian cells [23], Grinstein observed no increase in NHE1

phosphorylation in cells exposed to hyperosmotic medium, and

speculated that the apparent lack of change in net phosphorylation

with osmotic cell shrinkage reflects simultaneous phosphorylation

and dephosphorylation at separate amino acid loci. Upon

investigation of the phosphorylation status of NHE1 in atRBCs

by in situ 32P labeling, we observed that the net phosphorylation of

NHE1 is increased 4-fold during OCS compared to unstimulated

cells in isosmotic medium (Figure 4). This is in contrast to a more

than 2-order of magnitude increase in transport activity (Figure 1).

This difference in phosphorylation versus activity suggests that

NHE1 activity is increased through synergistic biochemical events

involving NHE1 phosphorylation, and possibly including simulta-

neous dephosphorylation at separate amino acid loci. Because of

the assumption that NHE1 is phosphorylated exclusively on serine

residues, we initially probed for phosphorylation by immunopre-

cipitating NHE1 from atRBC membrane fractions followed by

Western blotting with an anti-phosphoserine directed antibody (as

described previously for P. americanus NHE1 [27]). Using this

approach, we observed basal phospho-serine reactivity in the band

corresponding to NHE1, yet no change in intensity of reactivity

when RBCs were treated either with CLA or suspension in

hyperosmotic solution (data not shown; p.0.05; n$5). However,

detection using phospho-serine antibodies is less sensitive than 32P

labeling and is limited by the types of epitopes that can be

recognized. In this case the phospho-serine antibody (4A3; Biomol

International, LP, Plymouth Meeting, PA, USA) specifically

detects phosphorylated serine residues adjacent to positive or

uncharged amino acid residues, therefore it is possible that many

phospho-sites are not detected. This is very likely the case in that

50% of the phospho-serine sites identified in Table 3 are adjacent

to negatively charged residues.

Because in most studies increased NHE1 phosphorylation is

observed exclusively on serine residues distal to amino acid 698 of

the cytosolic C-terminus (Figure 6A), we suspect that the same is

true for increased phosphorylation of NHE1 during OCS. Within

this region, three sites: S703 (S711), S785 (S783) and S796 (S794)

are detected by LC-MS/MS as phosphorylated residues in situ in

atRBCs. These loci correspond to sites where increased phos-

phorylation is associated with increased activity in mammalian

cells: phosphorylation at S703 by the p90 ribosomal S6 kinase

(p90RSK) is necessary for NHE1 activity in response to growth

factor treatment [22] or angiotensin II [21]; S785 (S783) is

phosphorylated in vitro by ERK2 [20]; and phosphorylation of

S796 (S794) by ERK2 is required for the regulated association of

carbonic anhydrase II with the distal C-terminus of NHE1 [19].

Because our LC-MS/MS analysis of phosphorylation was

performed in a qualitative fashion, it is not possible to determine

whether phosphorylation is increased or decreased. However,

phosphorylation of one of these sites (S796) was identified only in

precipitates from OCS- or CLA- treated cells, and not from

unstimulated (IR) cells. This suggests that increased phosphoryla-

tion of residues S711, S783 and/or S796 contributes to increased

NHE1 phosphorylation during activation in response to OCS.

The specific contributions of these sites to NHE1 activity remains

to be tested through systematic site-directed mutagenesis, and

activity assays in heterologous expression systems.

Potentially other phosphorylation sites contribute to control of

NHE1 activity in atRBCs. Our LC-MS/MS data identifies

phosphorylation of three serine residues not previously reported,

S599 (S607), S602 (S610), and S605 (S613) within the proximal C-

terminus of NHE1 (Figure 6B). It is not clear if this region plays a

role in the NHE1 response to OCS, however, this region of NHE1

is near to the binding domain for Nck-interacting kinase (NIK)

which binds between residues 538–638 of NHE1 [37]. NIK also

phosphorylates NHE1 (putatively at S648) in response to platelet-

derived growth factor (PDGF) [14,37,38]. Speculatively, phos-

phorylation of residues S599/S602/S605 might interfere with or

enhance NHE1 binding to NIK or to other proteins that are

involved in the cellular response to OCS such as ezrin/radixin/

moeisin (ERM) proteins [39].

A putative role for decreased phosphorylation of NHE1 in
activation during OCS

Because the increase in NHE1 activity during OCS is

disproportionately greater than the measured increase in net

NHE1 phosphorylation, it is equally likely that other sites exist

where simultaneous decreases in phosphorylation occur during

OCS. In mammalian cells, few examples exist in which increased

NHE1 activity coincides with dephosphorylation of NHE1.

Studies of truncated NHE1 mutants expressed in mammalian

fibroblasts have shown that phosphorylation of NHE1 is decreased

in the region of residues 635–698 in response to serum treatment

[40]. This region is also shown to be essential for NHE1 activity in

response to hyperosmolarity [29]. Within this region of NHE1

(Figure 6B), phosphorylation of (human) serine 648 is shown to be

inhibitory toward NHE1 activity in rat ventricular myocytes [17].

However, mutation of S648 to alanine (S648A) fails to inhibit

increased NHE1 activity in response to hyperosmotic medium

[14], which is more consistent with the interpretation that

dephosphorylation of S648 is permissive of NHE1 activation in

response to OCS.

Dynamic interactions of S648 with calmodulin (CaM) may

explain the role of dephosphorylation in activation of NHE1. In

mammalian cells calmodulin (CaM) binding is necessary for OCS-

induced NHE1 activity [41]. Studies of NHE1 and calmodulin

(CaM) demonstrate that NHE1 exists in an autoinhibited state,

and that CaM binding to residues 637–691 (Figure 6C) releases

NHE1 from autoinhibition. It is further shown that phosphory-

lation of S648 prevents CaM binding and prevents NHE1

activation [17]. Recent X-ray scattering studies of the CaM

binding regions of NHE1 reveal that phosphorylation of S648

disrupts CaM binding to helix a1 of the high affinity CaM binding

domain of NHE1 [42]. This is accomplished in part by the

electrostatic attraction of phosphorylated S648 for neighboring

NHE1 arginine residues (R647 and R651), which in turn prevents

salt bridge formation between NHE1 and CaM. According to this

model, S648 dephosphorylation is necessary for CaM binding to

NHE1. Structural modeling indicates that other NHE1 arginine

(R632, R643) and glutamine (Q640, Q644) residues in this domain

are involved in binding to CaM. Thus, dephosphorylation of
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Figure 6. Comparison of C-terminal amino acid consensus sequence and phosphorylation sites in human NHE1 versus Amphiuma
NHE1. Human NHE1, Amphiuma NHE1 and consensus sequences are shown for regions of the cytosolic C-terminus that contain phosphorylation
sites identified by LC-MS/MS. A. The distal C-terminus. Shown in bold with asterisks are the locations of 4 conserved phosphorylated serine residues
within this region: (Amphiuma) S701, S711, S783 and S794. T727, a site unique to Amphiuma NHE1, is also shown in bold. Residues with similarity are
noted with + in the consensus sequence. B. The proximal C-terminus. Three conserved phosphorylation sites within this region are shown in bold
with asterisks: (Amphiuma) S607, S610 and S613. C. Comparison of sequence information and phosphorylation sites of the volume-sensitive
calmodulin (CaM) binding region in human versus Amphiuma NHE1. The helical domains necessary for CaM binding shown (a1 and a2) are based on
structural studies by Köster et al [42], indicating CaM binding domains that are necessary for cell shrinkage-induced transport activity [41]. This region
is 97% identical between human and Amphiuma NHE1. Shown in bold with an asterisk is the location of (Amphiuma) threonine 693, a conserved
phosphorylation site within this region. The location of human S648 is also noted (#). Positive and negatively charged residues within the CaM
binding regions are denoted below with + or 2.
doi:10.1371/journal.pone.0029210.g006
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NHE1 within the CaM binding domain may be a general

prerequisite for NHE1 activation. This notion is supported by

earlier studies showing that replacement of positively charged

residues with negatively charged residues (mimicking phosphory-

lation) at various locations within the CaM binding domain

substantially reduces NHE1 activity in response to OCS [41,43].

Our current LC-MS/MS data did not include coverage of residues

corresponding to 635–651 (human), however phosphorylation was

detected at T693 (human T685) within the intermediate affinity

CaM binding domain. We made preliminary attempts to examine

the role of this site in site-directed mutagenesis studies with the

human NHE1. Human NHE1 constructs were created and

expressed in an NHE1-deficient cell line (AP-1) with T685

mutated to alanine (T685A) or aspartate (T685D). Cell Na+

uptake was significantly higher in the T685A mutant cell line

compared to T685D in response to hypertonicity (p,0.05 at

90 minutes; analyzed by Two-way ANOVA with a Bonferroni

post-test for significance) suggesting that the presence of a negative

charge at T685 decreases the response of NHE1 to hypertonicity

(unpublished data by RR Rigor). Further studies of this kind are

necessary to more precisely determine the role of phosphoryla-

tion/dephosphorylation within the CaM binding domains in

control of NHE1 activity during OCS.

Conclusion
The evidence presented here support a role for phosphorylation

in the cell signaling mechanisms upstream of NHE1 activation,

and that NHE1 is directly phosphorylated during OCS. NHE1

activation by OCS involves phosphorylation of the distal C-

terminus of NHE1, coinciding with predicted dephosphorylation

of the CaM binding domains at residues 635–698. However the

specific contribution of each phosphorylated or dephosphorylated

locus must be further tested by systematic site-directed mutagen-

esis and biochemical analysis of the C-terminal serine residues of

NHE1. The complex requirements for activation by OCS can

readily explain why changes in net phosphorylation of NHE1 were

not previously seen in studies with mammalian cells. In contrast,

NHE1 phosphorylation is clearly seen during OCS in atRBCs due

to the robust volume regulatory responses of this model system.

This information is important for the fundamental understanding

of cell volume regulation in confirming that phosphorylation-

dependent signaling and direct phosphorylation of NHE1 are

integral to OCS-induced NHE1 activation.

Materials and Methods

This work was approved by the University of California Davis

Animal Welfare Assurance on file with the US Public Health

Service, under the IACUC approved animal care and use protocol

no. 07-12754.

Materials
22Na+ was obtained from New England Nuclear (NEN; Perkin

Elmer, Waltham, MA) as NaCl; 32P-orthophosphate (500 mCi/ml)

was from MP Biomedicals (Irvine, CA); reagent grade chemicals,

dimethyl pimelimidate (DMP), ouabain and 5,59 N-ethylisopropyl-

amiloride (EIPA) were from Sigma-Aldrich (St. Louis, MO); Mini

Complete protease inhibitor tablets were from Roche Diagnostics

(Indianapolis, IN); kinase inhibitors and phosphatase inhibitors

were from Calbiochem (EMD Biosciences, Gibbstown, NJ);

protein G sepharose fast-flow beads were from Amersham (GE

Healthcare, Piscataway, NJ); Anti-phosphoserine mouse monoclo-

nal antibody (4A3) was from Biomol (Enzo Life Sciences,

Farmingdale, NY); Anti-NHE1 mouse monoclonal antibody

(MAb3140) was from Chemicon (Millipore, Billerica, MA); X-

ray film was from Eastman Kodak; Narrow 500 ml PE micro-

centrifuge tubes were from E&K Scientific (Santa Clara, CA);

Heparin (1000 U/ml) was from Henry Schein (Melville, NY).

Physiological solutions
HEPES buffered Ringer’s solutions: (mM) KCl 3, MgCl2 1.0,

CaCl2 0.5, HEPES 30, NaOH 18, glucose 5, pH 7.6560.02 were

adjusted for desired osmolarity with NaCl, or NMDGCl to either

reduce or fix solution [Na+]. The osmolarity of Isosmotic Ringer’s

(IR) solution, is 24063 mOsm. The osmolarities of hyperosmotic

solutions were adjusted relative to normal physiological osmolarity

(240 mOsm) and are listed as a multiple of Isosmotic Ringer, i.e.

1.2, 1.4, 1.6… 6 IR. Thermodynamically nulled (n) flux media

were formulated by adjusting media K+ and Na+ concentrations

such that the net thermodynamic driving force for volume regu-

latory ion transporters (K+/H+ exchange or Na+/H+ exchange) is

set equal to zero, as described previously [31,32,44]. Solutions

used for Michaelis-Menten Na+ transport kinetics were formulated

by varying media Na+ as described previously [33]. All solutions

were gassed with humidified room air for 3 minutes at room

temperature and pH adjusted to 7.6560.02 just prior to initiation

of the experiments. All flux media contained 1 mM ouabain to

inhibit Na+/K+-ATPase activity.

Preparation of erythrocytes
Wild captured adult Amphiuma tridactylum were purchased from

Atchafalaya Biological Supply (Raceland, LA) and maintained in

filtered freshwater tanks. Blood was drawn by cardiac puncture,

into heparinized (1000 U) 20 ml syringes. Serum osmolarity for

animals used in this study ranged 240620 mOsm, as measured

with an Advanced Instruments (Norwood, MA) model 3D3

freezing point depression osmometer. RBCs were washed three

times by low-speed centrifugation (1500 g, 1 minute), supernatant

was removed by vacuum aspiration, and the RBC pellet was

resuspended in IR solution for 60 minutes at room temperature

(22uC) to permit cells to reach steady-state, then stored overnight

(4uC) for use the next day. Prior to experimentation, cell

suspensions were adjusted to room temperature for 30 minutes

in fresh IR solution. All RBC experiments were performed at 10%

hematocrit (hct).

Na+ transport activity assays
Na+ transport activity was assayed as the unidirectional influx of

22Na+ [31,32,33]. Briefly, RBCs were incubated in flux media

containing 22Na+ (2 mCi/ml), and sampled over a brief interval (2–

5 minutes) to measure initial flux rate and minimize backflux.

Aliquots of RBC suspension were added to isotope-free ‘cold’ flux

medium layered over dibutyl phthalate, and separated by

centrifugation (1 min, 15,000 g). RBC pellets were isolated by

inverting the 1.5 ml tubes and cutting off the conical tips.

Radioactivity in the cell pellets were quantified with a Packard

gamma counter, and normalized to the amount of dried cell solids.

Prior to flux measurements, RBCs were pre-incubated in nulled (n)

hyperosmotic media to allow for complete activation of Na+/H+

exchange, as described previously [32]. In all experiments, NHE1-

mediated Na+ flux was operationally defined as EIPA-sensitive

Na+ influx.

In situ phosphorylation
RBCs were treated in a similar fashion to that described by

Lytle [45], and Musch et al [46]. Briefly, Amphiuma RBCs were

incubated to steady-state on a tube rotator in IR solution
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containing 500 mCi/ml [32P]-orthophosphate (10% hct, 4uC,

18 hours). Labeled RBCs were equilibrated to room temp

(30 min), then sub-divided into equal volumes (0.25 ml/sample)

and transferred to nIR or n1.66IR solutions in the continued

presence of [32P]-orthophosphate for 1 hour (with or without CLA

in the latter 45 minutes, where indicated). Following the

incubation period, RBCs were centrifuged (1 min, 5 k6g) and

RBC pellets were flash frozen in liquid N2 for 10 minutes.

Immunoprecipitation
Frozen RBC pellets were resuspended in (4uC) lysis buffer (PBS

(pH 7.4) plus (mM) sodium fluoride 30, tetrasodium pyrophos-

phate 20, EDTA 5, EGTA 2, orthovanadate 1, ß-glycerophos-

phate 40, dithiothreitol 1, and Mini Complete protease inhibitor

(Roche) (1 tab/10 ml). Lysates were centrifuged (15 k6g,

1 minute, 4uC), and the resulting pellets were washed twice more

in 20 volumes of lysis buffer (4uC). Washed pellets were suspended

in immunoprecipitation (IP) buffer (lysis buffer with 0.5% triton

6100) (4uC), incubated for 20 minutes on ice, and centrifuged

(4uC, 15,000 g, 10 minutes). Supernatants were used for IP. IP

beads were prepared by covalently crosslinking anti-NHE1

antibody to protein G sepharose beads by treatment with dimethyl

pimelimidate (DMP), essentially as described by Schneider et al

[47]. 25 ml of protein G beads were incubated with 10 mg of

antibody in 0.1 M boric acid buffer (pH 8.2), on a rotator for

30 mins at room temp. Beads were washed twice in borate buffer,

and twice in triethanolamine (0.2 M, pH 8.2), followed by DMP

(18 mg/ml in triethanolamine) on a rotator for 45 minutes. The

reaction was quenched with ethanolamine (70 mM, pH 8.2), then

washed in borate buffer, PBS, and stored in IP buffer at 4uC.

Sample supernatants were pre-cleared by incubation with DMP-

treated beads (no antibody) for 30 minutes, and the resulting

supernatants were added to the antibody-linked beads (4uC,

rotating overnight). The following day, the beads were washed

gently in IP buffer and NHE1 was harvested by addition of SDS-

PAGE sample buffer. Harvested samples were run by SDS-PAGE

(Tris-Glycine 7.5% Ready Gels; Bio-Rad Laboratories, Hercules,

CA) and transferred to PVDF membranes. Membranes bearing
32P labeled bands were incubated with a phosphor-imaging screen

for 5 days for autoradiography using a STORM Imager

(Molecular Devices). PVDF membranes were subsequently

rehydrated for Western blotting and chemiluminescence. Inte-

grated band intensities were quantified using NIH Image J

software. Background corrected 32P band intensities were

normalized to total phosphorylation. Corresponding NHE1 bands

detected by Western blotting were normalized to total NHE1 and

used to express relative NHE1 phosphorylation (32P/unit NHE1).

The calculated IP efficiency was 52% (n = 5). A similar IP protocol

with IP materials scaled up 10-fold was used to prepare samples for

mass spectrometry, starting with 0.5 ml of cell pellet material. 5%

of the harvested material was used to confirm successful IP of

NHE1 by Western blot. The remaining 95% was separated on

large format SDS-PAGE gels (7.5%), stained with Colloidal

Coomassie Blue stain (Novex) to confirm purity, and the NHE1

band was excised for protein extraction and trypsin digest prior to

mass spectrometry, carried out as described previously [48,49].

NanoLC-MS/MS analysis
NanoLC-MS/MS experiments were performed on a Finnigan

LTQ-FT hybrid linear ion trap/7T Fourier transform ion

cyclotron resonance mass spectrometer (Thermo Electron, San

Jose, CA, USA), equipped with a Finnigan Nanospray ion source

(Thermo Electron), a Finnigan Surveyor MS pump (Thermo

Electron), and a Finnigan micro-autosampler (Thermo Electron).

The tryptic peptide mixture was separated on a 50 mm ID PicoFrit

column packed in-house with Magic C18AQ material (Michrom

BioResources, Inc., Auburn, CA, USA). The column was packed

to a length of 12 cm with a 100% MeOH slurry of C18 reversed-

phase material (100A pore size, 3 mm particle size) using a high-

pressure cell pressurized with helium. The column was equilibrat-

ed before sample injection for 10 min at 2% solvent B (0.1% (v/v)

formic acid in acetonitrile) and 98% solvent A (0.1% (v/v) formic

acid in water) at a flow rate of 140 nl/min. Separation was

achieved by using a linear gradient from 2 to 50% solvent B in

24 min at a flow rate of 320 nl/min. The LTQ-FT mass

spectrometer was operated in the data dependent acquisition

mode using the TOP10 method: a full-scan MS acquired in the

FTICR mass spectrometer was followed by 10 MS/MS experi-

ments performed with the LTQ on the ten most abundant ions

detected in the full-scan MS.

Database searching
Tandem mass spectra were extracted and charge state

deconvoluted by bioworks version 3.3. Deisotoping was not

performed. All MS/MS samples were analyzed using X! Tandem

(The GPM, thegpm.org; version TORNADO (2010.01.01.4)). X!

Tandem was set up to search the uniprot Amphibian database

including an equal number of reverse sequences (release 2010_09,

108124 entries) and 101 contaminant protein sequences from the

common Repository of Adventitious Proteins, cRAP database

(thegpm.org/crap) assuming the digestion enzyme trypsin. X!

Tandem was searched with a fragment ion mass tolerance of 0.40

Da and a parent ion tolerance of 20 PPM. Iodoacetamide

derivative of cysteine was specified in X! Tandem as a fixed

modification. Deamidation of asparagine and glutamine, oxidation

of methionine and tryptophan, sulphone of methionine, trypto-

phan oxidation to formylkynurenin of tryptophan, acetylation of

the n-terminus and phosphorylation of serine, threonine and

tyrosine were specified in X! Tandem as variable modifications.

The LC-MS/MS data associated with this manuscript may be

downloaded from ProteomeCommons.org Tranche network using

the following hash: tKUCAKV1XQpg3fiEuLGer5jUKXooA

juhpnDBqQTtpfuDIFwKKYPj1lhhL6hQuYuyFApkn9g/Mn3b9c6

IMJ4NvfP32wcAAAAAAAAHIQ = = .

Criteria for protein identification
Scaffold (version Scaffold_3_00_04, Proteome Software Inc.,

Portland, OR) was used to validate MS/MS based peptide and

protein identifications. Peptide identifications were accepted if

they could be established at greater than 80.0% probability as

specified by the Peptide Prophet algorithm [50]. Protein

identifications were accepted if they could be established at

greater than 99.0% probability and contained at least 1 identified

peptides. This corresponded to a calculated protein and peptide

FDR of 0.0% (Decoy/Target as discussed in JPR 2008 p45-6)

Protein probabilities were assigned by the Protein Prophet

algorithm [51]. Proteins that contained similar peptides and could

not be differentiated based on MS/MS analysis alone were

grouped to satisfy the principles of parsimony.

Data regression and statistical analysis
General data analysis was performed with Prism 4.0 (Graph

Pad) software. Stimulus-response data were fit to a sigmoidal

function by non-linear regression. For transport kinetics, data were

pooled from several identical experiments and fit to a single-

binding site hyperbola by non-linear regression to generate values

for Km and Jmax 6 SEM. Tests for significance (p,0.05) were

performed using Student’s t-test with a two-tailed distribution.
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Supporting Information

Table S1 A summary of LC-MS/MS data generated
from analysis of atNHE1. This complete list of NHE1

phosphorylated peptides identified by LC-MS/MS includes other

post-translational modifications, as well as probability of identifi-

cation, X!Tandem values, mass:charge (m/z), mass, charge and

mass confidence (delta PPM) information.

(TIF)
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