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Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest

family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate

receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible

for ubiquitination of ∼20% of cellular proteins and are involved in diverse biological

processes including cell cycle progression, genome stability, and oncogenesis. Not

surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent

studies have highlighted the importance of CRL-mediated ubiquitination in the regulation

of DNA replication/repair, including specific roles in chromatin assembly and disassembly

of the replication machinery. The development of novel therapeutics targeting the CRLs

that regulate the replication machinery and chromatin in cancer is now an attractive

therapeutic strategy. In this review, we summarize the structure and assembly of CRLs

and outline their cellular functions and their diverse roles in cancer, emphasizing the

regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally,

we discuss the current strategies for targeting CRLs against cancer in the clinic.
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STRUCTURE AND REGULATION OF CRLs

CRLs are composed of four components (Figure 1): cullins asmolecular scaffolds, adaptor proteins,
substrate receptors at the N-termini of cullins, and RING proteins at the C-termini of cullins,
recruiting ubiquitin-loaded E2 enzymes (Bulatov and Ciulli, 2015). The evolutionarily conserved
cullin family encompasses eight key members (CUL1, 2, 3, 4A, 4B, 5, 7, and 9) that exhibit similar
structural architectures and contain cullin homology domains (Sarikas et al., 2011). Activation of
CRLs is commonly regulated by NEDD8 modifications at lysine residues located at the C-termini
of cullins (Soucy et al., 2010). Otherwise, individual CRLs include specific components, employing
substrate receptors as critical determinants of substrate specificity.

CRL1, also known as SCF (SKP1-Cullin 1-F box protein), utilizes S-phase kinase-associated
protein 1 (SKP1) as an adaptor protein and recognizes its substrates through substrate recognition
proteins known as F-box proteins, which contain 40-amino-acid F-box domains (Zheng et al.,
2002). Sixty nine F-box proteins are known to be encoded by the human genome to date and are
classified into sub-groups based on their different substrate binding domains, including FBXW (F-
box and WD40 domains) FBXL (F-box and leucine-rich repeats) and FBXO (F-box only) (Skaar
et al., 2013). CRL2 and CRL5 share an identical adaptor, Elongin C (EloC), known to enhance
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FIGURE 1 | Model of the cullin-RING ligase complexes. Cullins 1, 2, 3, 4A, 4B, 5, 7, and 9 are scaffold proteins that assemble with RING finger proteins (RBX1/2),

adaptor proteins (SKP1, EloC/EloB, BTB, DDB1) and receptor or substrate recognition proteins (F-box family, VHL family, BTB, DCAF family, SOCS family among

others). A non-exhaustive but known list of the CRLs, adaptors, receptors, and RING proteins is shown. The bottom part of the figure illustrates the cellular localization

of the cullins. Cullins are broadly distributed in the different compartments of the cells with CUL4A and CUL4B mostly located in nuclei (table constructed from data

gathered from Genecards.org).

the rate of RNA polymerase II elongation (Bradsher et al., 1993),
and utilize either von Hippel-Lindau (VHL) or suppressors of
cytokine signaling (SOCS)-box proteins as distinct substrate
receptors (Muniz et al., 2013; Cardote et al., 2017). CRL3 interacts
with several BTB (Bric-a-brac, Tramtrack, Broad-complex)
domain-containing proteins that implement dual functions as
adaptor and receptor subunits (Pintard et al., 2004). The BTB
domains of these subunits act as adaptors by associating with
CUL3 and RBX1, whereas their MATH (meprin and TRAF
homology) motifs and Kelch beta-propeller repeat and zinc
finger motifs recognize the substrates (Stogios et al., 2005).
CRL4 is anchored by two highly similar scaffold proteins,
CUL4A and CUL4B, and an adapter, DDB1 (damage-specific
DNA binding protein 1). DDB1 contains three WD40 propeller
domains (BPA, BPB, and BPC) and links the CUL4 scaffold
with multiple substrate receptors termed DCAFs (DDB1-CUL4-
associated factors). Over 100 DCAFs have been identified to
date (Zimmerman et al., 2010; Harper and Tan, 2012). CRL7
and CRL9 contain the two largest cullin scaffold proteins,
CUL7 (1698 amino acids) and CUL9 (2517 amino acids). As
these two cullins are much larger than the cullins anchoring

the other CRLs (745–913 amino acids), CRL7/9 may have
additional specific, unique functions and/or protein partners.
CRL7 is similar to CRL1 in that it includes SKP1 as an
adaptor and FBXW8 as a substrate receptor (Dias et al., 2002;
Sarikas et al., 2008), but unlike CUL1, it does not interact with
the adaptor/receptor complexes SKP1/βTRCP2 or SKP1/SKP2
(Dias et al., 2002). These variations delineate distinct ubiquitin-
dependent proteolysis pathways that may be involved in the
degradation of specific substrates involved in specific cellular
processes and /or in specific cell compartments. Cellular activities
of the different CRLs can be co-regulated. For example, CUL7
(with OBSL1 and CCDC8) regulates CUL9 and its substrates
to maintain genome stability (reviewed in Jackson, 2014) while
degradation of the CRL4 component CDT2 can be orchestrated
by the CRL1 (CUL1/FBXO11) complex (Abbas et al., 2013; Abbas
and Dutta, 2017).

CRLs are involved in diverse biological processes including
cell cycle control, DNA replication, DNA-damage repair, and
chromatin remodeling through the selective degradation of
various protein substrates, mediated by specific interactions with
various substrate receptors. As an example, the SCF (CRL1)

Frontiers in Molecular Biosciences | www.frontiersin.org 2 March 2018 | Volume 5 | Article 19

http://www.Genecards.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Jang et al. Replication Associated CRLs as Therapy Targets

complex plays a vital regulatory role by ubiquitinating a series
of cell cycle regulators including EMI1 (Margottin-Goguet et al.,
2003), CDC25A and B (Busino et al., 2003; Kanemori et al., 2005),
WEE1A (Watanabe et al., 2004), Cyclin D1 (Wei et al., 2008), and
PTTG1/Securin (Limón-Mortés et al., 2008). These substrates are
recognized by F-box proteins that bind consensus sequences such
as D-pS/pT-G-X-X-pS and/orD/E/S-S/E/D-G/A-x2−4-S/E/D for
β-TrCP (Limón-Mortés et al., 2008) (Hansen et al., 2004)
or 0X000S/TPXXS/T/E for FBW7 (Limón-Mortés et al., 2008;
Wertz et al., 2011) (X, 0 = random or hydrophobic amino
acids, respectively). F-box proteins exhibit a high affinity for
serine or threonine residues phosphorylated by specific kinases
such as JNK, p38, and CKII (Limón-Mortés et al., 2008; Wertz
et al., 2011). While the assembly of cullins, adaptors, and
substrate receptors into multiple combinations is necessary for
specific arrays of cellular biological responses through time and
space, such combinatorial complexity is a major challenge for
understanding CRLs’ roles in cell signaling and diseases. Some
substrates of CRL targeted ubiquitination and their roles are
listed in Table 1.

CRLs associate with the small protein NEDD8 (Neural
precursor cell expressed developmentally down-regulated
protein 8) and this interaction is essential for their ubiquitin
ligase activities. NEDDylation is accomplished by the sequential
action of an NAE (Nedd8-activating enzyme) and a Nedd8-
conjugating enzyme, UBC12 (Haas, 2007). CRLs can be
deNEDDylated by the zinc-dependent metalloenzyme CSN5, a
component of the COP9 signalosome (CSN) complex, which
cleaves the isopeptidic bond between cullin and NEDD8 (Cope
and Deshaies, 2003). NEDDylation is also regulated by CAND1
(Cullin-associated Nedd8-dissociated protein 1), which binds
to unneddylated cullins, inhibiting NEDD8 conjugation and
consequently resulting in inhibition of both cullin NEDDylation
and CRLs activities (Duda et al., 2011).

FUNCTIONS OF CRLs IN DNA
REPLICATION AND CELL CYCLE
PROGRESSION

CRLs serve key functions in the regulation of chromosome
duplication, modulating crucial steps in the assembly and
disassembly of the DNA replication machinery during normal
growth and in response to perturbed replication. Roles for cullin-
based ring E3 ligases in DNA replication and cell cycle progress
ion have been recently extensively discussed elsewhere (Abbas
and Dutta, 2017), and the involvement of CRLs in the early stages
of DNA replication in various organisms are briefly summarized
below.

The first step in the DNA replication process in all eukaryotes
is the loading of the origin recognition complex (ORC) and
recruitment of the MCM2-7 helicase complex by the licensing
factors CDC6 and CDT1. This complex assembly occurs during
late mitosis and the early G1 phase, to form an inactive
pre-replication complex (pre-RC). Pre-RCs are subsequently
activated by the recruitment of additional factors and by cyclin-
dependent kinases (CDKs) andDBF4-dependent kinases (DDKs)
(Parker et al., 2017). CRL-controlled levels and/or activities of

proteins involved in pre-RCs assembly and activation are crucial
for the orderly initiation of DNA replication and the prevention
of re-replication.

In yeast, RTT101, the human CUL4 homolog, modulates
MRC1 (human claspin homolog) interaction with the CMG
(Cdc45-MCM-GINS) helicase (Buser et al., 2016). RTT101
deletion leads to reduced association of both the replicative
helicase MCM and FACT, a complex that assemble or partially
disassemble nucleosomes, to replication origins (Han et al.,
2010). Cells lacking RTT101 are defective in DNA replication
through DNA damaged sites (Zaidi et al., 2008). The yeast CDC6,
crucial for pre-RC licensing is degraded in a CRL-dependent
pathway (Drury et al., 1997). CRL-induced CDC6 degradation
is required to prevent DNA rereplication (Ikui et al., 2012). The
yeast CMG is ubiquitinated and disassembled by DIA2 (a F-
box protein related to the human CUL1/F-box complex) that
binds replication origins (Koepp et al., 2006; Maculins et al.,
2015).

In vertebrates, CRLs demonstrate similar functions. In
Xenopus, CUL2 is a key player during the termination of
DNA replication, disassembling the CMG helicase complex
(Sonneville et al., 2017). In mammalian cells, MCM3, an essential
subunit of the replicative DNA helicase, is a CRL3 substrate
(Mulvaney et al., 2016). Both CRL1 and CRL4 can play important
roles in the regulation of pre-RC assembly by modulating the
chromatin association of two essential licensing factors, CDC6
and CDT1. CDC6 is targeted for degradation by the CRL4-
CDT2 and the CRL1-CyclinF complex in S phase (Clijsters and
Wolthuis, 2014) and G2-M (Walter et al., 2016) respectively.
Targeted degradation of CDT1 in S-phase is shared between
CRL1/SKP2 (at the G1/S transition) and CRL4/CDT2 (during
S-phase) (Kim and Kipreos, 2007; Pozo and Cook, 2016; Abbas
and Dutta, 2017). Thus, deregulation of CRLs in the nucleus
leads to CDT1 accumulation and, in turn, to DNA re-replication
and genomic instability (Kim and Kipreos, 2007; Pozo and
Cook, 2016). CRL4-CDT2 also mediates the degradation of the
histone H4 methyltransferase SET8, an enzyme catalyzing the
monomethylation on lysine 20 of histone H4 that allows the
loading of the pre-RC component ORC1 and the ORC-associated
protein ORCA (Beck et al., 2012). SET8 degradation is essential
to prevent DNA re-replication (Abbas et al., 2010). Another
protein involved in DNA replication initiation include MMSET,
a histone methyltransferase degraded during S phase in a CRL4
dependent manner and necessary for the optimum association of
pre-replication factors (Evans et al., 2016). The CRL4-interacting
DCAF, RepID (DCAF14/PHIP) binds a subset of replication
origins and is essential for initiation from those origins (Zhang
Y. et al., 2016). The mechanism by which a DCAF can facilitate
initiation is unclear, however recent evidence suggests that the
CRL4/CUL4B complex facilitates replication licensing through
a CUL4B-CDK2-CDC6 cascade, leading to the upregulation of
CDK2 and protecting CDC6 from degradation (Zou Y. et al.,
2013).

CRLs also control DNA replication via indirect mechanisms.
Increased CDK1/2 activities, necessary for origin firing, occur in
late G1 and at the G1/S transition through the CRLs-controlled
degradation of CDK inhibitors such as p27, p21, and p57
(reviewed in Abbas and Dutta, 2017). Following DNA replication
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TABLE 1 | Non-exhaustive list of CRLs substrates.

CRLs Substrates Receptors Substrate roles References

CRL1 EMI1/Cyclin A β-TrCP1 Regulates mitosis entry Guardavaccaro et al., 2003

CRL1 CDC25A β-TrCP1/2 Required for progression from G1 to the S phase of the

cell cycle

Busino et al., 2003

CRL1 CDC25B β-TrCP1/2 Required for entry into mitosis Kanemori et al., 2005; Uchida et al., 2011

CRL1 WEE1 β-TrCP1/2 Cell cycle progression, G2/M transition Watanabe et al., 2004

CRL1 Cyclin D1 β-TrCP1/2 Progression through the G1 phase of the cell cycle Wei et al., 2008

CRL1 Claspin β-TrCP1/2 Checkpoint mediated cell cycle arrest in response to

replication stress and DNA damage

Peschiaroli et al., 2006

CRL1 PR-SET7/SET8 β-TrCP1/2 Epigenetic regulation/Histone modification Wang et al., 2015

CRL1 Securin β-TrCP Prevent sister chromatin separation Limón-Mortés et al., 2008

CRL1 SAK/PLK4 β-TrCP1 Prevents centrosome amplification Cunha-Ferreira et al., 2009

CRL1 MCL1 FBXW7 Involved in apoptosis regulation Wertz et al., 2011

CRL1 P27KIP1 FBXL1/SKP2 Involved in cell cycle progression Nakayama et al., 2001

CRL1 P21Cip1 FBXL1/SKP2 Cell cycle progression Bornstein et al., 2003

CRL1 P57Kip2 FBXL1/SKP2 Inhibitor of several G1 cyclins Pateras et al., 2006

CRL1 P130 FBXL1/SKP2 Heterochromatin formation Bhattacharya et al., 2003

CRL1 CDT1 FBXL1/SKP2 DNA replication licensing factor Li et al., 2003

CRL1 Cyclin D FBX4/FBXL1/SKP2 G1/S transition Yu et al., 1998; Gong et al., 2014

CRL1 Cyclin G2 FBXL1/SKP2 Regulation of cell cycle progression Xu et al., 2008

CRL1 Cyclin D2 FBXL2 Progression through the G1 phase of the cell cycle Chen et al., 2012b

CRL1 Cyclin D3 FBXL2 G1/S transition Chen et al., 2011

CRL1 Cyclin E FBXW7 G1/S transition Gong et al., 2014

CRL1 P85beta FBXL2 Control PI3K signaling cascade Kuchay et al., 2013

CRL1 VPS34 FBXL20 Catalytic subunit of the PI3K complex kinase Xiao et al., 2015

CRL1 JMJD2A FBXL4 Epigenetic regulation/Histone modification Das et al., 2014

CRL1 CITED2 FBXL5 Transcription regulation Machado-Oliveira et al., 2015

CRL1 Aurora A FBXL7 Regulates mitosis Coon et al., 2012

CRL1 Aurora B FBXL2 Regulates mitosis Chen B. B. et al., 2013

CRL1 CaMK1 FBXL12 Calcium/calmodulin-dependent protein kinase Mallampalli et al., 2013

CRL1 CDC6 FBXO1/Cyclin F DNA replication licensing factor Walter et al., 2016

CRL1 DCAF2/CDT2 FBXO11 Efficient progression through S and G2/M phases Abbas et al., 2013

CRL1 UHRF1 β-TrCP/FBW1A Maintenance of DNA methylation patterns during DNA

replication

Chen H. et al., 2013

CRL2 HIF1alpha VHL Response to hypoxia Ohh et al., 2000

CRL2 SPRY2 VHL May function as an antagonist to several growth factors Anderson et al., 2011

CRL2 RNA polII subunit VHL Transcription Kuznetsova et al., 2003

CRL2 CKI1 LRR1 Casein kinase involved in several cellular functions Merlet et al., 2010

CRL2 P21Cip1 LRR1 Cell cycle progression Starostina et al., 2010

CRL2 TRA1 FEM1 Epigenetic regulation/Histone modification Shi et al., 2011

CRL2 TOPBP1 – DNA replication Blackford et al., 2010

CRL2 H2B – Core component of the nucleosome Li et al., 2010

CRL3 NRF2 KEAP1 Negative regulation of antioxidant response McMahon et al., 2003

CRL3 WNK4 KEAP1 Blood pressure regulation Andérica-Romero et al., 2014

CRL3 DAXX SPOP Transcription repressor Sakaue et al., 2017

CRL3 MCM3 KEAP1 DNA replication Mulvaney et al., 2016

CRL3 PP2A – Resistance of cancer cells to death receptor-induced

apoptosis

Xu et al., 2014

CRL3/CRL4 TOP1 – DNA replication, transcription Zhang et al., 2004; Kerzendorfer et al., 2010

CRL4 CDT1 DCAF2/CDT2 DNA replication licensing factor Zhong et al., 2003; Higa et al., 2006

CRL4 P21Cip1 DCAF2/CDT2 Cell cycle progression Abbas et al., 2008; Nishitani et al., 2008

CRL4 PR-SET7/SET8 DCAF2/CDT2 Epigenetic regulation Jørgensen et al., 2011

(Continued)
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TABLE 1 | Continued

CRLs Substrates Receptors Substrate roles References

CRL4 P27Xic1 DCAF2/CDT2 Cell cycle arrest Chuang and Yew, 2001

CRL4 CKI1 DCAF2/CDT2 Casein kinase involved in several cellular functions Kim et al., 2008

CRL4 E2F DCAF2/CDT2 Cell cycle regulation Shibutani et al., 2008

CRL4 TDG DCAF2/CDT2 DNA glycosylase Slenn et al., 2014

CRL4 CHK1 DCAF2/CDT2 Checkpoint mediated cell cycle arrest in response to

DNA damage

Huh and Piwnica-Worms, 2013

CRL4 Histone H2A, H3,

H4, DDB2

DDB2 Core components of the nucleosome Kapetanaki et al., 2006

CRL4 SLBP DCAF11 Histone biosynthesis regulation Djakbarova et al., 2016

CRL4 CK1alpha CRBN Casein kinase involved in several cellular functions Krönke et al., 2015; Petzold et al., 2016

CRL4 ZFP91 CRBN E3 ubiquitin protein ligase An et al., 2017b

CRL4 APP CRBN Cell surface receptor Del Prete et al., 2016

CRL4 IKZF1, 3 CRBN Transcription Krönke et al., 2014

CRL4 Merlin DCAF1/VprBP Probable regulator of the Salvador/Warts/Hippo (SWH)

signaling pathway

Huang and Chen, 2008

CRL4 FOXM1 DCAF1/VprBP Transcription Wang et al., 2017

CRL4 MCM10 DCAF1/VprBP Replication initiation factor Kaur et al., 2012

CRL4 TSC2 FBXW5 Regulator of several GTPases Hu et al., 2008

CRL4 MMSET DCAF2/CDT2 Epigenetic regulation Evans et al., 2016

CRL4 LIG I DCAF7 DNA replication Peng et al., 2016

CRL4 p12 subunit of

DNA polymerase δ

DCAF2/CDT2 DNA replication Zhang et al., 2013

CRL4/CRL1 CHK1 ? Checkpoint mediated cell cycle arrest in response to

DNA damage

Lampert et al., 2017; Tu et al., 2017

CRL4 SLBP WDR23/DCAF11 Stem-loop binding protein Lampert et al., 2017

CRL4 FBH1 DCAF2/CDT2 Helicase with a role in response to stalled/damaged

replication fork

Bacquin et al., 2013

CRL4 ORCA/LRWD1 ? G1/S transition. Recruits and stabilizes replication origin

complexes

Shen and Prasanth, 2012

CRL4 PCNA ? DNA replication Lo et al., 2012

CRL4 p53 DCAF2/CDT2 Transcription/apoptosis Banks et al., 2006

CRL5 iNOS SOCS Nitric oxide production Kuang et al., 2010; Nishiya et al., 2011

CRL5 TRII SOCS Enhanced migration and invasion of tumor cells by

SOCS silencing

Liu et al., 2015

CRL5 GHR SOCS Regulation of growth hormone signaling Bullock et al., 2006

CRL5 TRAF6 SOCS Regulation of lipopolysaccharide signaling Zhu et al., 2016

CRL7 Cyclin D1 FBXW8 Cell cycle arrest Okabe et al., 2006

CRL7 IRS1 FBXW8 Regulation of insulin signaling Xu et al., 2008

CRL7 GRASP65 FBXW8 Maintenance of the Golgi apparatus integrity Litterman et al., 2011

CRL7 EAG1 FBXW8 Potassium channel modulation Hsu et al., 2017

CRL9 Cytochrome C ? Promotes cell survival Gama et al., 2014

CRL9 Survivin ? Genome integrity maintenance Li et al., 2014

initiation, cell cycle progression is also controlled, in part, by
the CRL1-timely degradations of the CDK positive regulators
cyclin E (for S phase progression), cyclin A, cyclin D1, andWEE1
(for G2 progression) (Watanabe et al., 2004; Abbas and Dutta,
2017). Similarly, progression over mitosis is ensured through
EMI degradation by the CRL1- β-TrCP1 complex, leading to
increased activity of the anaphase promoting complex/cyclosome
(APC/C), an E3 ubiquitin ligase utilizing the cullin-like scaffold
protein APC2. Other CRL-targeted proteins associated with cell
cycle progression include Claspin, PCNA, MCM10, the DNA

polymerase alpha, and histones H2A, H2B, H3, H4 among others
(Table 1).

CULLIN-BASED RING E3 LIGASES AND
CANCER

Since CRLs play critical roles in a myriad of biological processes,
it is reasonable to think that the deregulation of cullins and/or
other CRLs components can play a major role in cancer
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progression. While cullin deregulation (mostly upregulation)
have been observed in cancer, downregulation or suppression of
some of the CRL components can lead to tumor suppression.
Deregulated expression of cullins and cullin-associated factors
may occur through CpGs methylation, gene coding region
mutations, or promoter deletion and/or micro-RNA-induced
silencing among others. Below are several examples linking
deregulation of CRLs to cancer.

CUL1-Based Ubiquitin Ligase Complexes
CRL1 is themost studied cullin-associated complex in the context
of cancer (Figure 2). Deregulated CUL1 expression was reported
in lung and gastric cancers (Le Gallo et al., 2012) and during
the early stages of melanoma development (Lee et al., 2010). A
myriad of CRL1-associated F-box proteins and their substrates
are involved in cancer (for a review, see Kitagawa and Kitagawa,
2016).

Altered expression and mutations in several F-box proteins,
including SKP2, are hallmarks of several cancers. SKP2 (FBXL11)
is part of the FBXL subfamily that comprises 22 members
(FBXL1 to FBXL22) containing an F-box motif and a C-
terminal Leu-rich repeat (LRR) domain. SKP2, which has
been characterized as an oncoprotein, is by far the most
studied F-box protein of the FBXL subfamily. SKP2 associates
with the SCF (SKP1-Cullin1-F-box) complex and targets p27
for degradation, with major developmental consequences in
mice (Nakayama et al., 2004). The absence of SKP2 in mice
results in the accumulation of p27, nuclear enlargement, cell
polyploidies, and centrosome overduplication (Nakayama et al.,
2000), phenotypes that disappeared in SKP2−/−/p27−/− double-
mutant mice (Nakayama et al., 2004). Chemical-induced skin
tumorigenesis is inhibited in SKP2(−/−) mice (Sistrunk et al.,
2013) whereas overexpression of Skp2 in mice led to tumor
development in the prostate (Shim et al., 2003), suggesting
that a SKP2 deregulation-induced oncogenesis may be tissue
specific. SKP2 is also a crucial mediator of BCR-ABL-induced

leukemogenesis (Agarwal et al., 2008). SKP2 is deregulated and
correlated with poor prognosis in a wide array of human cancers
including breast, prostate, colon, lung, brain, gastric, and blood
(Frescas and Pagano, 2008; Zheng et al., 2016). Therefore, the
inhibition of SKP2 could be a novel strategy for the treatment
of some human cancers.

Other FBXL proteins, also mediate the degradation of
substrates involved in cell-cycle progression (Table 1). Ectopic
expression of FBXL2 in transformed lung epithelia facilitates
polyubiquitination and degradation of cyclin D3, leading to
G2/M-phase arrest, increased frequency of apoptotic cells, and
chromosomal anomalies (Chen et al., 2011). FBXL2 recognizes
a canonical calmodulin-binding motif within cyclin D3 and
compete with calmodulin for cyclin D3 binding (Chen et al.,
2012a). It is thought that FBXL2 targets cyclin D2 for degradation
to inhibit cancer cell proliferation. Several patient samples show
suppressed expression of FBXL2 together with robust cyclin D2
levels in acute myelogenous leukemia and acute lymphoblastic
leukemia (Chen et al., 2012b). Ectopically expressed FBXL2
significantly inhibited the growth and migration of tumorigenic
cells and tumor formation in athymic nude mice (Chen et al.,
2012a). FBXL2 was also shown to ubiquitinate Aurora B, an
integral regulator of cytokinesis that inhibits tumorigenesis
(Chen B. B. et al., 2013). FBXL3 was described as a regulator
of the circadian rhythm by targeting Cryptochrome (Cry1/Cry2)
proteins (Siepka et al., 2007). Since, growing evidence are
pointing out that deregulation of the circadian clock plays
an important role in carcinogenesis (Savvidis and Koutsilieris,
2012), one putative role for FBXL in cancer could be through the
disruptions of normal circadian rhythms.

FBXL proteins are also involved in the epithelial to
mesenchymal transition, which often accompanies tumor
progression. For example, FBXL5 and FBXL14 inhibit cell
invasiveness by targeting SNAIL1 in gastric cancer cells (Vinas-
Castells et al., 2010; Wu et al., 2015; Cen et al., 2017).
FBXL10 (also known as KDM2B), which contains a JmiC

FIGURE 2 | A growing interest for the roles of cullins in cancer. (A) Graph depicting the number of published articles studying the role of cullin1, 2, 3, 4A, 4B, 5, 7, and

9 in cancer. The pie chart shows the relative distribution (%) of published articles among the different cullins (the color code is the same as in the bar graph). (B) The

number of published studies looking at the role of cullins and/or cullin-interacting proteins in the pathology of cancer are increasing exponentially. Blue arrow and red

arrows denote the first studies targeting cullins in mice and human respectively. The number of publications for the year 2017 is an estimation made from the number

of articles that were published in the first 10 months of the same year. (Source: PubMed).
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domain (Tsukada et al., 2006) and primarily regulates metabolic
and developmental genes (Zheng et al., 2016), is involved in
H2AK119 ubiquitination and histoneH3K36 demethylation (Wu
et al., 2013) and affects TRAIL-induced apoptosis (Ge et al.,
2011). The latter observation implies that targeting FBXL10 could
overcome resistance to TRAIL treatment in human cancer. Like
other CRL1 interacting proteins, FBXL10 role in cancer seems
to be tissue specific in humans with higher levels of FBXL10
observed in several types of cancers while it is downregulated
in brain tumors (Frescas et al., 2007; Tzatsos et al., 2013). A
tissue-specific relationship between FBXL10 and cancer is also
observed in transgenic mice. Mice with hematopoietic stem cells
overexpressing FBXL10 were shown to develop myeloid or B-
lymphoid leukemia (Ueda et al., 2015) whereas FBXL10 depletion
was shown to abrogate tumorigenicity in the pancreas (Tzatsos
et al., 2013).

Deregulation of the F-box and WD containing protein β-
TrCP is associated with several cancers, including breast, colon,
pancreatic, liver, gastric, and prostate (Frescas and Pagano, 2008),
and both overexpression and mutations in β-TrCPs have been
reported in gastric, prostate, breast, pancreas, colon liver, and
skin cancer (reviewed in Zheng et al., 2016). In line with these
observations, a study using transgenic mice expressing human β-
TrCP 1 targeted to epithelial cells under the control of the mouse
mammary tumor virus (MMTV) showed that 38% of these
mice developed mammary, ovarian, and uterine carcinomas
(Kudo et al., 2004). Beyond altering cell cycle progression, β-
TrCP1 and β-TrCP2 are involved in the degradation of the
transcription factors SNAIL and TWIST and the extracellular
matrix fibronectin, all involved in metastasis (Ray et al., 2006;
Kitagawa and Kitagawa, 2016). In addition, invasion of human
melanoma cells is suppressed by silymarin, a plant flavonoid, in
part through β-TrCP-mediated degradation of β-catenin (Vaid
et al., 2011). Further evidence linking β-TrCPs to skin cancer
is the observation that degradation of IκBα and PDCD4 by β-
TrCPs can contribute to the development of skin squamous
carcinoma (Dorrello et al., 2006; Gu et al., 2007) while expression
of a dominant negative β-TrCP in mouse epidermis confers
skin proliferation and apoptosis resistance in response to UVB
irradiation (Bhatia et al., 2011). The role for β-TrCPs in
carcinogenesis is complex since these proteins also promotes
anti-cancer activities by controlling the degradation of several
pro-apoptotic proteins such as MCL-1 (Ding et al., 2007), BimEL
(Dehan et al., 2009), PDCD4 (Dorrello et al., 2006), pro-caspase
3 (Tan et al., 2006).

Other F-box proteins, including FBXW7, FBXW8, and
FBXW9 play roles in carcinogenesis, mainly through regulating
the levels of factors involved in cell cycle progression (Table 1).
FBXW7, a major tumor suppressor, negatively regulates more
than a dozen of oncogenic proteins with pivotal roles in cell
cycle progression, proliferation, and cell division. FBXW7 also
regulates protein degradation involved in DNA damage repair,
cell apoptosis and metastasis (for review, see Cheng and Li,
2012) (Table 1). The FBXW7 4q31.3 locus is deleted in ∼30%
of cancers (Knuutila et al., 1999) with a FBXW7 mutation rate
of ∼6% in primary tumors (Akhoondi et al., 2007). FBXW7
mutations and deletions have been described in various type of

tumor types including T-cell leukemia, stomach, pancreas, breast,
colon, bladder, prostate cancer, gastric, and cholangiocarcinoma
with T-cell leukemia and cholangiocarcima harboring the highest
mutations rates of 31 and 35% respectively (reviewed in Cheng
and Li, 2012; Zheng et al., 2016). However, mutation in FBXW7
alone may not be sufficient for carcinogenesis since a recent
study showed that both FBXW7and NOTCH1 deregulation may
be needed for the induction of human T-ALL (Takeishi and
Nakayama, 2014). The FBXW12 gene coding regions or promoter
were found to be deleted in several epithelial ovarian cancers
(De la Chesnaye et al., 2015). FBXW8 modulates cancer cell
proliferation through cell-type specific cyclin D1 degradation
(for review, see Zheng et al., 2016). Thus, FBXW8 is involved
in the proliferation of human choriocarcinoma cells via G2/M
phase transition with the regulation of CDK1, CDK2, cyclin A,
cyclin B1, and p27 expression (Lin et al., 2011). FBXW8 also
promotes the degradation of the hematopoietic progenitor kinase
1 (HPK1), a member of mammalian STE20-like serine/threonine
kinases that is lost in >95% pancreatic cancer via proteasome-
mediated degradation (Wang et al., 2014). The mouse FBXW12
homolog (FBXW15) interacts with histone acetyltransferase
binding to the origin recognition complex (HBO1) to mediate its
CUL1-regulated ubiquitination (Zou C. B. et al., 2013). Because
HBO1 plays a crucial role in DNA replication licensing and cell
proliferation, FBXW15 could control DNA replication licensing
and cell proliferation.

CUL2-Based Ubiquitin Ligase Complexes
CUL2 is the scaffold protein of the CRL2 complex, recruiting the
substrate receptor von Hippel-Lindau protein (pVHL) through
the dimer complex EloB and EloC (Pause et al., 1997). pVHL
can also be associated to CUL5 (Okumura et al., 2016). A
germline mutation in VHL is the basis of familial inheritance
of von Hippel-Lindau syndrome, which is characterized by the
development of cysts and tumors in multiple organ systems
(reviewed in Johnson et al., 2007). Mutations in pVHL or loss
of heterogeneity result in high levels of HIF proteins and VHL
tumorigenesis (Cassol and Mete, 2015). Deregulation of these
two protein is involved in the development of VHL-associated
clear-cell renal cell carcinoma (Maynard and Ohh, 2004) with
pVHL ectopic expression in VHL−/− renal cell carcinoma
leading to suppression of tumor formation inmice (Maynard and
Ohh, 2004). HIF-1α is also often overexpressed in several other
cancers (Zhong et al., 1999).

In addition to the extensively studied HIF-1α, many other
CRL2 substrates have been identified (Table 1). HIF-1α triggers
a transcriptional response to hypoxia, a key process critical
to promote tumor progression and an important determinant
of resistance to therapy (Vaupel and Mayer, 2007). Disruption
of CRLs components (mutation, gene loss) associates with
enrichments of HIF-target genes in several tumor types
(Rowbotham et al., 2014). Still, deregulation of CRLs may not
solely account for deregulated HIF-1α in cancer since HIF-1α
levels are controlled by different signalingmechanisms, including
regulation by the HSP90 pathway, the HIF-1 pathway and
the MDM2-p53 mediated ubiquitination pathway (Rowbotham
et al., 2014; Cassol and Mete, 2015; Masoud and Li, 2015). Since
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no CUL2 mutation was found to play a critical role in HIF-
1α activation in several cancers (Park et al., 2009), it is likely
that HIF-1α loss of homeostasis in cancer is mediated primarily
by deregulation of cullin expression rather than cullin point
mutations (Zhong et al., 1999). The silencing of another CUL2
substrate, RhoB, is a crucial step driving carcinogenesis (Huang
and Prendergast, 2006). In liver cancer, RhoB is targeted for
degradation via the CUL2-RBX1 complex, an important effector
that drives liver carcinogenesis (Xu et al., 2015). Similarly, CUL2
silencing in HPV16 positive cervical cancer cells resulted in slow
growth of xenograft tumors retarding G1-S transition of the cell
cycle and favoring apoptosis (Xu et al., 2016). As observed with
other cullins, CUL2 deregulation may be driven by microRNAs.
For example, CUL2 overexpression in gastric cancer tissues
may be driven, in part, by aberrant levels of miR-574-3p (Su
et al., 2012), suggesting a role for the CUL2/miR-424 pathway in
promoting growth in cancer cells.

CUL3-Based Ubiquitin Ligase Complexes
Alterations of signaling pathways caused by the deregulation of
CUL3 and/or CUL3-associated factors can give rise to cancer. For
example, CUL3, in complex with the substrate adaptor Ketch-
like family member 20 (KLHL20), is thought to promote cancer
progression through increased ubiquitination and degradation of
the Promyelocytic leukemia (PML) protein (Yuan et al., 2011).
Hypoxia may exacerbate PML-KLHL20-driven carcinogenesis,
since the promoter ofKLHL20 contains several hypoxia-response
elements (Yuan et al., 2011) and PML is a negative regulator
of HIF-1 (Bernardi et al., 2006). Thus, degradation of PML
by KLHL20 would potentiate a strong induction of several
hypoxia pathways. Indeed, KLHL20 expression is elevated in
prostate cancer and correlates with HIF-1α upregulation, and
PML downregulation (Yuan et al., 2011). It should be noted
however that a study with HeLa cells suggests that HIF-
2α, not HIF-1α, interacts with KLHL20 and that knockdown
of KLHL20 decreased HIF-2α but not HIF-1α protein levels
(Higashimura et al., 2011). Although this study did not show
directly that KLHL20-mediated protection of HIF-2α from
degradation involves CRL3, it suggested that both HIF-1α and
HIF-2α may be controlled by CRLs in cancer.

Another Kelch-like family member, KLHL39, is down
regulated in cancer and correlates with both low PML expression
and cancer progression (Chen et al., 2015). Unlike KLHL20,
KLHL39 does not bind CUL3 but acts as an inhibitor by blocking
KLHL20-mediated ubiquitination of PML by inhibiting KLHL20
binding to both CUL3 and its putative substrates (Chen et al.,
2015). Thus, KLHL39 may act as a tumor suppressor by blocking
KLHL20-dependent ubiquitination of PML and other substrates
(Yuan et al., 2011).

The CRL3 substrate Kelch-like ECH-associated protein
(KEAP1) is a key inhibitor of the transcription factor NRF2
that regulates genes involved in the antioxidant response
and drugs detoxification (Chen and Chen, 2016). The CUL3-
KEAP1-NRF2 pathway prevents oxidative stress-induced DNA
damage and carcinogenesis in normal cells and mediates the
response to oxidative stress, cell growth, and survival in cancer
cells. The CRL3-KEAP1-NRF2 pathway contributions to cancer

development are reinforced by the observed deregulation of
KEAP1 and the presence of CUL3 mutations that could lead to
NRF2 overexpression inmany cancers (Chen andChen, 2016 and
references therein).

Other dual adaptor/receptor BTB proteins may have a crucial
role in maintaining specific metabolic pathways controlled by
hormone receptors (Zhuang et al., 2009). Speckle type BTB/POZ
protein (SPOP) is one of the highest loci to exhibit loss of
heterozygosity in breast cancers (Li et al., 2011) and has high
mutation rates in prostate (Kan et al., 2010) and endometrial
cancers (Le Gallo et al., 2012). Frequent mutations in SPOP
occur in domains that interfere with E3 substrate binding and
may affect SPOP’s ability to degrade androgen receptors that
contribute to cancer development in prostate cancer (An et al.,
2014) and progesterone receptors in breast cancer cells (Gao
et al., 2015).

CUL4-Based Ubiquitin Ligase Complexes
Deregulation of CUL4A leads to tumorigenesis in transgenic
mice (Jia et al., 2017) and the CUL4A locus is often amplified
in many human cancers, including hepatocellular carcinomas,
pleural mesotheliomas, breast and prostate cancers, squamous
cell carcinoma, adrenocortical carcinoma, medulloblastoma,
and ovarian invasive carcinoma (Sharma and Nag, 2014
and references therein). CUL4A overexpression in cancer is
associated with tumor size, cell proliferation, migration, invasion,
and cancer aggressiveness (Song et al., 2015; Deng et al., 2016;
Ren et al., 2016; Jia et al., 2017; Nagel et al., 2017). In addition,
CUL4A silencing can inhibit cell proliferation and invasion, and
induce cell apoptosis. These processes are concomitant with
increased expression of p53 and p27 and decreased expression
of the metastasis—associated matrix metalloproteinase MMP-2
(Song et al., 2015). CUL4A involvement in tumorigenesis may
be directly linked to its pivotal roles in the degradation of tumor
suppressors or proto-oncogenic proteins associated with growth
regulation, including p21, p73, p150/Sal2 and RASSF1A, N-and
c-Myc and c-Jun (Sharma and Nag, 2014; Song et al., 2015).
CUL4A may also play a crucial role in the regulation of PAQR3
(progestin and adipoQ receptor family member III), a newly
discovered tumor suppressor that exerts its biological function
through negative regulation of the oncogenic Raf/MEK/ERK
signaling (Qiao et al., 2015).

Overexpression of CUL4B in several cancers such as lung,
colon, pancreatic, esophageal, liver, kidney, bladder, and cervical
cancer, generally associated with poor patient prognosis, has
been reviewed elsewhere recently (Li and Wang, 2017). The
critical role for CUL4B in tumorigenesis can be explained by
its pleiotropic roles in cellular mechanisms such as cell cycle
progression, DNA damage repair and apoptosis (see Li and
Wang, 2017 for more details). In cervical carcinoma, CUL4B
expression has been shown to be linked to histological grades
with high expression related to tumor size, invasion, and
metastasis (Yang et al., 2015; Jia et al., 2017; Li and Wang, 2017).

CUL5-Based Ubiquitin Ligase Complexes
Like the CUL3-BTB complex, CUL5may be involved in hormone
receptor homeostasis. CUL5 overexpression led to decreased cell
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proliferation of T47D breast cancer cells (Burnatowska-Hledin
et al., 2004) and attenuates estrogen receptor alpha and estrogen-
dependent growth in aMAPK-dependentmanner (Johnson et al.,
2007). Similarly, CUL5 is significantly decreased in endometrial
cancers with the most aggressive type of cancer displaying the
highest CUL5 reduction (Devor et al., 2016). In concordance,
CUL5 overexpression led to significantly slower growth in some
endometrial cancer cells. CUL5 expression is negatively regulated
by miR-19a and miR-19b (Xu et al., 2012), which are highly
expressed in cervical cancer cells and are important determinants
of the malignant phenotype in those cells, a phenotype that
was suppressed when CUL5 3′UTR was deleted. CUL5 is also
a direct target of miR-7 in liver cancer through direct miR-7
binding to the CUL5 3′UTR (Ma et al., 2013). CUL5 silencing
by miR-7 led to cell cycle arrest and suppression of colony
formation, suggesting that the role of CUL5 downregulation in
carcinogenesis could be tissue specific.

CUL7-Based Ubiquitin Ligase Complexes
CUL7 was first identified as a novel antiapoptotic oncogene
associated with the regulation of p53 levels (Kim et al.,
2007). Breast cancers can overexpress CUL7, leading to p53
downregulation (Guo et al., 2014; Men et al., 2014). CUL7
was also identified as a gene involved in liver carcinogenesis
through cirrhosis associated with non-alcoholic fatty liver
disease, a disease connected with metabolic syndrome. CUL7
maps to the 6p21.1 amplicon characteristic of this type of
liver cancer, suggesting that this particular cancer is driven
by the anti-apoptotic effect of increased CUL7 through p53
downregulation (Paradis et al., 2013). CUL7 also promotes
epithelial-mesenchymal transformation of liver cancer and its
high expression in liver tumors is associated with poor prognosis
(Zhang D. H. et al., 2016; An et al., 2017a).

CUL9-Based Ubiquitin Ligase Complexes
CUL9 (formerly known as PARC) is a cytoplasmic, p53-binding
protein, and a p53-dependent tumor suppressor in mice (Pei
et al., 2011) as well as in murine and human leukemic cells
(Seipel et al., 2016; Li and Xiong, 2017). CUL9 deletion-induced
tumorigenesis tends to be organ specific since mice lacking
CUL9 were shown to develop tumors in sarcoma, lung, liver,
and ovary only. CUL9’s role in protecting genome integrity and
tumor suppression is facilitated by mediating the degradation of
survivin and cytochrome C in normal and cancer cells (Gama
et al., 2014; Li et al., 2014).

TARGETING CRL COMPLEXES IN CANCER
THERAPIES

Since cullins are overexpressed in many cancer types, many novel
cancer therapy strategies aim to inhibit cullin-ring ligase activity.
MLN4924 (pevonedistat), a selective inhibitor of NEDD8-
activating enzyme (NAE) structurally related to adenosine 5′

monophosphate that inhibits cullin NEDDylation and CRLs
activity, was first shown to inhibit the growth of human
colon tumor xenografts in nude mice (Soucy et al., 2009). In
promising experiments, the drug was able to induce rereplication

and permanent growth arrest in melanoma cells but not in
immortalized non-transformed melanocytes (Benamar et al.,
2016). Another NEDDylation inhibitor, TAS4464, is also tested
in clinical trials (Table 2). NEDDylation inhibitors inactivate
CRL E3 ubiquitin ligases and causes the cellular buildup of
many substrates involves in different cellular functions (see
Oladghaffari et al., 2016 for a review). Most clinical studies
involving pevonedistat/MLN4924 or TAS4464 (Table 2) are still
restricted to phase I and II trials.

As shown in Table 2, the first phase I study involving
a NEDDylation inhibitor (pevonedistat) investigated both
pharmacokinetics and pharmacodynamics in patients with
acute myeloid leukemia and myelodysplastic syndromes and
demonstrated a modest clinical activity (Swords et al., 2015).
Subsequent phase I studies evaluated the use of pevonedistat
against relapsed/refractory multiple myeloma or lymphoma
(Shah et al., 2016), advanced nonhematologic malignancies
(Sarantopoulos et al., 2016), and metastatic melanoma
(Bhatia et al., 2016). At the time of writing, there are 11
ongoing clinical trials using MLN4294/pevonedistat targeting
both solid tumors (4) and blood cancers (7) (Table 1 and
clinicaltrials.gov). Since MLN4924 sensitizes cancer cells to
several chemotherapeutic drugs (reviewed in Oladghaffari et al.,
2016), the majority of ongoing trials (10/11) are evaluating
pevonedistat in combination with other anti-tumor drugs
such as DNA damaging agents such as carboplatin, nucleoside
analogs (azacitidine, gemcitabine, decitabine), and tubulin-
binding drugs (paclitaxel, vincristine). In many studies,
NAE inhibition by pevonedistat was confirmed in vivo by
the accumulation of cullin-ring ligases substrates, including
CDT1 and NRF2 in solid tumors and upregulation of NRF2
gene in blood. In the metastatic melanoma study (Bhatia
et al., 2016), an additional panel of NAE-regulated substrates
(ATF3, GCLM, GSR, MAG1, NQO1, SLC7A11, SRXN1,
TXNRD1) was used to confirm inhibition of NAE in blood
and increases in pevonedistat–NEDD8 adducts. CDT1 and
NRF2 protein levels were measured in tumor biopsies. In
the study related to advanced nonhematologic malignancies,
stable disease was observed in 80% of the patients receiving
both dexamethasone and pevonedistat, and in 69% of patients
receiving pevonedistat alone (Sarantopoulos et al., 2016). In
patients with metastatic melanoma (Bhatia et al., 2016), one
patient (3%) achieved partial response while 15 patients (48%)
showed stable disease.

Several studies have shown the proof of concept by
using MLN4924 for increased cancer cell killing by radiation.
MLN4924 sensitized head and neck squamous carcinoma cells to
ionizing radiation and enhances radiation-induced suppression
of xenografts in mice (Vanderdys et al., 2017). MLN4924
also enhanced the susceptibility of nasopharyngeal carcinoma,
colorectal, lung, pancreatic, and breast cancer cells to radiation
(Oladghaffari et al., 2016, 2017; Wan et al., 2016; Xie et al.,
2017). Importantly, MLN4924 was shown to sensitize several
types of cancer cells to ionizing radiation with a minimal
effect on non-cancerous cells (Wei et al., 2012). Mechanistically,
MLN4924-increased radiosensitization may be due to induced
G2 cell arrest, apoptosis, delayed DNA repair, and loss of
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TABLE 2 | A non-exhaustive list of clinical studies targeting cullin-RING ubiquitin E3 ligases.

Condition Drug(s) Measurements Phase References or

ClinicalTrials.gov

identifier

Advanced solid tumors,

neoplasms

(14C)-Pevonedistat 1. cumulative excretion of radioactive

Pevonedistat in urine and feces/Circulatory

and excretory pevonedistat metabolites

2. Report of TEAEs and SAEs

I NCT03057366

Recurrent AML,

therapy-induced AML,

untreated or recurrent

AML

Pevonedistat plus Decitabine 1. Safety and tolerability of Pevonedistat

added to Decitabine

2. MTD of pevonedistat in combination to

Decitabine

3. mIR-155 expression, promoter methylation,

and mIR-155 target gene expression

(SHIP1/PU.1)

4. NF-kappaB expression and enrichment on

mIR-155 promoter

I NCT03009240

Metastatic melanoma Pevonedistat 1. MTD of 209 mg/m2

2. Clinical activity: 3% PR, 48% SD

3. Pevonedistat plasma concentration

increased approximately proportionally with

dose from 50 to 278 mg/m2 after Day 1

intravenous infusion

I NCT01011530 (*) (Bhatia

et al., 2016)

Solid tumors 1. MLN4924 plus Docetaxel

2. MLN4924 plus Docetaxel

plus Carboplatin

3. MLN4924 plus Gemcitabine

1. Number of adverse events

2. Time course MLN4924 plasma

concentration

I NCT01862328

Advanced solid tumors MLN4924 (schedules A and C)

MLN4924 + Dexamethasone

(Schedule B)

1. MTD of 50 mg/m2 (schedule A) 50 and 67

mg/m2 (schedule B and C, respectively)

2. 11/13 patients with > 20% increase in

CDT1 and NRF2 CRLs substrates

3. 13/14 patients show NEDD8 adducts in

tumor biopsies

4. Clinical activity: 74% SD for schedules B

and C

I NCT00677170 (*)

(Sarantopoulos et al., 2016)

AML MLN4924 plus Azacitidine 1. Safety and tolerability of MLN4924 in

combination with Azacitidine

2. Disease response rate

3. 30-day and 60-day mortality rate

I NCT01814826

Advanced solid tumors MLN4924

Fluconazole

Itraconazole

Docetaxel

Carboplatin

Paclitaxel

1. TEAEs and disease response

2. MLN4924 plasma concentration, blood to

plasma ratio. MLN4924 clearance

3. Clinical response

I NCT02122770

AML, ALL, MDS MLN4924

Intravenous infusion on days 1,

3, and 5 (schedule A) and 1, 4,

8, and 11 (schedule B)

1. MTD of 59 (Schedule A) and 83 mg/m2

(Schedule B)

2. Clinical activity: 17% CR/PR (schedule A);

10% CR/PR (schedule B)

3. 32/35 patients with NEDD8 adduct in tumor

biopsies

4. Pevonedistat increased within 4–8 h after

infusion and returned to baseline within 24 h

I NCT00911066 (*) (Swords

et al., 2015)

Leukemia, MDS,

Myeloid, Acute

1. Pevonedistat

2. Pevonedistat plus Azacitidine

1. TEAEs and dose limiting toxicities

2. Overall and complete responses

3. Pevonedistat plasma concentration and

clearance

I NCT02782468

(Continued)
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TABLE 2 | Continued

Condition Drug(s) Measurements Phase References or

ClinicalTrials.gov

identifier

Relapsed/refractory

multiple Myeloma or

lymphoma

MLN4924

Intravenous infusion on Week 1,

2, 8, and 9 (schedule A) and 1,

4, 8, and 11 (schedule B)

1. MTD of 110 mg/m2 (schedule A) and 196

mg/m2 (schedule B)

2. 11/13 patients with NEDD8 adducts in bone

marrow aspirates

3. CDT1 and NRF2 skin and NRF2 mRNA in

blood increased in treated patients

4. Clinical activity: 1 patient with PR and 71%

SD

I NCT00722488 (*) (Shah

et al., 2016)

Multiple myeloma

Non-Hodgkin

lymphoma

TAS4464 1. Investigate the safety and tolerability of

TAS4464; identify TAS4464 MTD

2. Efficacy of TAS4464, defined as Objective

Response Rate (ORR) per IWG criteria

(NHL) and IMWG criteria (MM).

I

II

NCT02978235

MDS

leukemia, CML

1. Azacitidine

2. Azacitidine plus Pevonedistat

1. EVF

2. OS

II NCT02610777

Non-small cell lung

cancer

Pevonedistat plus Docetaxel 1. Response to treatment

2. Median progression free survival time, OS

time, and patients who achieve stable

disease

3. Toxicities by system organ class

II NCT03228186

MDS leukemia, CML,

AML

1. Azacytidine

2. Azacytidine plus Pevonedistat

1. EVF, OS, partial remission

2. overall response. 6 months and 1 year

survival rate

II NCT02610777

MDS leukemia, CML 1. Azacitidine

2. Azacitidine plus Pevonedistat

1. Overall response and EVF

3. OS

3. Pevonedistat plasma concentration

4. EVF and OS in participants with TP53

mutations or any adverse cytogenetic risk

group

III NCT03268954

EVF, Event-Free Survival; OS, Overall Survival; AML, Acute Myeloid Leukemia; CML, Chronic Myelomonocytic Leukemia. TEAEs, Treatment Emergent Adverse Events; SAEs, Serious

Adverse Events; MDS, Myelodysplastic Syndrome; MTD, maximum tolerated dose. CR, complete response; PR, partial response; SD, Stable diseases. (*) Study completed.

radical oxygen species homeostasis (Oladghaffari et al., 2016;
Wang et al., 2016). For all these reasons, future clinical trials
may expand the use of NAE inhibitors to radiotherapy to
treat cancer.

FUTURE DIRECTIONS

Developing a better understanding of the contributions of each
Cullin-Ring Ligase complex in cellular homeostasis remains
a challenging task. A large portion of the 100,000 different
proteins that are present per cell needs to be recycled or
eliminated in a timely manner during development or cell
cycle progression. The complexity of such a task explains the
extreme intricacies of protein degradation, where substrate
recognition (or protein modification recognition) is crucial.
It also suggests that most of the CRL substrates are yet
to be discovered. Future studies are expected to reveal
new CRL-interacting factors and new regulatory pathways,

and provide further insights into the existence of regulatory
crosstalk among the different CRLs. New roles for cullins
in carcinogenesis will assuredly emerge in the near future
since the relationship between cancer and some cullins
(i.e., CUL7 and CUL9) is still a relatively new concept
(Figure 2).

While drugs that inhibit all CRLs are currently being
validated, it is plausible that future drug development will also
target individual CRLs or specific CRLs-interacting factors. For
example, a specific SKP2 inhibitor that selectively suppresses
the CRL1 E3 ligase activity was reported to exhibit anticancer
activity against human tumor xenografts in mice (Chan
et al., 2013). In another approach, homo-bivalent molecules
aiming to target CRL2-VHL induced preferential dimerization
and isoform-selective degradation of VHL (Maniaci et al.,
2017). Further development of agents that modulate specific
interactions with substrate receptors is expected in the future.
Of particular interest are CRLs that play regulatory roles in
molecular pathways altered in cancer cells, such as components
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of chromatin-associated CRLs that modulate DNA replication.
Such a development will benefit from further understanding
of the interactions that fine-tune DNA replication, such as
selective interactions of groups of replication origins with
distinct regulatory proteins, including DCAF members of CRL4
(Zhang Y. et al., 2016; Aladjem and Redon, 2017). Future
advances will be likely target CRL-mediated pathways that
maintain genomic stability by preventing DNA rereplication
and modulate the S-phase DNA damage response via protein
degradation.
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