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Abstract: Assisted oocyte activation (AOA) has been pro-
posed as an effective technique to overcome the problem
of impaired fertilization after intracytoplasmic sperm injec-
tion (ICSI) but the safety of AOA remains a concern. We
aimed to investigate if AOA induces imprinting effects on
embryos. We used 13 cleavage embryos, nine blastocysts,
and eight placentas from 15 patients. The subjects were
divided into six groups by tissue type and with or without
AOA. The methylation levels of imprinted genes (H19, pater-
nally expressed gene [PEG3] and small nuclear ribonucleopro-
tein polypeptide N [SNRPN]) were tested by pyrosequencing.
We observed different methylation levels among cleavage
embryos. The variability was much more remarkable between
cleavage embryos than blastocysts and placenta tissues. The
methylation levels were especially higher in SNRPN and lower
in the H19 gene in AOA embryos than those without AOA. No
significant difference was found either among blastocysts or
among placenta tissues regardless of AOA. The methylation
levels of the three genes in blastocysts were very similar to
those in the placenta. Compared to conventional ICSI, AOA
changed imprinting methylation rates at H19 and SNRPN in
cleavage embryos but not in the blastocyst stage and placenta.
We recommend that blastocyst transfer should be considered
for patients undergoing AOA during in vitro fertilization.
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1 Introduction

The introduction and implementation of intracytoplasmic
sperm injection (ICSI) have become the most successful
micromanipulation procedure for treating male inferti-
lity. However, although the fertilization rate of ICSI is
70–80% [1,2], total fertilization failure still occurs in
1–3% of ICSI cycles and can reoccur in subsequent cycles
[3–5]. Thus, although total fertilization failure after ICSI
is a rare event, it may occur in the presence of a presump-
tively normal spermatozoon. Moreover, low fertilization
(<30%) can be observed in repeated ICSI cycles for some
patients [6].

After appropriate counseling, the combination of
ICSI with assisted oocyte activation (AOA) is often recom-
mended for couples dealing with total or nearly total
fertilization failure after ICSI. At present, several che-
mical, mechanical or physical stimuli are applied to pro-
mote oocyte activation during a subsequent ICSI cycle to
overcome this failed fertilization [7]. Previous studies
have reported an increase in fertilization rates and utili-
zation of cleavage stage embryos with AOA [8]. The AOA
protocol is usually based on Ca2+ ionophores [9–12],
strontium [13,14], a modified ICSI technique [15,16], or
electric pulses [17,18]. Among these protocols, Ca2+ iono-
phoreA23187 treatment has beenwidely applied inhuman
oocyte activation [3].

During the physiological process of fertilization, the
oocyte is activated by phospholipase C zeta, a sperm-borne
factor [19–21], which induces the production of inositol-
triphosphate in the ooplasm and releases calcium from the
endoplasmic reticulum in an oscillatory mode [3]. Sperm-
induced Ca2+ oscillations stimulate mitochondrial respira-
tion and, in turn, the resulting adenosine triphosphate
production is required to maintain sperm-triggered cal-
cium waves. Nevertheless, during the AOA process, the
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oocyte activation with A23187 induces Ca2+ elevation in the
form of a single transient, which is not followed by further
Ca2+ oscillations. Beyond that, the action of A23187 can
release calcium in an uncontrolled fashion from all intra-
cellular stores, including those that would not normally be
involved in the activation process. Therefore, because of
the nonphysiological effect of A23187, the safety of AOA in
the process of assisted reproductive technology (ART)
should be carefully monitored.

The potential of calcium ionophores to support oocyte
activation and achieve acceptable fertilization rates has
been already tested in mice [22,23]. Moreover, retrospective
studies also analyzed their oocyte activation and proposed
its benefit, which resulted in healthy babies [6,10,24,25].
Yet, these studies have mainly focused on investigating
the effectiveness of AOA in reproductive medicine, while
few studies reported on the safety of this approach. In
fact, ionophores, including A23187, exert many effects on
cell homeostasis that might have a long-term effect on gene
expression, some of which might be a threat and possible
risk for epigenetics [26–28].

In this study, we evaluated the effects of AOA on
imprinted genes during ART treatment. Paternal imprinted
maternally expressed transcript (H19), paternally expressed
gene (PEG3), and small nuclear ribonucleoprotein polypep-
tide N (SNRPN), which are well-studied imprinted genes,
were selected for analysis. Abnormal methylation of the
SNRPN gene has been reported in imprinting syndromes
that with an increased prevalence in children conceived
using ART [29]. H19 is a paternally methylated imprinted
gene; its alterations have been described in placentas from
ART pregnancy [30]. The loss of PEG3 imprinted methyla-
tion has been observed in mouse blastocysts derived from
ART [31]. By using the donated embryos and placenta
tissue, we compared the methylation status of differentially
methylated regions (DMRs) of these three key imprinted
genes between patients with and without AOA.

2 Methods

2.1 Ethical approval

The study was approved by the Ethical Committee of
Peking University People’s Hospital (approval number
2011-67). All the patients delivered a healthy baby after
ART treatment. Surplus embryos and placenta tissues
were donated for research with written consent (Table A1).

2.2 IVF-ET treatment protocols and artificial
oocyte activation

The women who were offered AOA had at least one total
or nearly total fertilization failure after ICSI in previous
cycles, and one couple with globozoospermia was offered
AOA on half oocytes and conventional ICSI on the remain-
ing half oocytes. The patients who underwent conventional
ICSI treatment (nonassisted oocyte activation [NOA]) were
used as controls; the two groups were matched by age.

The individual stimulation protocols for in vitro fertiliza-
tion & embryo transfer (IVF-ET) were determined accord-
ing to the age of the patient and the ovarian reserve status,
including the antral follicle count, basal levels of follicle-
stimulating hormone (FSH), luteinizing hormone, and estra-
diol (E2). Most women underwent the long luteal downregu-
lation protocol. Briefly, 1.25mg of gonadotropin-releasing
hormone agonist (GnRHa, Diphereline®, Beaufour-Ipsen
Pharmaceuticals Ltd., Paris, France) was injected on
menstrual day 21. The initial gonadotropin dose was based
on the physician’s discretion but always contained an
amount of rFSH, supplemented with at least one ampoule
(75 IU) of human menopausal gonadotropin. For the flare-
up agonist stimulation, a dose of rFSH along with a fixed
dose of GnRHa (0.1mg/day, triptorelin, Ferring, Saint-Prex,
Switzerland)was administered beginning on menstrual day
2. Human chorionic gonadotropin (HCG, 10,000 IU, Lizhu
Ltd., Guangdong, China) was administered when at least
two follicles were 18mm in diameter. Oocyteswere retrieved
by transvaginal ultrasound-guided follicular aspiration 36 h
later. Oocytes were fertilized using ICSI.

For artificial oocyte activation, 30min after ICSI,
oocytes were incubated in a culture medium containing
10mM calcium ionophore A23187 (Sigma) for 10 min at
37°C and 6% CO2. The oocytes were then extensively
washed and placed in a culture medium (G-1; Vitrolife)
in the incubator under 6% CO2, 5% O2, and 89% N2.

The fertilization results (two pronuclei, 2PN) were
assessed 16–20 h after insemination. High-quality trans-
ferred or frozen embryos were defined as embryos devel-
oped from normally fertilized eggs, with no more than
20% fragmentation, no multinucleation, and 7–8 blasto-
meres, 72 h after egg retrieval. Blastocysts scored as
Gardner’s classification were transferred or frozen if they
reached at least third-stage expansion with A or B for inner
cell mass (ICM) or trophectoderm. One or two embryos per
patient were transferred on the third or fifth day after
oocyte retrieval. Surplus embryos were frozen by vitrifica-
tion procedure (KITAZATO). After the patients agreed and
decided to donate, frozen embryos were thawed, and
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embryo quality was evaluated. Next, samples were frozen
in nitrogen for DNA methylation analyses. Donated pla-
centa tissue was collected within 30min after delivery and
frozen in nitrogen.

2.3 Pyrosequencing

Genomic DNA from a single embryo or placenta was iso-
lated with the DNeasy Blood and Tissue Kit (Qiagen).
Subsequent bisulfite conversion was performed using an
EpiTect Bisulfite Kit (Qiagen), following the manufacturer’s
guidelines. The primers for a polymerase chain reaction and
pyrosequencing (Table 1) were designed using PyroMark
Assay Design 2.0 software (Qiagen). Polymerase chain reac-
tion amplification for H19, SNRPN, and PEG3was performed
with an initial denaturation step at 95°C for 2min, 36 cycles
at 95°C for 15 s, primer-specific annealing temperature for
15 s, and 72°C for 15 s; a final extension step was completed
at 72°C for 7min. The amplification reaction was carried out
in a final volume of 50 µL, containing 2 µL of DNA, 12.5 µL of
ready-mix (KAPA 2 G Robust HS ReadyMix), 1 µL of each
primer (50 pM/µL) and 8.5 µL H2O. Pyrosequencing of the
PCR fragments was performed on a Pyro-Mark Q96 ID
pyrosequencing system (Qiagen). Pyro Q-CpG software
(Qiagen) was used for data analysis.

2.4 Statistical analyses

Statistical analyses were performed with SPSS version
17.0. For each imprinted gene, the difference in DNA

methylation between embryos was assessed by a one-
way ANOVA test followed by Turkey multiple comparison
tests. If the data sets were not normally distributed, the
nonparametric Mann–Whitney U test was used to assess
between-group differences. A P-value of <0.05 was con-
sidered statistically significant.

3 Results

In order to evaluate the possible impact of AOA on epi-
genetics, we quantified DNAmethylation of three imprinted
genes (PEG3, SNPRN, and H19) using pyrosequencing on
cleavage embryos, blastocysts, and placenta. A total of 13
cleavage embryos, nine blastocysts, and eight placentas
were included in this study. As highlighted in Table 2,
four cleavage embryos and four blastocysts were derived
from AOA, and nine cleavage embryos and five blastocysts
fromNOA (conventional ICSI). All these embryos came from
the same cycle, in which the patients had one or two
healthy babies after treatment. In addition to these embryos,
placentas were also collected from eight patients; three
underwent AOA and five underwent NOA. There were no
significant differences between the two groups with regard
to women’s age, body mass index, treatment protocol,
oocytes, and high-quality embryos (Table A2).

The average methylation levels of H19, PEG3, and
SNRPN for each embryo or placenta are shown in Figure 1.
First, we compared the methylation levels in cleavage
embryos (AOA-C versus NOA-C), blastocysts (AOA-B versus
NOA-B), and placentas (AOA-P verse NOA-P) between

Table 1: Primers used for H19, PG3, and SNRPN methylation analysis

Imprinted gene Primer sequence Amplicon length (base pair) Number of CpGs site

H19 Forward 253 6
AGGGTTTTTGGTAGGTATAGAG
Reverse
CCTATTCCCAAATAACCCC
Sequencing
GTGGAATAGGAAGTGGT

PEG3 Forward 154 4
GGTGTAGAAGTTTGGGTAGTT
Reverse
ACTCACCTCACCTCAATACTAC
Sequencing
GTTTATTTTGGGTTGGT

SNRPN Forward 220 7
GGGAGGGAGTTGGGATTTTTGTA
Reverse
AAACCACCCACACAACTAACCTTAC
Sequencing
GGAGTTGGGATTTTTGTAT
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Table 2: Summary of different groups for DNA methylation analysis

Group Tissue type Number Method of fertilization AOA Live birth (patient who donated)

AOA-C D3 cleavage embryo 4 ICSI Yes Yes
NOA-C D3 cleavage embryo 9 ICSI No Yes
AOA-B Blastocyst 4 ICSI Yes Yes
NOA-B Blastocyst 5 ICSI No Yes
AOA-P Placenta 3 ICSI Yes Yes
NOA-P Placenta 5 ICSI No Yes

Figure 1: Pyrosequencing analysis of DNA methylation at three imprinted genes for different types of embryos or placentas. (a) The global
methylation percentage in the methylated allele of H19, PEG3, and SNRPN for different embryos or placentas. Each dot corresponds to an
embryo or a placenta. (b) Average methylation values plotted with standard deviation values for a different group. For genes H19 and
SNRPN, the difference between AOA-C and NOA-C was significant (P ≤ 0.05 and P ≤ 0.001).
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groups. The greatest range in methylation values occurred
in the groups AOA-C and NOA-C, especially for PEG3
(2.5–59.25% in the AOA-C group and 2.0–59% in the
NOA-C group) and SNRPN (32.18–92% in the AOA-C group
and 4.14–42.57% in NOA-C group); for H19 and SNRPN,
the difference in DNA methylation between AOA-C and
NOA-C groups was significant (P-value ≤0.05 for H19
and P-value ≤0.001 for SNRPN). For the gene PEG3, no
significant difference was observed between AOA-C and
NOA-C groups. More importantly, in the blastocysts and
placentas the variance of three genes was no difference
between two groups.

The methylation profiles of individual imprinted alleles
for H19, SNRPN, and PEG3 are shown in Figure 2. The
number of DMR-associated CpG dinucleotides analyzed
for each gene is as follows: H19 (n = 6), SNRPN (n = 7),
and PEG3 (n = 4). The DNA methylation status of each
individual CpG was then determined by pyrosequencing.
For the gene SNRPN, the comparison between AOA-C and
NOA-C groups revealed a significant difference; the methy-
lation levels of all the 7 CpG sites were significantly higher
in cleavage embryos of AOA than those of NOA (P < 0.05).
For the gene H19, methylation values on the third site were
significantly different between the cleavage embryos, which
were lower in the AOA-C group than in the NOA group
(3.45 ± 0.47% versus 76.33 ± 22.69%, P < 0.05). For PEG3,
although there was a great deviation on cleavage embryos,
no significant difference was observed between AOA-C and
NOA-C groups (P > 0.05). Notably, for all these CpG sites of
three imprinted genes, the methylation levels showed no
significant difference in blastocysts with or without AOA
(AOA-B versus NOA-B, P > 0.05). Similar datawere obtained
when comparing the methylation variance between pla-
centa in the two groups (AOA-P versus NON-P).

The development trend of the three imprinted genes
from cleavage embryos, the blastocyst to the placenta is
shown in Figure 3. For the three genes, the relative
methylation level had a similar kinetic trend from the
blastocyst stage to the placenta, both in the AOA group
and NOA group. The methylation level in the blastocyst
and placenta was very close in both groups. When com-
paring among AOA-C, AOA-B, and AOA-P or comparing
among NOA-C, NOA-B, and NOA-P, there was no signifi-
cant variance for the methylation levels of genes H19 and
PEG3 (P > 0.05). The results were different for the gene
SNRPN. Comparison across the groups without activation
revealed that a significant difference existed between
NOA-C and NOA-B and NOA-C and NOA-P. The methyla-
tion level of SNRPN in cleavage embryos was much lower
than those in blastocysts and placentas. However, there

were no significant differences in any of the performed
comparisons across the group with activation.

4 Discussion

AOA is an effective method for avoiding total fertilization
failure. It can repair defective activation and improve ICSI
outcomes. Clinical trials suggested that birth outcomes
and health for children from artificial oocyte activation
techniques are comparable to those children conceived
by conventional ICSI [32] and that the developmental
outcomes of children 3–10 years born after AOA are
within expected ranges [25]. Yet, the number of live births
after AOA is still low. Nonetheless, the sole concept of
using live birth as the end-point for successful IVF is
somewhat controversial [33]. Although the use of calci-
mycin or ionomycin, which can increase membrane per-
meability to extracellular Ca2+, had not been linked with
any deleterious effects and did not cause chromosomal
abnormalities [34,35], their safety and potential long-
term effects during embryogenesis are still unknown.
Recently, Chen et al. showed that a high concentration
of ionomycin increased DNA damage and decreased
mouse blastocyst formation [36]. This study indicated
that the improper application of AOA may have adverse
effects on pre-implantation embryo development.

Biochemical processes during artificial oocyte activa-
tion are well-investigated [37]; yet, most data come from
preclinical studies. Because gametogenesis and embryo-
genesis exhibit considerable species differences, particu-
larly between humans and rodents, experimental find-
ings in animal models cannot directly and accurately
reflect the real situation in humans. Knowing that iono-
phores can affect cell homeostasis and, in turn, have
long-term effects on gene expression, concerns have
been raised regarding the interference of AOA in the epi-
genetic quality of the oocyte and embryo. Sill, evidence
reporting epigenetic effects of AOA on humans is limited.
ARTs and infertility may also be associated with epigenetic
disorders such as the disruption of genomic imprinting
[38–40]. Thus, further investigation is needed to investi-
gate whether oocyte activation may cause epigenetic modi-
fications as assumed for in vitro operation or culture
media.

In many studies, imprinted genes were used as a
model for studying ART-induced epigenetic changes in
oocytes [41–46]. In this study, surplus embryos donated
by patients who underwent ART were used to investigate
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Figure 2: The methylation profile of methylated alleles of H19, SNRPR, and PEG3 for a different group. Boxplot diagrams present the
methylation percentage of all CpG sites across H19 (H19 P1-P6), SNRPR (SNRPN P1-7), and (PEG3 P1-P4) in six groups (AOA-C, NOA-C, AOA-
B, NOA-B, AOA-P, and NOA-P). The box represents the interquartile range, which contains 50% of values. The whiskers are lines that extend
from the box to the highest and lowest levels. A line across the box indicates the median value for each group. Statistical significance values
are as follows: *P ≤ 0.05 and **P ≤ 0.001.
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the impact of oocyte activation on the methylation of
imprinted genes. Our data suggested that the methylation
levels for all three genes (H19, PEG3, and SNRPN) were
altered in embryos obtained by AOA [31]. The methylation
levels of H19 and SNRPN in cleavage embryos obtained
by activation were significantly different from embryos
obtained without activation. The methylation level of
SNRPN was much higher, and the methylation level of
H19 was much lower in a group with activation, while
no difference was observed for PEG3. Based on these
results, it was not possible to assess which level was
exactly right as we did not have the information on
the epigenetic variation for embryos from fertile cou-
ples. Yet, these data suggested that AOA might impact
certain imprinted genes compared to traditional ICSI.
Our results support the hypothesis that the combination
of ARTs could inducemore epimutations in the embryos as
was previously suggested [40,47].

Apart from being accurately established during game-
togenesis, genome-wide changes in DNA methylation may
occur during the pre-implantation period. The dramatic
DNA demethylation occurs from fertilization and the two-
cell stage human embryo and reaches the lowest DNA
methylation at the blastocyst’s ICM. Greater global demethy-
lation and DNA remethylation changes make the embryo
more susceptible to disturbances [46,48,49]. In this study,
most of the obvious changes were observed in cleavage
embryos, suggesting that cleavage embryos were more vul-
nerable to AOA. We also noticed that the methylation values
of imprinted genes were more stable in the blastocyst and
placenta either from the activation group or from traditional
ICSI. Also, the methylation level in the blastocyst was very
close to that in the placenta. Thus, it seems that the influ-
ence of AOA on imprinted genes tends to be stable after the
embryos develop to blastocyst. Because the blastocyst in
this study could not be the same one that developed from
cleavage embryos involved in the study, it was not easy to

ascertain whether the process of self-adjustment to the influ-
ence of AOA during the embryo development does exist.
However, based on the similar methylation states of blasto-
cysts and placentas in either the AOA group or NOA group, it
seems that if the embryo survived and developed to a blas-
tocyst, the impact of AOA on future generations might be
reduced to a minimum.

An increased incidence of imprinting disorder after
ART has been described in humans. For example, ART-
associated Angelman syndrome associated with hypo-
methylation at the SNRPN imprinting control region had
been previously reported [50–52]. Previous studies in
mice showed that ARTs might result in significantly lower
global methylation and a higher number of abnormal
alleles for maternal SNRPN in embryos when compared
with embryos developed in vivo. Interestingly, our results
showed that the methylation level of SNRPN was signifi-
cantly higher in embryos from AOA, complicating the
study of the individual effect of oocyte activation. It
seemed that the imprinted gene SNRPN was a very sensi-
tive epigenetic mark to survey the effects of ARTs on epi-
genetics. We also noticed that some individual embryos
presented the lowest methylation levels for all three genes.
Whether this might be related to their reduced develop-
mental competence should be further investigated.

This study has some limitations. First, the number of
samples was relatively small. Our results only elucidated
the epigenetic effect of AOA on some specific embryos
donated by patients. Second, we only focused on the three
well-selected imprinted genes; more imprinted genes
should be examined in future studies. Third, the embryos
and placentas came from different couples. Because the
imprinted genes can show considerable methylation
variation among normal individuals, further experiments
need to be performed by increasing the sample size, and
the epigenetic alteration of baby born from AOA should be
specified. Although we found that AOA had some effect on

Figure 3: Boxplot diagrams showing the average methylation percentage of H19, SNRPR, and PEG3 in six groups (AOA-C, AOA-B, AOA-P,
NOA-C, NOA-B, and NOA-P). Comparison results between groups without activation and between groups with activation were separately
conducted. Boxplots with the same superscripts are significantly different (P value <0.05).
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imprinted genes, especially for SNRPN, the functional con-
sequences of methylation changes on the imprinted gene
remain to be elucidated. Before that, AOA still needs to be
considered as experimental [6,25]; its application requires
thorough consultation with the patient and should only be
done if correct indications are present.
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ARTs assisted reproductive technologies
DMRs differentially methylated regions
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FSH follicle stimulating hormone
HMG human menopausal gonadotropin
ICSI intracytoplasmic sperm injection
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LH luteinizing hormone
NOA nonassisted oocyte activation
PEG3 paternally expressed gene
SNRPN small nuclear ribonucleoprotein polypeptide N
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Appendix

Table A1: Summary of patients for donation of embryos and placenta

Group Patients Age Indication for IVF History of total
or nearly total
fertilzation failure
after ICSI

Tissue type Number Live birth

AOA-C 1 30 Nonobstructive-azoospermia 1 D3 cleavage embryo 2 A healthy female baby
AOA-P Placenta 1
AOA-C 2 20 Nonobstructive-azoospermia 1 D3 cleavage embryo 2 A healthy female and a

male baby
AOA-B Blastocyst 1
AOA-B 3 32 Globozospermia No Blastocyst 2 A healthy male baby
AOA-B 4 30 Nonobstructive-azoospermia 2 Blastocyst 1 A healthy female baby
AOA-P 5 36 Nonobstructive-azoospermia 3 Placenta 1 A healthy male baby
AOA-P 6 31 Severe oligoasthenospermia 2 Placenta 1 A healthy male baby
NOA-C 1 34 Severe oligozoospermia No D3 cleavage embryo 4 A healthy male baby
NOA-C 2 34 Severe teratozoospermia No D3 cleavage embryo 5 Two healthy female

babies
NOA-B 3 31 Severe teratozoospermia No Blastocyst 2 A healthy female baby

and a male baby
NOA-B 4 32 Globozospermia No Blastocyst 2 A healthy male baby
NOA-P 5 28 Obstructive-azoospermia No Blastocyst 1 A healthy male baby
NOA-P 6 32 Oligozoospermia No Placenta 1 A healthy female baby
NOA-P 7 31 Severe oligozoospermia No Placenta 1 A healthy female baby
NOA-P 8 28 Severe oligozoospermia No Placenta 1 A healthy male baby
NOA-P 9 30 Obstructive-azoospermia No Placenta 1 A healthy female baby
NOA-P 10 33 Nonobstructive-azoospermia No Placenta 1 A healthy male baby

Table A2: Characteristics and Ovarian hyperstimulation parameters of AOA and conventional ICSI undergoing IVF-ET

Characteristics Controls (n = 9) Cases (n = 6) p

Age (year) 31.30 ± 2.16 29.83 ± 5.31 0.445
BMI (kg/m2) 22.00 ± 1.41 22.09 ± 2.10 0.917
Fasting glucose 4.97 ± 0.45 5.06 ± 0.46 0.678
Fasting insulin 7.68 ± 1.07 8.00 ± 0.82 0.543
Insulin resistance 1.70 ± 0.32 1.79 ± 0.14 0.442
Primary infertility 9 (100%) 6 (100%) 1
Treatment protocol 0.287
I 5 (55.56%) 5 (83.33%)
II 3 (33.33%) 0 (0)
III 1 (11.11%) 1 (16.67%)

Basal FSH (IU/L) 7.27 ± 0.70 7.78 ± 1.68 0.403
Basal LH (IU/L) 4.84 ± 0.53 4.73 ± 1.26 0.815
Basal E2 (pg/L) 38.30 ± 6.96 47.33 ± 10.91 0.06
Antral follicle count (n) 12.80 ± 0.92 12.17 ± 5.38 0.716
Days of stimulation 9.90 ± 1.79 11.33 ± 2.16 0.173
Total dose of gonadotropins (U) 2212.50 ± 710.85 2875.00 ± 1144.00 0.171
Number of follicles >13 mm 16.50 ± 9.52 15.67 ± 7.50 0.858
Number of oocytes retrieved 17.80 ± 9.51 18.83 ± 10.79 0.941
Number of MII oocytes (n) 13.90 ± 4.33 13.67 ± 8.12 0.796
Number of 2PN (n) 9.90 ± 5.30 9.17 ± 5.38 0.856
Number of high-quality embryos 4.50 ± 2.65 3.40 ± 1.95 0.494
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