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Abstract: In recent years, three-dimensional density maps
reconstructed from single particle images obtained by electron
cryo-microscopy (cryo-EM) have reached unprecedented
resolution. However, map interpretation can be challenging,
in particular if the constituting structures require de-novo
model building or are very mobile. Herein, we demonstrate the
potential of convolutional neural networks for the annotation
of cryo-EM maps: our network Haruspex has been trained on
a carefully curated set of 293 experimentally derived recon-
struction maps to automatically annotate RNA/DNA as well as
protein secondary structure elements. It can be straightfor-
wardly applied to newly reconstructed maps in order to support
domain placement or as a starting point for main-chain
placement. Due to its high recall and precision rates of 95.1%
and 80.3%, respectively, on an independent test set of
122 maps, it can also be used for validation during model
building. The trained network will be available as part of the
CCP-EM suite.

Introduction

The resolution revolution in single particle electron cryo-
microscopy (cryo-EM) yields macromolecular structures of
unprecedented resolution. These structures allow us to
identify new drug targets, for example in the Zika virus,[1] to
fight tuberculosis[2] or to understand the fundamental pro-
cesses of life, such as the process of translation by ribosomes.[3]

However, modelling an atomic structure to these maps
remains difficult as researchers mostly rely on algorithms
developed for the interpretation of crystallographic electron
density maps. In X-ray crystallography, the measured diffrac-
tion corresponds to the amplitudes of the Fourier transform of
the electron density, as the X-rays interact with the electrons
in the molecular assemblies in a crystal and the phases are
reconstructed only during refinement. In cryo-EM, on the
other hand, the measured micrographs already contain phase
information, but are very noisy, which is overcome by 3D-
reconstruction and averaging. The individual micrographs
show the interaction of the electron beam with the entire
electrostatic potential of a single molecular assembly. Hence,
cryo-EM reconstruction maps differ in both their nature and
error distribution[4–6] from X-ray crystallographic electron
density maps. Consequently, their modelling might be im-
proved greatly by tools that consider these specific properties
of the data at hand. Such modelling tools should not only
provide good functionality, but also be easy to use and freely
available to academic users worldwide.

Parallel to the advances in cryo-EM during the last
decade, deep neural networks have achieved remarkable
image segmentation capabilities,[7] making them the most
powerful machine-learning approach currently available.
Convolutional neural networks (CNN) combine traditional
image analysis with machine learning by cascading layers of
trainable convolution filters and are exceptionally well-suited
for volume annotation. They have been successfully applied
to biological problems, such as breast cancer mitosis recog-
nition[8] and, in conjunction with encoder-decoder architec-
tures, to volumetric data segmentation.[9, 10] Given that a cryo-
EM reconstruction map is essentially a three-dimensional
image volume, CNNs seem a good choice for their annotation
if good “ground truth” data to train the network could be
provided.

In this work, we demonstrate that deep neural networks
are not only capable of annotating protein secondary
structure, but also oligonucleotides (RNA/DNA) in cryo-
EM maps, and provide a pre-trained network, named
Haruspex. Assigning a fold to regions in a cryo-EM map is
the first step in modelling a structural region. This can be
a major challenge, in particular for novice users, in low
resolution regions, or when little is known about the
composition of the macromolecular complex in question.
Haruspex can be readily used to annotate cryo-EM maps,
which will prove useful in model building and supporting the
placement of known domain folds, thus accelerating the
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modelling process and improving the accuracy of cryo-EM-
derived molecular structures.

Results

Network Architecture and Implementation

In low-resolution cryo-EM maps, a-helices can often be
discerned as long cylindrical elements. This has been exploit-
ed by the program helixhunter,[11] which searches for proto-
typical helices in reconstruction maps using a cross-correla-
tion strategy. b-Strands are more difficult to identify as they
are more variable in shape and therefore require morpho-
logical analysis.[12] A combination of these approaches led to
the development of SSEHunter,[13] which uses a density
skeleton to detect secondary structures. Deep learning offers
an alternative approach: Fully convolutional networks[9, 14]

allow a swift generation of segmentation maps for objects of
variable size. Here, we employ a state of the art U-Net-style
architecture[9] to demonstrate that at an average map
resolution of 4 c or better, experimentally derived recon-
struction maps allow the training of a well-performing
network that can be used for a wide range of specimens—
with no re-training necessary. The network was implemented
with TensorFlow[15] and processes 403 voxel segments with
a voxel size of 1.0–1.2 c3 (covering a secondary structure
element and its immediate surroundings) to annotate 203

voxel cubes (corresponding to the center of the input
volume). The output volume has four channels containing
the probabilities that the voxel is part of an a-helical or b-
strand protein secondary structure element, nucleotide, or
unassigned. 403 voxel segments were chosen as a compromise
between computational power and network complexity on
one hand and covering the secondary structure including
surrounding interaction partners on the other hand. A 403

voxel segment covers 40–48 c3 ; an average a-helix with
10 residues, for example, is 15 c in length.[16]

The input is a single channel containing the reconstruction
density. During prediction, this three-dimensional volume is
passed through multiple convolutional layers (image filters)
that extract learned image features relevant for structure
detection, and through pooling layers, which select the most
significant of the detected features. In the second (“upconvo-
lutional”) part of the network, these activations are combined
with higher-level activations of the network to recover spatial
detail. The output has four channels representing the
probabilities for the four classes (helix, sheet, nucleotide,
unassigned) and represents the annotation of the central 203

voxel cube of the input volume.

Training Data Selection

For network training, we pre-selected EMDB (Electron
Microscopy Data Bank[17]) reconstruction maps with an
average resolution of 4 c or better as stated in the EMDB
entry. From 576 entries (as of 15/2/2018), we picked
293 EMDB/PDB (Protein Data Bank[18]) pairs (Supporting

Information, Table S1) by three criteria: 1) map and model
represent the same structure and fit visually well to each
other; 2) the presence of at least one annotated a-helix or b-
sheet in the PDB model; 3) preference of higher resolution
maps in case the same authors deposited several instances of
the same macromolecular complex (as the model was most
likely fitted to the highest resolution map). Maps with severe
misfits, misalignments, or models without corresponding
reconstruction density (and vice versa) were omitted. Visual
evaluation was supplemented with a comparison between the
entire map and the part which is occupied by the model using
histograms, mean and median values; this provided an
additional test of how well map and model fit each other.
Furthermore, the training data were filtered by map root
mean square deviations (r.m.s.d.) values (see below).

Cryo-EM maps are often post-processed, stitched or
otherwise filtered, but it can be difficult to determine how
exactly a given map has been altered. Hence, we did not apply
any additional criteria pertaining to map modification and
instead decided to train the network with all possible
representations of the features in question. It is worth
mentioning that some types of post-processing, such as map
sharpening, are in principle equivalent to linear convolution
filters. Convolutional neural networks (CNNs) can learn to
apply or compensate for these during training (if they are
relevant for predicting the annotated structure) and hence,
can become insensitive to these procedures.

Training Data Annotation

To generate ground truth data for network training,
a python script was implemented to automatically annotate
the reconstruction map according to the deposited structural
model as a-helical, b-strand, nucleotide or unassigned. The
script extracts the original annotations from PDBML for-
mat[19] files using a custom parser. To obtain suitable training
data, additional secondary structure information was neces-
sary. We implemented a variant of the DSSP algorithm[20]

omitting strand direction, and a torsion-angle-based secon-
dary structure detection inspired by STRIDE:[21] annotated or
DSSP-detected secondary structures were extended by
neighbouring amino acids if they matched the same Ram-
achandran profile. Before usage, the voxel size of the
reconstruction map was re-scaled to 1.1 c if outside [1.0;
1.2] c.

Following that, if a secondary structure was identified, and
if the average main chain atom map r.m.s.d. (root mean
square of the map density distribution) was above 2, all voxels
within 3 c of backbone atoms were annotated accordingly.
Secondary structure residues below 2 but + 1.0 r.m.s.d. were
masked and excluded from error calculation during training.
All voxels not within 5 c of model atoms, but with density
+ 1 r.m.s.d. were masked and excluded from training, as they
had high density, but were not modelled. The remaining
voxels were marked as “unassigned”.
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Network Training

The maps were split into a total of 2183 segments of 703

voxels, of which 110 segments (5%) were set aside for
evaluation during network training. Each segment had to
contain at least 100 atoms + 1.0 r.m.s.d., a backbone mean
density of + 3 r.m.s.d., and at least 5% of the total segment
volume annotated. The training data were augmented
through on-GPU 9088 rotations (24 possibilities), and by
randomly selecting a 403 voxel sub-segment (translational
augmentation).

The network was trained for 40000 steps with 100 seg-
ments employed per step. In training data generation, the
average EMDB map had roughly 95% unassigned voxels
after annotation with the PDB model. From this, we
estimated that non-true negatives needed to be weighted
approximately 16-fold stronger than true negatives. This was
necessary as the majority of the space within a reconstruction
map is not made up of secondary-structure/oligonucleotide-
associated voxels and thus the network can reach approx-
imately 70–90% accuracy by predicting “unassigned” (not a-
helical, b-sheet or oligonucleotide) structure only.

Network Performance Test

After training, the network was tested on an independent
set of 122 EMDB maps (selected by the same criteria as
training data and deposited after February 2018, for the
complete list, see Supporting Information, Table S2). For
evaluation, we investigated residues with mean backbone
densities + 1.0 r.m.s.d. and compared the predicted secondary
structure on a per-residue basis with the one derived from the
deposited PDB model. For this analysis, the r.m.s.d. value
given in the header of each map file was used. Using this
criterion, the network achieved similar performance on
training, evaluation, and test data. Over all test maps, there
were 75.4% true positives tp (correctly predicted residues),
18.8% false positives fp (wrongly predicted residues) and
4.0% false negatives fn (non-predicted residues), resulting in
a median recall rate 100*tp(tp + fn)

@1 of 95.1% and a precision
100*tp(tp + fp)

@1 of 80.3 %. Precision and recall did not
correlate significantly with average resolution (as given in
the EMDB entry), Molprobity[22] score or deposition date.

The corresponding residue-level F1 score (harmonic mean
of precision and recall) on the test set for Haruspex (87.05%)
is the highest reported so far on a per-residue-level when
compared to other recent work.[23–25] Direct comparison of
these values is, however, difficult since these other networks
were tested on small test sets of lower-resolution simulated
and experimental maps, whereas we used a large set of
exclusively experimentally derived higher-resolution maps.
Moreover, these networks did not annotate oligonucleotides,
which affects the composition of the F1 score. In a recent
preprint,[26] the authors use deep learning for atom-level
prediction and report 88.5 % correctly predicted Ca atoms on
50 pre-cleaned experimental maps at 4.4 c or better, which
suggests similar performance for their intermediate secon-
dary structure prediction.

As a typical example, human ribonuclease P holoenzyme
(EMDB entry 9627) illustrates the power of our approach
(see Figure 1). Haruspex is not only able to accurately predict
the RNA vs. protein distribution in this complex, but also
correctly assigns secondary structure elements in the protein
areas with only a few exceptions. These notably include
a stem-loop element in the RNA (upper left in the structure),
regions that resemble b-sheets but do not follow the
characteristic hydrogen bonding pattern, as well as secondary
structure elements currently not covered by Haruspex, such
as polyproline type II (PII) helices (Figure 2 C,D). Additional
examples are shown in Figure 3.

Haruspex Usage

Haruspex can be used as a command line tool, which reads
in an MRC format reconstruction map. No further parame-
ters are needed and a prediction for a single map takes
approximately 30 seconds to a few minutes on a normal
workstation, depending on the available hardware (it can be
used with or without GPU); on an older laptop, the
annotation may take as long as 45 minutes for a very large
structure. The output consists of four MRC format maps
corresponding to the a-helical and b-strand protein, nucleo-
tide, and “unassigned” portion of the input map. These maps
can be displayed in Coot,[27] Pymol[28] or Chimera[29] and
together represent the entire input map.

Discussion

Network Performance

Herein, we have described the development of the neural
network Haruspex for the annotation of protein secondary
structure and RNA/DNA in cryo-EM reconstruction maps in
order to facilitate the modelling of such maps. We trained
Haruspex on 293 experimentally derived reconstruction maps
with a resolution of 4 c or better and obtained recall and
precision rates of 95.1% and 80.3 %, respectively, on an
independent test set of 122 maps. The pre-trained network
can be readily applied to annotate newly reconstructed maps
to support domain placement or to supply a starting point for
main-chain placement.

When considering the 18.8% false positives and 4.0%
false negatives, two fundamental limitations in the annotation
of EMDB maps should be mentioned: firstly, the map can be
wrongly modelled (see Figure 2 C), which biases our annota-
tion towards human modelling errors. Secondly, the deposited
model may have been built employing additional information,
such as structure-specific information from an external
source, for example backbone folds established prior by
crystallographic means,[30] NMR or structure prediction, or
more than one map generated from different particle align-
ments.[31] This would in particular introduce higher rates of
false negatives at the outer edges of the map, where the model
covers secondary structure that was established by other
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Figure 1. Typical example of Haruspex annotation. A) Reconstruction map for the human ribonuclease P holoenzyme (EMDB entry 9627). Manual
assignment of secondary structure features can be difficult, in particular if the composition of a macromolecular complex is unknown. The surface
shown corresponds to an r.m.s.d. of 0.04 with no carving. B) Secondary structure, as identified by our network in the map, is projected onto the
surface. Orange corresponds to RNA/DNA; red to helices and blue to sheets. This was a fairly typical test case with 70.5% true positives, 18.8%
false positives, and 10.7% false negatives. Recall was 86.8% and precision 79.0%. Region I) depicts a well-predicted a-helical structure, II) a b-
sheet, and III) RNA misinterpreted as an a-helix. C) The deposited model PDB 6AHU for this map is shown in comparison. The regions depicted
in Figure 2C and 2D are marked # and *, respectively.
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means, but the map does not provide enough information to
make this assignment.

Closer inspection reveals that false positives are often
elements closely resembling helices, sheets or RNA/DNA
(see Figures 1, 2, and 3). In particular, semi-helical structures,
b-hairpin turns, and residues belonging to polyproline type II
(PII) helices[32] are misclassified as a-helical, and loosely
parallel structures without the typical hydrogen-bond pattern
are frequently misclassified as b-strands. In the case of PII

helices, this is partly due to the STRIDE-like annotation. It
would be very desirable to quantify the false positives in this
respect, but this was not possible within the scope of this
work, as no automatic annotation algorithms seem to exist for
such cases. For the future development of Haruspex, predict-
ing additional classes, such as b-turns, polyproline helices, and

perhaps even membrane detergent regions would be very
desirable, as this would potentially lower the number of
incorrectly identified secondary structure elements, while at
the same time supplying additional information to users.

Resolution Range and Comparison to Similar Algorithms

Haruspex was trained for average resolutions as low as
4 c, and the median resolution of published cryo-EM maps is
improving every year, and has been better than 4 c since 2017
(see Figure S5 in the Supporting Information). Irrespective of
this, we will extend our approach to lower resolution data in
the future, where our automated annotations should be even
more advantageous for users. Still, low resolution experimen-

Figure 2. Network performance. A) Network precision vs. recall rates, with one marker per EMDB entry (training set entries are shown as orange,
test set entries as blue markers). Both perform similarly well; with the training set producing a few more outliers. B) Frequency vs. map r.m.s.d.
level for EMDB 9627 on a per-residue basis: True positives (green), false positives (orange), and false negatives (blue). This plot is typical: false
negatives often occur in low-density map regions. C) a-Helical false positives (PDB 6AHU, residues 131–139 in chain J): The model partly
occupies the conformational space of a polyproline type II helix (PII), which is often misinterpreted as a-helical and may have been modelled
incorrectly (given that the model does not completely fit the density). D) False positives in a b-sheet (6AHU, residues 215–221 in chain B). The
deposited model does not maintain the hydrogen bonding that defines a regular b-sheet; to the network, however, the fold still “looks” like a b-
sheet and a third segment (top) is also assumed to be part of it.
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Figure 3. Additional examples from the test set. Top: Annotated map. Bottom: Deposited structure for comparison. Orange corresponds to RNA/
DNA; red to helices; blue to sheets and grey regions were not assigned any secondary structure. A) Nucleosome from Xenopus laevis, average
map resolution 3.8 b (map: EMDB 4297, model: PDB 6FQ5): recall 98.5%, precision 94.0%. B) Flavobacterium johnsoniae Type 9 protein
translocon, average map resolution 3.5 b (map: EMDB 0133, model: PDB 6H3I): recall 96.3%, precision 49.3%. C) Leucine dehydrogenase from
Geobacillus stearothermophilus, average map resolution 3.0 b (map: EMDB 9590, model: PDB 6ACF): recall 89.8%, precision 85.7%. D) Escherichia
coli Type VI secretion system, average map resolution 4.0 b (map: EMDB 9747, model:PDB 6IXH): recall 95.9%, precision 70.9%. E) Homo
sapiens metabotropic glutamate receptor 5, average map resolution 4.0 b (map: EMDB 0345, model: PDB 6N51): recall 95.9%, precision 71.7%.
F) Bacterial RNA polymerase-sigma54 holoenzyme transcription open complex, average map resolution 3.4 b (map: EMDB 0001, model: PDB
6GH5): recall 94.2%, precision 67.5%.
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tal maps with a well-matching model for training and testing
such a network are difficult to obtain. This obstacle has
previously been faced by Si et al.[33] (SSELearner), Li et al.[23]

and Subramaniya et al.[25] (Emap2Sec) who developed ma-
chine learning approaches for protein secondary structure
prediction in cryo-EM maps, but not oligonucleotides,[23] and
consequently resorted partly to simulated maps generated
with pdb2mrc.[34] These simulated maps lack the error
structure and processing artefacts found in experimentally
derived reconstruction densities,[4–6] as they assume a perfectly
processed data set of a homogenous sample where all atoms
interact with the electron beam as if they were uncharged and
unbound. Si et al. tested their support vector machine on
10 simulated maps of relatively small structures (less than
40 kDa) and, as available data were still very limited in 2012,
only 13 experimental maps paired with individually selected
training maps. Haslam et al.[24] used a 3D U-Net, which was
trained on 25 simulated and 42 experimental maps between
3–9 c resolution to predict helices and sheets obtaining an F1

score 2(recall@1 + precision@1)@1 between 0.79 and 0.88. How-
ever, the network was only tested on six simulated maps and
one experimentally derived map. We, on the other hand, used
a total of 293 experimentally derived maps in a semi-auto-
mated workflow to provide a more realistic training environ-
ment. Furthermore, the amount of newly released high-
resolution structures in conjunction with our processing
infrastructure permitted us to test our network performance
on a representative set of 122 unique depositions. The semi-
automated workflow for the selection and annotation of
training data (see the Methods section of the Supporting
Information) allows for an easy expansion of ground truth
data and re-training. However, given that Haruspex has
already been trained on a diverse range of macromolecular
structures, the network can be used to interpret any map at
4 c or better without any additional (re-)training necessary.

Augmentation of Automatic Model Building

Haruspex ideally complements tools for automatic map-
based structure building, such as MAINMAST,[36] Roset-
taES,[37] ARP/wARP,[38] phenix.map_to_model[39] or Bucca-
neer[40] by providing an independent method to locate
secondary structure elements of proteins to assist the
validation of an automatically built protein main-chain.
Haruspex may even be employed in the future to serve as
starting point for such methods. The ability of Haruspex to
automatically recognize RNA/DNA is of particular interest
for the analysis of ribosomes, spliceosomes, and polymerases,
which all contain substantial amounts of oligonucleotides. As
these and similar structures are among the most common
specimens studied by single-particle cryo-EM, Haruspex,
which, to our knowledge, is the first to use machine learning
for the identification of nucleotides in cryo-EM reconstruc-
tion maps, offers a unique advantage for the analyses of these
structures.

Conclusion

We demonstrate that a neural network can be used to
automatically distinguish between nucleic acids and protein
and to assign the two main protein secondary structure
elements in experimentally derived cryo-EM maps. This
technique will render the process of protein structure
determination faster and easier. Haruspex was trained on
a carefully curated ground truth dataset based entirely on
experimental data from the EMDB. The pre-trained network
can be straightforwardly applied to annotate newly recon-
structed cryo-EM density maps. Besides guidance for domain
placements, the network also proves useful for model
validation during building due to its high median recall and
precision rates of 95.1 % and 80.3%, respectively, as has been
demonstrated by early users at our institute, for example in
the modelling of the mycobacterial type VII secretion sys-
tem.[2] The newest version of Haruspex is online available at
https://github.com/thorn-lab/haruspex and will be distributed
as part of CCP-EM.[35] We plan to refine and adapt the
network as new data become available, and extend the
approach to lower resolution and more structural classes in
the future.
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