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Abstract: Biofilm-associated infections caused by an accumulation of micro-organisms and pathogens
significantly impact the environment, health risks, and the global economy. Currently, a non-biocide-
releasing superhydrophobic surface is a potential solution for antibacterial purposes. This research
demonstrated a well-designed robust polydimethylsiloxane (PDMS) micro-structure and a flame
treatment process with improved hydrophobicity and bacterial anti-adhesion properties. After the
flame treatment at 700 ± 20 ◦C for 15 s, unique flower-petal re-entrant nano-structures were formed
on pillars (PIL-F, width: 1.87 ± 0.30 µm, height: 7.76 ± 0.13 µm, aspect ratio (A.R.): 4.14) and
circular rings with eight stripe supporters (C-RESS-F, width: 0.50 ± 0.04 µm, height: 3.55 ± 0.11 µm,
A.R.: 7.10) PDMS micro-patterns. The water contact angle (WCA) and ethylene glycol contact
angle (EGCA) of flame-treated flat-PDMS (FLT-F), PIL–F, and C–RESS-F patterns were (133.9 ± 3.8◦,
128.6 ± 5.3◦), (156.1 ± 1.5◦, 151.5 ± 2.1◦), and (146.3 ± 3.5◦, 150.7 ± 1.8◦), respectively. The Escherichia
coli adhesion on the C-RESS-F micro-pattern with hydrophobicity and superoleophobicity was 42.6%,
31.8%, and 2.9% less than FLT-F, PIL-F, and Teflon surfaces. Therefore, the flame-treated C-RESS-F
pattern is one of the promising bacterial anti-adhesion micro-structures in practical utilization for
various applications.

Keywords: antifouling; bacterial anti-adhesion; Escherichia coli; flame treatment; flower petal nano-
structure; PDMS; robust micro-structure; soft lithography; superhydrophobic

1. Introduction

Biofilm-associated infections are a globally important issue that poses significant
severe health risks that are caused by the accumulation of microorganisms (bacteria, archaea,
fungi, algae, protozoa, and viruses) and macromolecules (primarily proteins) on material
surfaces [1,2]. Biofilms can cause the spread of various infectious diseases, including
COVID-19, in public spaces and could lead to more than 5.73 million deaths worldwide
in 2022 due to the COVID-19 pandemic [3]. The subsequent biofilm formation and the
accumulation of contamination on wetted surfaces pose challenges in various applications
such as health care, marine infrastructures, industry, engineering components, and public
transportation systems [4]. This leads to a significant impact on the environment, health
risks, society, and economics. For antibacterial solutions in medical devices and medical
environments, such as a surgery rooms and ward areas, biocide-based antibacterial metallic
ions such as silver (Ag), Titanium dioxide (TiO2), and zinc oxide (ZnO) are commonly
used [5,6]. However, this oldest antibacterial method is not environmentally friendly and
increases bacterial resistance and resistance to clinically important antibiotics [7]. Biofilm
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formation involves four main stages of colonization, as shown in Figure 1a–d. First, the
initial attachment of protein generates biofilm on the material surface. Then, the bacteria
and other bio-substances are attached to the biofilm. The bio-substances are continuously
accumulated to create colonization of micro-organisms and macro-organisms. To prevent
bacterial adhesion, the biofilm formation at the initial stage of the colonization mechanism
should be terminated. Therefore, a non-biocide-release superhydrophobic surface is a new
potential solution for reducing pathogen spread and other antibacterial purposes [8–12].
Low surface energy (γs) material such as Teflon (γs ≈ 19.6 mN m−1) is currently used to
reduce bacterial adhesion by reducing the adhesion force between bacteria and a solid
surface, which can prevent biofilm formation on the surface [13].
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to the biofilm; (c) bio−substances are continuously accumulated to create colonization of micro−or-
ganisms; (d) accumulation of macro−organisms. 

Instead of using expensive materials such as Teflon, a low−cost non−biocide−based 
superhydrophobic surface is one of the promising technologies for antifouling purposes. 
The levels of hydrophobicity and surface wettability can be determined by the water con-
tact angle (WCA) [14–16]. If the contact angle of the water (surface tension, γlv = 72.1 mN 
m−1) is greater than 150° and has a water droplet sliding angle smaller than 10°, it is con-
sidered superhydrophobic. A water droplet can easily roll off the surface and carries off 
organisms, pathogens, inorganic macromolecules, and other contaminants that have a low 
adhesive force on the superhydrophobic surface [16]. Most engineering superhydropho-
bic surfaces are inspired by various natural animals and plants, such as lotus leaves, red 
rose petals, butterfly wings, Salvinia leaves, and shark skin, which show exceptional wet-
ting behavior with superhydrophobicity [17–22]. The effect of surface roughness on the 
apparent contact angle of liquid droplets can be explained by the Wenzel and Cassie–
Baxter model [23–25]. The liquid wets the surface in the Wenzel state and fills all voids on 
the rough surface, as shown in Figure 2a. In the Cassie–Baxter state, microscopic air pock-
ets fill in the space between the rough micro− or nano−structures and the liquid droplets 
generate the ultimate liquid−repellent surface, as shown in Figure 2b [16]. 

Figure 1. Biofilm formation involves four main stages of colonization. (a) The initial attachment of
protein generates biofilm on the material surface; (b) bacteria and other bio-substances are attached
to the biofilm; (c) bio-substances are continuously accumulated to create colonization of micro-
organisms; (d) accumulation of macro-organisms.

Instead of using expensive materials such as Teflon, a low-cost non-biocide-based
superhydrophobic surface is one of the promising technologies for antifouling purposes.
The levels of hydrophobicity and surface wettability can be determined by the water contact
angle (WCA) [14–16]. If the contact angle of the water (surface tension, γlv = 72.1 mN m−1)
is greater than 150◦ and has a water droplet sliding angle smaller than 10◦, it is considered
superhydrophobic. A water droplet can easily roll off the surface and carries off organisms,
pathogens, inorganic macromolecules, and other contaminants that have a low adhesive
force on the superhydrophobic surface [16]. Most engineering superhydrophobic surfaces
are inspired by various natural animals and plants, such as lotus leaves, red rose petals,
butterfly wings, Salvinia leaves, and shark skin, which show exceptional wetting behavior
with superhydrophobicity [17–22]. The effect of surface roughness on the apparent contact
angle of liquid droplets can be explained by the Wenzel and Cassie–Baxter model [23–25].
The liquid wets the surface in the Wenzel state and fills all voids on the rough surface, as
shown in Figure 2a. In the Cassie–Baxter state, microscopic air pockets fill in the space
between the rough micro- or nano-structures and the liquid droplets generate the ultimate
liquid-repellent surface, as shown in Figure 2b [16].
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Figure 2. A liquid droplet resting on a solid surface with micro−/nano−structures: (a) the liquid is in 
intimate contact with the solid asperities of the rough surface so that the droplet is in the Wenzel 
state; (b) the liquid rests on top of the asperities of the rough surface so that the droplet is in the 
Cassie–Baxter state. 

It is well−known that a superhydrophobic surface that mimics nature−inspired fea-
tures can be fabricated by creating a rough surface consisting of a micro− or nano−struc-
ture on a low−surface−energy material [15,16]. Polydimethylsiloxane (PDMS, γs:~12–16 
mJ m−2), which is curable silicone−based material, is commonly used to fabricate superhy-
drophobic surfaces. PDMS also shows good thermal and oxidative stability, non−toxicity, 
good biocompatibility, and low cost [26]. Typically, the flat PDMS surface shows hydro-
phobic properties with a WCA of 107°–110°. Therefore, the fabrication of a rough texture 
with micro−/nano−structures such as micro−pillar (PIL) and biomimetic shark skin fea-
tures using soft lithography and large−area patterning processes makes the superhydro-
phobic PDMS surface [27,28]. However, PDMS surfaces with superhydrophobic proper-
ties still have some drawbacks that restrict their practical application in certain circum-
stances. Firstly, the liquid−repellent property is drastically reduced for low−surface−ten-
sion liquids such as oil, grease, ethylene glycol (EG, γlv = 47.3 mN m−1), decane (γlv = 23.8 
mN m−1), and octane (γlv = 21.6 mN m−1). Secondly, superhydrophobicity and antibacterial 
properties are dramatically diminished for sticky pollutants. Thirdly, PDMS with a low 
Young’s modulus (~2.0 MPa) also includes deformation, merging, and collapsing struc-
tures, resulting in decreased hydrophobicity [29]. Therefore, well−designed robust PDMS 
micro−structures with superamphiphobic properties (water− and oil−repellent) are re-
quired to prevent the pattern from collapsing and maintain its antibacterial/antifouling 
properties for practical utilization. 
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such as marine antifouling in the seawater environment [30]. However, the marine anti-
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is necessary to overcome the limitation of the robust PDMS surface with superhydropho-
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Figure 2. A liquid droplet resting on a solid surface with micro-/nano-structures: (a) the liquid is
in intimate contact with the solid asperities of the rough surface so that the droplet is in the Wenzel
state; (b) the liquid rests on top of the asperities of the rough surface so that the droplet is in the
Cassie–Baxter state.

It is well-known that a superhydrophobic surface that mimics nature-inspired features
can be fabricated by creating a rough surface consisting of a micro- or nano-structure on
a low-surface-energy material [15,16]. Polydimethylsiloxane (PDMS, γs: ~12–16 mJ m−2),
which is curable silicone-based material, is commonly used to fabricate superhydropho-
bic surfaces. PDMS also shows good thermal and oxidative stability, non-toxicity, good
biocompatibility, and low cost [26]. Typically, the flat PDMS surface shows hydrophobic
properties with a WCA of 107◦–110◦. Therefore, the fabrication of a rough texture with
micro-/nano-structures such as micro-pillar (PIL) and biomimetic shark skin features using
soft lithography and large-area patterning processes makes the superhydrophobic PDMS
surface [27,28]. However, PDMS surfaces with superhydrophobic properties still have
some drawbacks that restrict their practical application in certain circumstances. Firstly,
the liquid-repellent property is drastically reduced for low-surface-tension liquids such
as oil, grease, ethylene glycol (EG, γlv = 47.3 mN m−1), decane (γlv = 23.8 mN m−1), and
octane (γlv = 21.6 mN m−1). Secondly, superhydrophobicity and antibacterial properties are
dramatically diminished for sticky pollutants. Thirdly, PDMS with a low Young’s modulus
(~2.0 MPa) also includes deformation, merging, and collapsing structures, resulting in
decreased hydrophobicity [29]. Therefore, well-designed robust PDMS micro-structures
with superamphiphobic properties (water- and oil-repellent) are required to prevent the
pattern from collapsing and maintain its antibacterial/antifouling properties for practi-
cal utilization.

It has been reported that circular rings with an eight stripe supporters (C-RESS) pattern
are one of the promising robust antifouling micro-structures in practical utilization, such
as marine antifouling in the seawater environment [30]. However, the marine antifouling
properties of the PDMS-C-RESS micro-structure have tended to degrade after immersion
in a seawater environment for five months [30]. This might be due to the degradation of
the hydrophobicity of the PDMS-C-RESS micro-structure by sticky pollutants and low-
surface-energy liquids in the seawater. Therefore, a superamphiphobic surface is necessary
to overcome the limitation of the robust PDMS surface with superhydrophobic properties
for practical utilization. To obtain superamphiphobic properties, re-entrant micro-structure
and nano-roughness are required. The re-entrant micro-structure (surface having concave
topographic features) can repel liquids with a wide range of surface tensions [31–33]. How-
ever, the inverted trapezoidal shape of the re-entrant micro-/nano-structures limits its
mold release ability in soft lithography and roll-to-roll (R2R) processes for mass produc-
tion [34]. Moreover, nano-scale features are difficult to replicate on the PDMS surface to
create the high surface roughness due to the limitation of resolution of the conventional
lithography process to generate the nano-structure on a master template. Therefore, the
hierarchy of micro-/nano-structures with additional flame treatment [35–37] is one of the
promising methods to create the re-entrant micro-/nanostructures with nano-roughness
on the PDMS surface due to its simplicity and cost-effectiveness. Using a simple flame
treatment process, we have demonstrated the formation of a re-entrant micro-structure
on robust PDMS feature with superhydrophobic (water repellent) and superoleophobic
properties (oil repellent) [38]. The mechanism of forming the flower petal nano-structure
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that creates the re-entrant micro-structure and lower surface energy of the PDMS patterns
was explained [38]. The effectiveness of the robust C-RESS patterns in suppressing biofoul-
ing in the marine environment was demonstrated in our previous study [30]. However,
the geometric dimensions, surface roughness, and the re-entrant micro-structure of the
C-RESS-F pattern affecting the bacterial anti-adhesion remain unrevealed.

In this research, the effects of the micro-structure geometries of untreated PIL and
C-RESS patterns and flame-treated PIL-F and C-RESS-F patterns on the PDMS hierarchical
surface roughness, hydrophobicity, and bacterial anti-adhesion properties were investigated.

2. Materials and Methods
2.1. Silicon Master Mold Fabrication

Two different PDMS micro-structures, including square-shaped pillar (PIL) patterns
arranged in a square array and circular rings with eight stripe supporters (C-RESS) patterns
arranged in a hexagonal array, were designed. Based on Wenzel’s model, maximum WCA
can be obtained by maximizing the roughness factor (r) by reducing pattern width (a) and
pattern spacing (b) down to nanometer scale and by increasing pillar height (h) [23–25].
This means a maximum value of packing factor (P = a/b) and a maximum aspect ratio
value (A.R. = h/a) are required to produce a superhydrophobic surface. In this experiment,
the resolution of the lithographic exposure tool was 0.5 µm. Due to the Young’s modulus
of PDMS being relatively low (~2.0 MPa), the fabrication of high A.R. structures is very
challenging. Based on this limitation, the PIL pattern was designed with a width (a) of
2.0 µm, a pattern spacing (b) of 2.0 µm, and a pattern height (h) of 5.0 µm. In contrast,
a robust C-RESS pattern was designed with a width (a) of 0.5 µm, a pattern spacing (b)
of 0.5 µm, and a pattern height (h) of 2.5 µm. The design aspect ratios (A.R.s) of PIL and
C-RESS micro-structures were 2.5 and 5.0, respectively.

To fabricate a silicon master mold (Si mold), a six-inch Si wafer was cleaned by
a standard cleaning (SC-1) process. Then, a 5.0-µm-thick silicon dioxide (SiO2) hard
mask layer was deposited onto the Si wafer using the plasma-enhanced chemical vapor
deposition (PECVD) method (AMAT model P5000, Applied Materials Inc., Santa Clara,
CA, USA). The PIL and C-RESS patterns were fabricated on a 5.0-µm-thick photoresist
(PR) film by a conventional photolithography process using a stepper tool (Nikon stepper,
NSR2005i8A, Nikon Corporation, Tokyo, Japan). Later, PIL and C-RESS patterns were
transferred onto the SiO2 hard mask layer by a dry plasma reactive ion etching (RIE, AMAT
model P5000, Applied Materials Inc., Santa Clara, CA, USA) process (CF4/CHF3/Ar gas
flow rate: 10/50/100 sccm; pressure: 150 mTorr; RF power: 800 W/20 min). Then, the
5.0-µm-high PIL pattern and the 2.5-µm-high C-RESS patterns were etched into Si wafers
by deep reactive ion etching (DRIE, Plasmalab system 100, Oxford instruments, Oxford,
UK) using Bosch processes of 7 and 4 cycles, respectively, as shown in Figure 3a. One ion
etching cycle included a deposition step (C4F8/SF6 gas flow rate: 200/5 sccm; ICP/RIE
power: 2000/10 W; deposited time: 8 s) and an etching step (SF6 gas flow rate: 400 sccm;
ICP/RIE power: 200/25 W; etching time: 5 s). Then, the remaining photoresist film was
stripped by Piranha acid solution. The wet etching process removed the SiO2 hard mask to
obtain the Si master molds [38].

2.2. Soft Lithography Process for PDMS Replication

Priming the Si molds in a hexamethyldisilazane (HMDS, Merck group, Darmstadt,
Germany) mold releasing agent is required to prevent mold damage from hard PDMS
residue in a poor demolding process. In this experiment, the Si molds were primed in
the desiccator chamber with HMDS vapor for 48 h [39]. The PDMS (Sylgard 184, Dow
Inc., Dow Way Midland, MI, USA) with the ratio between resin (part A) and curing agent
(part B) of 10:1 wt% was poured onto the Si mold and cured at 75 ◦C for 120 min. The
Sylgard-184 PDMS was released from the Si mold, as shown in Figure 3b. The PDMS flat
surface (FLT) and Teflon flat surface were also fabricated as control samples.
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2.3. Modification of PDMS Surface by the Flame Treatment Process

The flower petal nano-structure on the PDMS surface was developed by surface modi-
fication using a simple flame treatment process, as shown in Figures 3c and 4a,b [35–38].
This flower petal nano-structure behaves like a re-entrant micro-/nano-structure, exhibiting
superhydrophobic and superoleophobic surfaces in the Cassie–Baxter state. An amount
of 2.64 g of bulk paper wipe was used as the flame source in this process. An amount of
11.26 g of ethanol (C2H5OH, Merck group, Darmstadt, Germany) was used as a burner to
produce a large flame size with good flame stability. Then, 13.90 g of soaked paper wipe
was burned for 1 min to remove its contamination and stabilize the laminar flame profile
with the temperature of the post-reaction zone at 700 ± 20 ◦C. The flame-to-surface distance
was kept at 20 mm. Three sets of the PDMS samples were exposed to the post-reaction
zone of the flame by moving back and forth along their 2.0 cm width from one end to
the other within 1 s for eight times, resulting in a flame contact time of 15 s [38]. Hence,
the flame-treated flat PDMS (FLT-F), PDMS-PIL (PIL-F), and PDMS-C-RESS (C-RESS-F)
surfaces were fabricated. Note that the flame treatment process was not applied on the
Teflon surface.
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Figure 4. Schematic diagram of the formation of the re-entrance micro-structure by using a simple
flame treatment process: (a) PDMS micro-structure before flame treatment where “a” is a designed
pattern width, “b” is a designed pattern spacing, and “h” is a pattern height; (b) PDMS micro-structure
with flower petal nano-structure after flame treatment where “a” is a designed pattern width, “b” is
a designed pattern spacing, “c” is a pattern width of the top surface after flame treatment process,
“d” is a pattern spacing of the top surface after flame treatment process, and “h” is a pattern height.

2.4. Surface Characterizations

A field-emission scanning electron microscope (FE-SEM, Hitachi S–4700, Hitachi
High-technology Corporation, Tokyo, Japan) characterized the pattern qualities, including
pattern shape, pattern size, and surface topology. An atomic force microscope (AFM,
SPA400, Seiko Instruments Inc., Chiba, Japan) was used to measure the root-mean-square
surface roughness (RMS roughness) of the PDMS samples. A contact angle goniometer
(Ramé-hart Instrument Co., Model-400, Succasunna, NJ, USA) was used to character-
ize surface wettability and hydrophobicity. Droplets of 5.0 µL deionized water (DIW,
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γlv = 72.1 mN m−1) and ethylene glycol (EG, γlv = 47.7 mN m−1) were dropped onto the
PDMS surfaces on five different regions across the samples. The tilt angle of the substrate
was 0◦. The measurement obtained an average water contact angle (WCA) and the ethylene
glycol contact angle (EGCA).

2.5. Bacterial Anti-Adhesion Testing
2.5.1. Bacterial Culture

Bacterial strain Escherichia coli (E. coli, NCTC 12923, bioMérieux, Sydney, Australia)
was grown in tryptic soy broth (TSB) media (Difco Laboratories, Becton, Dickinson and
Company, Sparks, MD, USA) at 37 ◦C by shaking at 200 rpm for 24 h. Then, 100 µL of E. coli
cultured solution was spread on a tryptic soy agar (TSA) plate and incubated at 37 ◦C for
24 h. This working stock culture was kept at 4 ◦C.

2.5.2. Crystal Violet Stain

Measurement of static biofilm formation followed the method from previous works [40,41]
with some modifications. In this experiment, E. coli working stock was inoculated in TSB
media by agitation at 37 ◦C for 24 h. The cell concentrations in the broth cultures were
adjusted in the TSB media by measuring the absorbance in the range 0.01 to 0.02 arbitary
units (a.u.), (λ = 540 nm) using an ultraviolet–visible (UV-VIS) spectrophotometer (Thermo
Scientific Orion, AquaMate 8000, Göteborg, Sweden). The target concentration of E. coli
cultures was approximately 106 CFU/mL. Before testing, all PDMS samples (FLT, FLT-F,
PIL, PIL-F, C-RESS, and C-RESS-F) and Teflon (control sample) were sterilized using an
autoclave at 121 ◦C for 30 min with a saturated steam pressure of 15 pound force per square
inch (psi).

Each sterilized sample was placed in 6-well plates that contained E. coli cultured in
static conditions for 24 h. After that, the absorption at the wavelength of 570 nm was
measured by the UV–VIS spectrometer to estimate the bacterial growth. Then, the samples
were washed with DIW to remove loosely attached cells and were incubated with 95%
ethanol (C2H5OH) for 3 min. After removing the 95% ethanol, the samples were incubated
with 0.1% crystal violet for 30 min to stain the bacterial adhesion on the sample surfaces.
After washing the samples with DIW, the staining cells were washed from the sample
surfaces with acetic acid (33% conc.) by shaking at 150 rpm for 30 min. The absorption
of the staining cell solution was measured at the wavelength of 591 nm to determine
the bacterial adhesion on the sample surfaces [42]. Thus, the absorbance ratio of crystal
violet stain and initial cell density was determined at the wavelengths of 591 and 570 nm
(A591 nm/A570 nm). This absorbance ratio was used to compare the bacterial adhesion on
different sample surfaces and determine the effectiveness of preventing biofilm formation.
The bacterial adhesion on the sample surfaces was measured by FE-SEM (Hitachi S–4700,
Hitachi High-technology Corporation, Tokyo, Japan).

3. Results
3.1. Surface Morphology and Surface Roughness

The side-view SEM images of the PDMS surfaces before and after flame treatment
for 15 s are shown in Figure 5. Using HMDS priming, both PIL and C-RESS patterns were
well replicated and successfully released from the Si master mold. Pattern mating, pattern
clumping, and pattern collapsing were not found. Due to the limit of the resolution of
the soft lithography process, nano-structures and nano-roughness did not develop on the
PDMS surfaces, as shown in Figure 5a–c. After flame treatment for 15 s, wrinkles did
not form on PDMS surfaces. This means the flame treatment process has a good uniform
heating that does not induce surface thermal stress and micro-deformation [35]. However,
flower petal nano-structures and nano-scale particles were formed on the flame-treated
FLT-F, PIL-F, and C-RESS-F surfaces as shown in Figure 5e–g, respectively. The formation
of the flower petal nano-structure on PDMS surfaces can be explained by the aggregation
of the organosilicon compound in the PDMS matrix on the surface [35,38]. The cross-



Nanomaterials 2022, 12, 557 7 of 17

sectional SEM images in Figure 6a,c show that the pattern width (a) of the PIL pattern
(a: 1.87 ± 0.3 µm) and C-RESS pattern (a: 0.50 ± 0.04 µm) were well-controlled within 10%
deviation from the pattern design.
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Both PIL and C-RESS patterns have smooth surfaces with nearly vertical sidewall
profiles without sidewall scallop. The pattern heights (h) of PIL and C-RESS patterns
were 4.62 ± 0.10 µm and 2.55 ± 0.07 µm, respectively. The variation in the Si etching rate
on different densities of PIL and C-RESS micro-structures can be explained by the micro
loading effect and the aspect ratio dependent etching (ARDE) effect [43,44]. Therefore,
the average A.R.s of PIL and C-RESS micro-structures are approximately 2.47 and 5.10,
respectively. After flame-treatment for 15 s, the pinch-off formation of flower petal nano-
structures with a thickness of 3.14 µm generated voids (air gaps) between the adjacent
PIL-F patterns by closing off the top surfaces. The flower petal nano-structures with the
air gaps on the PIL-F pattern are similar to the re-entrant micro-structures [38]. In the
case of the C-RESS-F pattern, the thickness of the flower petal nano-structures is around
1.0 µm. Therefore, the pattern heights (h) of the PIL-F and C-RESS-F patterns after the
flame treatment process for 15 s were increased to 7.76 ± 0.13 µm and 3.55 ± 0.11 µm,
respectively. This led to increases in the A.R.s of PIL-F and C-RESS-F micro-structures to
4.14 and 7.10, respectively. The different growth rates of flower petal nano-structures on the
PIL-F and C-RESS-F patterns might be due to the different surface areas that make contact
with the flame. The AFM results in Figure 7 show that the RMS roughness values of FLT,
PIL, C-RESS patterns, and Teflon surfaces were 34.6, 92.6, 344.0, and 77.2 nm, respectively.
After flame-treatment for 15 s, the RMS roughness values of the FLT-F, PIL-F, and C-RESS-F
patterns were 129.6, 210.5, and 424.0 nm, respectively. The combination of the PIL micro-
structure and flame treatment process can increase the RMS roughness of a flat PDMS
surface from 34.6 to 210.5 nm.
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3.2. Water and Ethylene Glycol Contact Angles

Figure 8 shows that the water contact angle (WCA) and ethylene glycol contact angle
(EGCA) of the untreated FLT, PIL, C-RESS patterns, and Teflon surfaces were (107.5 ± 8.1◦,
97.8 ± 7.3◦), (141.7 ± 5.5◦, 139.4 ± 2.3◦), (126.8 ± 3.2◦, 128.8 ± 5.0◦), and (102.4 ± 5.1◦,
91.5 ± 4.0◦), respectively. After the flame treatment process for 15 s, the WCA and EGCA
of FLT-F, PIL-F, and C-RESS-F patterns were (133.9 ± 3.8◦, 128.6 ± 5.3◦), (156.1 ± 1.5◦,
151.5 ± 2.1◦), and (146.3 ± 3.5◦, 150.7 ± 1.8◦), respectively. Due to the low surface rough-
ness of flat PDMS and flat Teflon samples, the surface did not possess any superhydrophobic
properties. After the flame treatment process, the PIL-F pattern showed superamphiphobic
properties with the WCA and the EGCA greater than 150◦. In contrast, the C-RESS-F pat-
tern showed hydrophobic and superoleophobic properties. The summary of the measured
pattern size, surface roughness, WCA, and EGCA of various PDMS patterns and Teflon
surfaces before and after the flame treatment process for 15 s is shown in Table 1.
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Table 1. Summary of the measured pattern size, surface roughness, WCA, and EGCA of various
PDMS patterns and Teflon surfaces before and after flame treatment process for 15 s.

Sample
Type

Pattern Size and Surface Roughness Surface Wettability

Pattern Width
(µm)

Pattern Height
(µm) A.R. RMS Roughness

(nm)
WCA

(◦)
EGCA

(◦)

FLT NA NA NA 34.6 107.5 ± 8.1 97.8 ± 7.3
PIL 1.87 ± 0.30 4.62 ± 0.10 2.47 92.6 141.7 ± 5.5 139.4 ± 2.3

C-RESS 0.50 ± 0.04 2.55 ± 0.07 5.10 344.0 126.8 ± 3.2 128.8 ± 5.0
Teflon NA NA NA 77.2 102.4 ± 5.1 91.5 ± 4.0
FLT-F NA NA NA 129.6 133.9 ± 3.8 128.6 ± 5.3
PIL-F 1.87 ± 0.30 7.76 ± 0.13 4.14 210.5 156.1 ± 1.5 151.5 ± 2.1

C-RESS-F 0.50 ± 0.04 3.55 ± 0.11 7.10 424.0 146.3 ± 3.5 150.7 ± 1.8

3.3. Static Biofilm Formation (Crystal Violet Stain) and Bacterial Anti-Adhesion

Crystal violet (CV) staining was used to evaluate the effects of PDMS micro-structure
and the flame treatment process on bacterial anti-adhesion and biofilm formation properties.
Teflon was used as a control sample due to its low-surface-energy material (γs ≈ 19.6 mN m−1)
with a hydrophobic property that is typically used to prevent bacterial adhesion on the
surface. All PDMS and Teflon samples were incubated with a suspension of log-phase E.coli
cells for 24 h for biofilm formation. Then, the samples were rinsed with DIW to remove
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the loosely adhered cells, and 95% ethanol was added to fix the attached cells, which were
stained with CV. Figure 9a,d show that E. coli were attached on FLT and flat Teflon surfaces.
This is related to poor hydrophobic properties on the surfaces. The flame-treated flat PDMS
surface cannot prevent bacterial adhesion, as shown in Figure 9e. The pattern mating and
clumping were observed on both PIL and PIL-F micro-patterns after bacterial anti-adhesion
testing, as shown in Figure 9b,f, respectively. The pattern collapsing was caused by the poor
mechanical strength of the PDMS and the geometry of the pillar micro-structure. Pattern
mating and pattern clumping were caused by the van der Waals forces induced by the
solutions used in the bacterial anti-adhesion testing. These weak electric forces between
the adjacent patterns of both PIL and PIL-F micro-structures are stronger than pulling
forces or recovery forces [45]. Moreover, the electrostatic discharge (ESD) generated during
the bacterial anti-adhesion testing can induce an adhesion force between the adjacent PIL
and PIL-F micro-structures. The severely damaged PIL and PIL-F patterns suppressed
the hydrophobicity of the surface, resulting in the overall attachment of the E. coli on the
spacing between pillar micro-structures (see Figure 9b,f).
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Figure 9. Top-view SEM images of PDMS and Teflon surfaces after bacterial anti-adhesion testing:
(a) FLT; (b) PIL; (c) C-RESS; (d) untreated Teflon, (e) FLT-F; (f) PIL-F; (g) C-RESS-F.

However, a well-designed robust C-RESS micro-pattern has significantly reduced
the severity of pattern damage from the applied external forces such as van der Waals
forces and ESD [30]. Therefore, the C-RESS pattern can maintain the hydrophobicity and
oleophobicity that led to the suppression of the bacterial adhesion, as shown in Figure 9c.
In the case of the C-RESS pattern, E. coli adhered only on the top surface, which is entirely
different from both PIL and PIL-F patterns. This might be due to the unique surface
topology of the C-RESS pattern and its small pattern spacing, which reduced the contact
area between the bacteria (length: 2.0 µm, diameter: 0.2–1.0 µm) and the C-RESS pattern
(a: 0.5 µm, b: 0.5 µm). The attachment of E. coli on the C-RESS pattern was also related
to its poor hydrophobicity (WCA: 126.8 ± 3.2◦) and oleophobicity (EGCA: 128.8 ± 5.0◦)
properties. After flame treatment for 15 s, the C-RESS-F pattern with hydrophobicity
(WCA: 146.3 ± 0.5◦) and superoleophobicity (EGCA: 150.7 ± 1.8◦) could show better
bacterial anti-adhesion performance compared to other PDMS micro-structures, as shown
in Figure 9g.

The attachment of the E. coli on the top surface and the pattern spacing of the C-RESS-F
pattern were not observed. Therefore, the C-RESS and C-RESS-F patterns are considered
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attractive for bacterial anti-adhesion purposes. However, the surface roughness needs to
be considered for bacterial adhesion on the material surfaces.

As mentioned earlier, the absorbance ratios of the bacterial stain and bacterial cul-
ture per surface area (≈3.238 cm2) were used to determine the biofilm mass accumula-
tion on the material surfaces. The results in Figure 10 show that the absorbance ratios
(A591 nm/A570 nm) of FLT, PIL, C-RESS, and Teflon surfaces were 0.183, 0.109, 0.095, and
0.113, respectively. The bacterial adhesions on PIL and C-RESS patterns were 3.5%, and
15.9% reduced compared to the Teflon surface. Therefore, the unique surface topology of
C-RESS and C-RESS-F patterns with a smaller size of micro-pattern (a: 0.5 µm, b: 0.5 µm)
than the size of E. coli (a: 0.5 µm, length: 2.0 µm) can suppress the bacterial adhesion.
After flame-treatment for 15 s, the absorbance ratio (A591 nm/A570 nm) of the C-RESS-F
pattern was 42.6%, 31.8%, and 2.9% reduced compared to FLT-F, PIL-F, and Teflon surfaces,
respectively. However, the bacterial anti-adhesion property of the C-RESS-F pattern is
poorer than the C-RESS pattern but still comparable with Teflon.
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4. Discussion

Based on the results, the flame-treated C-RESS micro-structure (C-RESS-F) exhibited
hydrophobicity (WCA: 146.3 ± 0.5◦) and superoleophobicity (EGCA: 150.7 ± 1.8◦), which
are considered attractive for bacterial anti-adhesion purposes because of three benefits.
Firstly, the durability and the high A.R. (A.R.: 7.1) of the C-RESS-F pattern can maintain
a decent level of surface roughness, hydrophobicity, and oleophobicity, reducing the ad-
hesion strength of bacteria on the surface. Secondly, the formation of the flower petal
re-entrant micro-/nano-structures on the C-RESS-F pattern during the flame treatment
process might create air pockets in the pattern spacing. This air cushion generates a combi-
nation of solid–liquid and air–liquid interfaces on the C-RESS-F pattern [46,47]. Therefore,
the contact area between the bacteria and the C-RESS-F pattern was reduced. Consequently,
the interaction strength and surface adhesion force between the bacteria and the C-RESS-F
pattern were also decreased, which led to the suppression of the biofilm formation on
the surface [48]. Thirdly, the unique surface topology of C-RESS with a smaller size of
micro-pattern (a: 0.5 µm, b: 0.5 µm) than the size of E. coli (a: 0.5 µm, length: 2.0 µm)
can prevent the settlement of E. coli on the pattern spacing area and can also suppress the
bacterial adhesion on the top surface. Therefore, the adhesion of E. coli on both C-RESS and
C-RESS-F patterns is significantly reduced compared to other patterns with and without
the flame treatment process, as shown in Figure 10.
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However, the flame treatment process increases the adhesion of E. coli on the FLT-F,
PIL-F, and C-RESS-F surfaces. The geometry, including pattern shape, size, and surface
roughness, might explain this phenomenon [49–51]. The results in Table 1 show that the
pattern width (a) and pattern space (b) of the pillar and C-RESS patterns before and after
the flame treatment process did not change. However, the surface roughness of FLT-F,
PIL-F, and C-RESS-F patterns has increased compared to FLT, PIL, and C-RESS surfaces.
This is due to the formation of the flower petal nano-structures during the flame treatment
process by the aggregation of the organosilicon compound in the PDMS matrix on the
surface [35–38]. The formation of flower petal nano-structures on PDMS surfaces led to
increasing pattern height (h) and RMS surface roughness, as shown in Table 1. Figure 11
shows that when the surface roughness has increased, the WCA and EGCA have increased.
The flame-treated PDMS samples have better hydrophobic and oleophobic properties than
non-treated PDMS surfaces. Therefore, the flame treatment process should enhance the
performance of bacterial anti-adhesion on the material surfaces [23–25].

Nanomaterials 2022, 12, 557 13 of 18 
 

 

creased. The flame−treated PDMS samples have better hydrophobic and oleophobic prop-
erties than non−treated PDMS surfaces. Therefore, the flame treatment process should en-
hance the performance of bacterial anti−adhesion on the material surfaces [23–25]. 

0 100 200 300 400 500
90

120

150

180

Flame-treated 

Non-treated 

 

C
on

ta
ct

 a
ng

le
 (°

)

RMS roughness (nm)

 WCA
 EGCA

C-RESS
PIL

FLT

C-RESS-F

FLT-F

PIL-F

PDMS surface

 
Figure 11. The effects of surface roughness of various PDMS patterns on water contact angle (WCA) 
and ethylene glycol contact angle (EGCA). 

However, high surface roughness increases the adhesion of E. coli on the 
flame−treated PDMS surfaces, as shown in Figure 12. This might be due to the excess 
flower petal nano−structures on the PDMS micro−structures that render more contact area 
for bacterial attachment. Hence, the rough surface on the flower petal nano−structure can 
induce more cell adhesion due to stimulating extracellular polymeric substances (EPSs) 
released from the cell, facilitating cell attachment and biofilm formation [52]. It was re-
ported that E. coli preferentially chooses valleys between the pillar patterns to settle and 
form biofilms, even when the pattern size (a) is larger than the valleys (pattern spacing) 
[53]. In this experiment, the PIL pattern was designed with a width (a) of 2.0 μm and a 
pattern spacing (b) of 2.0 μm. The robust C−RESS pattern was designed with a width (a) 
of 0.5 μm and a pattern spacing (b) of 0.5 μm. After the flame treatment process, the flower 
petal nano−structure led to a smaller pattern spacing than untreated surfaces. Therefore, 
those PIL, C−RESS, PIL−F, and C−RESS−F pattern sizes are smaller than the size of E. coli 
(a: 0.5 μm, length: 2.0 μm), which can prevent the settlement of E. coli on the pattern spac-
ing (valleys) area. 

 

Figure 11. The effects of surface roughness of various PDMS patterns on water contact angle (WCA)
and ethylene glycol contact angle (EGCA).

However, high surface roughness increases the adhesion of E. coli on the flame-treated
PDMS surfaces, as shown in Figure 12. This might be due to the excess flower petal
nano-structures on the PDMS micro-structures that render more contact area for bacterial
attachment. Hence, the rough surface on the flower petal nano-structure can induce more
cell adhesion due to stimulating extracellular polymeric substances (EPSs) released from
the cell, facilitating cell attachment and biofilm formation [52]. It was reported that E. coli
preferentially chooses valleys between the pillar patterns to settle and form biofilms, even
when the pattern size (a) is larger than the valleys (pattern spacing) [53]. In this experiment,
the PIL pattern was designed with a width (a) of 2.0 µm and a pattern spacing (b) of 2.0 µm.
The robust C-RESS pattern was designed with a width (a) of 0.5 µm and a pattern spacing
(b) of 0.5 µm. After the flame treatment process, the flower petal nano-structure led to
a smaller pattern spacing than untreated surfaces. Therefore, those PIL, C-RESS, PIL-F, and
C-RESS-F pattern sizes are smaller than the size of E. coli (a: 0.5 µm, length: 2.0 µm), which
can prevent the settlement of E. coli on the pattern spacing (valleys) area.

In Figure 9c,g, SEM images show that the E. coli adhered only on the top surface of
the C-RESS-F pattern. However, the absorbance ratio (A591 nm/A570 nm) in Figure 10
reveals that the bacterial anti-adhesion property of the C-RESS-F pattern is poorer than
the C-RESS pattern. This might be due to the excess nano-roughness on flower petal
nano-structure increasing the surface area for bacterial attachment and providing a scaffold
for adhesion [54,55]. It was reported that if the pattern height is larger than the bacteria size,
the bacteria can easily adhere to the sidewall of the micro-structure to form the biofilm [49].
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Therefore, the bacteria might have attached to the flower petal nano-structure and the
sidewall area of the C-RESS-F micro-structure. Based on these results, the effect of surface
roughness might overcome the superhydrophobic and superoleophobic properties on the
bacterial anti-adhesion of the flame-treated PDMS patterns.
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Not only the surface wettability, surface roughness, and surface topography, but the
material’s surface charge density and stiffness are also effect the bacterial adhesion [54]. The
surface charge on the bacterial adhesion is related to van der Waals forces and electrostatic
interactions on the material surfaces. Typically, PDMS and Teflon have a negative charge on
their surface [56,57]. Most bacteria also have a net negative surface charge due to carboxyl,
amino, and phosphate groups on their cell wall surfaces. Therefore, the adhesion of bacteria
is promoted on positively charged surfaces [58]. In this experiment, the bacterial adhesion
on the flame-treated PDMS surface was greater than the untreated PDMS surface. This
might be due to the flame treatment process inducing the positive charges on the PDMS
micro-structure. The positive charges caused by the flame-treated PDMS surface were
investigated by bacteria anti-adhesion testing using Gram-positive Staphylococcus aureus
(S. aureus). The bacterial culture and measurement of static biofilm formation of S. aureus
on the material surfaces were performed using a similar method to E. coli. Note that the
shape and the size of S. aureus and E. coli are different.

The results in Figure 13 show that Gram-positive S. aureus more easily adhered to
the negative charge surface of Teflon and untreated PIL and C-RESS micro-structures
than Gram-negative E. coli. Less adhesion of S. aureus on the FLT surface compared to
E. coli might be due to the round shape of S. aureus with a smaller surface area (diameter:
0.5–1.0 µm) compared to the rod shape of E. coli (length: 2.0 µm, diameter: 0.2–1.0 µm).
After flame-treatment for 15 s, Gram-negative E. coli more easily adhered to the FLT-F and
PIL-F surfaces. This evidence supports that the positive charges might be induced on the
flame-treated PDMS surface. In the case of the C-RESS-F micro-structure, S. aureus can
easily adhere to the surface compared to E. coli. This might be due to the round shape of
S. aureus, and its size is quite similar to the spacing of the C-RESS-F pattern. Therefore,
S. aureus can easily adhere to the sidewall surface area and the top surface of the flower
petal nano-structure compared to E. coli. Due to the shape and the size of S. aureus, which
is smaller than the spacing of PIL, PIL-F, C-RESS, and C-RESS-F micro-structures, S. aureus
can more easily adhere to the PDMS surfaces than E. coli.
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Our previous study showed that the flame treatment could generate C–O bonds,
resulting in the initial oxidation of the methyl groups during a combustion process [38].
It was reported that the oxide surface affects protein absorption and conformation to the
surface, which influences an increase in the bacterial adhesion [59]. Hence, the oxide
formation on the flower petal nano-structure can also increase the bacterial adhesion
on flame-treated FLT-F, PIL-F, and C-RESS-F surfaces. However, an increase in the flame
treatment duration resulted in suppressing C–O bonds on the PDMS surface [38]. Therefore,
the condition of the flame treatment process to obtain the proper amount and size of flower
petal nano-structure with well-controlled positive charges and oxide formation to improve
the bacterial anti-adhesion property on the C-RESS-F pattern will be further investigated.

5. Conclusions

The simple flame treatment process is one of the alternative technologies to construct
flower petal re-entrant micro-/nano-structures with a high surface roughness on the hi-
erarchical PDMS micro-structures. After flame-treatment for 15 s, a well-designed robust
C-RESS-F pattern showed hydrophobicity and superoleophobicity. The combination of
durability and unique surface topology of the C-RESS-F pattern can prevent bacterial
adhesion better than the conventional pillar micro-structure and is comparable with Teflon.
The amount and size of the flower-petal nano-structure, the surface charges, and oxide
formation after the flame treatment process are critical parameters for improving bacterial
anti-adhesion properties. Therefore, the flame-treated C-RESS pattern (C-RESS-F) is one of
the promising bacterial anti-adhesion micro-structures in practical utilization for medical
applications and public areas.
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