
Citation: Reddy, V.P.; Aryal, P.;

Darkwah, E.K. Advanced Glycation

End Products in Health and Disease.

Microorganisms 2022, 10, 1848.

https://doi.org/10.3390/

microorganisms10091848

Academic Editor: Grzegorz Wegrzyn

Received: 8 August 2022

Accepted: 9 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Advanced Glycation End Products in Health and Disease
V. Prakash Reddy * , Puspa Aryal and Emmanuel K. Darkwah

Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
* Correspondence: preddy@mst.edu; Tel.: +1-573-341-4768

Abstract: Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of
reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further
glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation
of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as
in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein
crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs
with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade
events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in
cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic
lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein
aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE
inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and
elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial
dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to
treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-
derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role
in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead
to novel therapeutic candidates.

Keywords: advanced glycation end products; AGE inhibitors; AGE breakers; Alzheimer’s disease;
diabetes; receptors for AGEs; traumatic brain injury; Maillard reaction; aminoguanidine; polyphenols

1. Introduction

Nonenzymatic reactions of the terminal amino groups of amino acids or the side-chain
amino groups of lysine and arginine in proteins with the carbonyl groups of reducing sugars,
such as glucose, ribose, and trioses, result in the formation of Schiff bases that undergo
further glycoxidation reactions when exposed to increased oxidative stress conditions
to give the highly reactive 1,2-dicarbonyl compounds. These 1,2-dicarbonyl compounds
react with the amino groups of the proteins, resulting in inter- and intraprotein crosslinks.
The complex reactions involved in AGE formation are collectively also called Maillard
reactions. The AGE-crosslinked proteins, including receptor proteins, and enzymes are
thereby inactivated for normal physiological functions. These protein modifications and the
small-molecule products resulting from their degradation are collectively called advanced
glycation end products (AGEs; Figure 1) [1].

The formation of AGEs is promoted by elevated oxidative stress. The initially formed
glycated proteins undergo extensive glycoxidation reactions involving reactive oxygen
species (ROS), such as hydroxyl radical (HO·), and reactive nitrogen species (RNS), such
as peroxynitrite anion (ONOO−). The AGEs, in turn, exert oxidative stress through their
interaction with receptors for the advanced glycation end products (RAGE), which activates
the inflammatory cytokine pathway. AGEs bind to various cell surface receptors, including
receptors for AGEs (RAGE), oligosaccharyl transferase-48, 80K-H phosphoprotein, and
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galectin-3 in macrophages, monocytes, and microglia. The AGE modification of the nucleic
acids, proteins, and enzymes impairs the biological functions of the receptors or enzymes, or
activates them for the expression of proinflammatory cytokines, such as interleukin-6 (IL-6),
which further leads to the exacerbation of the oxidative stress [2,3]. Therefore, inhibitors
of AGEs (AGE inhibitors) or breakers of AGEs (AGE breakers), the small-molecule-based
therapeutics or naturally occurring polyphenolic antioxidants, would attenuate AGEs, and
the consequent AGE-related diseases would be attenuated or prevented (vide infra).
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Figure 1. Formation of AGEs through nonenzymatic reactions of reducing sugars with protein 
amino groups. 

It is widely recognized that, among other factors, AGEs are the predominant contrib-
uting factors in the onset and progression of diabetes and AD [1,4,33]. In some cases, type 
2 diabetes leads to the onset of AD, and they both have common biomarkers, including 
AGEs, such as Ne-(carboxymethyl)lysine (CML) and pentosidine (a lysine–arginine cross-
link; Figure 1) [16–19]. Hemoglobin A1c is a CML-modified hemoglobin protein and is the 
routinely used clinical biomarker for diabetes. Through immunocytochemistry, it was 
shown that the CML is colocalized with lipid peroxidation products, such as 

Figure 1. Formation of AGEs through nonenzymatic reactions of reducing sugars with protein
amino groups.
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AGEs are also formed through nonenzymatic reactions of reducing sugars with the
amino groups of the adenine, guanine, and aminolipids [4]. These endogenously formed
AGEs, along with the ingested dietary AGEs, collectively contribute to the further oxidative
stress and protein modifications and result in the activation of NF-kB, which modulates
the expression of inflammatory genes, and thereby lead to the enhanced production of
inflammatory cytokines [4,5]. The latter inflammatory pathways lead to the loss of cellular
defense mechanisms and eventual neuronal cell death in AD. The excessive oxidative stress
caused by these inflammatory pathways also contributes to the exacerbation of the other
AGE-related pathologies, such as atherosclerosis and diabetes. Furthermore, the increased
carbonyl stress and overproduction of reactive oxygen species (ROS) and reactive nitrogen
species (RNS), under these oxidative stress conditions, causes the excessive production of
AGEs, which may also lead to diabetes as well as pancreatic cancers [6].

Many of the AGEs are fluorescent compounds, and the extent of AGE formation
is correlated with disease progression in AGE-related diseases, including diabetes; dia-
betic retinopathy and neuropathy [7–10]; cardiovascular diseases, including atheroscle-
rosis [11–15]; and neurodegenerative diseases, such as Alzheimer’s disease (AD) [16–19],
amyotrophic lateral sclerosis (ALS) [20–23], and Parkinson’s disease (PD) [24–26] as well
as the secondary stages of traumatic brain injury (TBI) [27,28]. Most of the AGEs are not
structurally characterized and are observed either through their characteristic fluorescence
(λex = 370 nm, λem = 440 nm) [29] or through immunocytochemistry using AGE-specific
antibodies [30]. Some of the structurally characterized fluorescent AGEs include pentosi-
dine, a fluorescent lysine–arginine crosslink; glucosepane, a nonfluorescent lysine–arginine
crosslink; and nonfluorescent non-crosslinked AGEs, such as Nε-(carboxymethyl)lysine
(CML) and argpyrimidine (Figure 1) [1,31,32].

It is widely recognized that, among other factors, AGEs are the predominant con-
tributing factors in the onset and progression of diabetes and AD [1,4,33]. In some cases,
type 2 diabetes leads to the onset of AD, and they both have common biomarkers, includ-
ing AGEs, such as Nε-(carboxymethyl)lysine (CML) and pentosidine (a lysine–arginine
crosslink; Figure 1) [16–19]. Hemoglobin A1c is a CML-modified hemoglobin protein and
is the routinely used clinical biomarker for diabetes. Through immunocytochemistry, it
was shown that the CML is colocalized with lipid peroxidation products, such as malon-
dialdehyde and 4-hydroxy-2-nonenal (HNE), in the neuronal cells in AD cases [16–19].
The latter findings suggested that CML is also derived through the lipid peroxidation
pathway. However, it does not exclude the CML formation through the Maillard reaction
sequence. The oxidative stress induced by AGEs also leads to the aggregation of the soluble
amyloid-beta peptides (Aβ), and thus senile plaque formation contributes to a further
accumulation of AGEs [34].

It is interesting that the Maillard reactions are also observed in bacterial species, in-
cluding E. coli, and the protein aggregation in these bacterial cells is reminiscent of protein
aggregates in Parkinson’s disease and AD [32]. Furthermore, dietary AGEs affect the gut
microbiota composition, induce insulin resistance, and lower the abundance of the butyrate-
forming gut bacteria [35]. Interestingly, AGE inhibitors extend the lifespan of the gut
microbiota by attenuating AGE levels [36]. In model studies, Escherichia coli (E. coli), when
exposed to glucose, decreased the life-span and health-span of its host nematode, Caenorhab-
ditis elegans (C. elegans), and the physiological changes were accompanied by the dysregula-
tion of glutathione-S-transferase and superoxide dismutase in the C. elegans. With chronic
exposure to glucose, the bacterial species exhibited increased AGEs [37]. The exposure of
bacterial species to the AGE inhibitor carnosine helped abrogate the negative effects of
AGE-related effects in the nematode host [37]. Probiotic strains of E. coli, on the other hand,
metabolize AGE compounds, such as Nε-carboxymethyllysine (CML), to form relatively
nontoxic compounds (Figure 2) [38]. The MnmC bacterial enzyme (tRNA 5-aminomethyl-
2-thiouridylate methyltransferase), which is involved in bacterial tRNA modifications,
and its variants generated through site-directed mutagenesis were shown to reverse AGE
modification in CML and Nε-carboxyethyllysine (CEL), effectively acting as AGE breaker
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enzymes [39]. MnmC is a bifunctional enzyme in which the C-terminal domain (C-MnmC)
is a flavin adenine dinucleotide (FAD)-dependent methyl transferase and the N-terminal
domain is a S-adenosylmethionine (SAM)-dependent methyl transferase. The C-terminal
moiety of this enzyme, using FAD as a cofactor, brings about the oxidative deamination of
α-amino acids to α-keto acids. This reaction goes through an α-iminimum carboxylic acid
intermediate. Through a similar mechanism, the N-carboxymethyl and N-carboxyethyl
moieties of CML and CEL are oxidatively hydrolyzed to form the lysine (Figure 2).
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Exogenous AGEs were shown to have a marked effect on the gut microbiota com-
position and plasma protein glycosylation. Thus, in mice, dietary AGEs lowered the
populations of the Lactobacillus, Prevotella, Anaerostipes, and Candidatus Arthromitus, while
the populations of Parabacteroides, Ruminococcus, and Lawsonia were elevated. The dietary
AGE-mediated altered microbiota composition and elevated glycosylated plasma proteins
are implicated in the systematic proinflammatory effects and endothelial dysfunction [40].

The Parkinson-associated DJ-1/PARK7-like protein glutamine amidotransferase-like
class 1 domain-containing 3A (GATD3A) is a mitochondrial deglycase protein and has
evolutionary origins from gammaproteobacteria. The mitochondrial GATD3A deglycase
protein mediates the removal of early glycation intermediates, those derived from the Mail-
lard reaction of glyoxal and methylglyoxal with the amino groups of nucleotides and amino
acids, thereby maintaining the integrity of mitochondrial proteins. Mice lacking GATD3A
are associated with elevated levels of AGEs and altered mitochondrial dynamics [41].

Thus, understanding the bacterial defense mechanisms against AGE formation would
provide avenues for the development of novel therapeutics for the treatment of AD and
other neurological disorders.

2. Receptors for Advanced Glycation End Products (RAGE)

Receptors for AGEs (RAGE) are a class of transmembrane multifunctional immunoglob-
ulin superfamily of proteins. Figure 3 shows a schematic illustration of the structure of
RAGE. RAGE exists in various isoforms, and generally it has extracellular C1, C2, and V
domains, a transmembrane domain (TM), and a cytoplasmic domain. RAGE binds to a
multitude of endogenous ligands (including AGEs and Aβ) via its extracellular as well as
cytoplasmic domains [42].
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cytoplasmic domains.

The binding of ligands on the extracellular domains initiates a cascade of intracellular
signaling events, leading to the production of reactive oxygen species (ROS) and inflamma-
tory cytokines, resulting in cellular proliferation, cell apoptosis, and further upregulation
of RAGE [42]. RAGE plays a major role in the onset of various pathological conditions,
including cardiovascular diseases, neurodegeneration, cancer, and diabetes.

The extracellular domain of RAGE binds to AGEs, and this AGE-RAGE interaction
leads to signal transduction through the activation of various kinases, such as mitogen-
activated protein kinase (MAPKs), Janus kinase (JAK), phosphatidylinositol 3-kinase (PI3K),
and the downstream activation of various inflammatory pathways, including the over-
expression of nuclear factor kappa beta (NF-kB), a transcription factor for the expression
of proinflammatory genes that regulate the formation of various inflammatory cytokines
(IL-1, IL-6, and TNF-α) and thereby increase oxidative stress (overexpression of ROS and
RNS) and cell apoptosis [42,43]. The AGE-RAGE interactions are implicated in the patho-
genesis of various hepatic disorders, such as nonalcoholic steatohepatitis, liver cirrhosis,
various cancers [44], AD [44], and cardiovascular diseases [45]. The levels of RAGE are
relatively low in healthy individuals but are elevated under pathological conditions, in-
cluding cancer, cardiovascular disease, and diabetes [46]. Targeting the extracellular and
intracellular domains of RAGE is an emerging area in the development of RAGE-specific
therapeutics [42,47].

CML and CEL (Nε-carboxyethyllysine) are abundant in the blood plasma and in
tissues in diabetes and AD cases and are the major physiological ligands for RAGE. CML
and CEL are formed through Maillard reactions of a lysine terminal amino group with
glyoxal and methylglyoxal, respectively (Figure 4).
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Solution protein NMR studies of the CEL-bound RAGE showed that the carboxyethyl
and carboxymethyl moieties of CEL and CML bind to the positively charged cavity of
the V domain of RAGE [48]. This binding of AGEs to RAGE is an indicator of, and in
response to, cellular stressors. The activation of RAGE through its binding of AGEs leads
to the expression of inflammatory cytokines in order to counteract the cellular stressors.
However, the overexpression of various inflammatory cytokines, resulting from AGE-
RAGE interactions, leads to a further increase in oxidative stress and to increased levels of
AGEs, thereby propagating a vicious cycle that leads to cell apoptosis and disease severity.

Maillard reactions of the guanidino moiety of arginine with methylglyoxal give three
isomeric forms of AGEs, MG-H1 (Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine), MG-
H2 (5-(2-amino-5-hydro-5-methyl-4-imidazolon-1-yl)norvaline), and MG-H3 (5-(2-amino-
4-hydro-4-methyl-5-imidazolon-1-yl)norvaline) (Figure 5). Of these isomers, MG-H1 is
formed as the major isomer. These arginine-methylglyoxal-derived AGEs have a high
affinity (Kd = 31 to 44 nM)) for the extracellular V-domain of RAGE. In comparison, the
binding affinity of arginine to RAGE is too low because of the positive charge on its side-
chain guanidino moiety, and therefore RAGE-arginine complexes were not observed [49].
Thus, RAGE selectively binds to the AGEs derived from the lysine and arginine side chains
but not to lysine or arginine, as otherwise undesirable cellular signaling would be initiated
upon such RAGE–amino acid binding. The RAGE-MG-H1 complex is stabilized by the
hydrogen bonding interactions of the imidazolone moiety of MG-H1 with the surrounding
positively charged amino moieties of Lys 32, Gln 80, and Lys 90 (Figure 6).
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AGEs alone are inflammatory agents and cause increased oxidative stress, leading to
damage to proteins and nucleic acids. Thus, the formation of AGEs and their interaction
with RAGE initiates a vicious cycle of oxidative stress and the overproduction of AGEs.
Soluble RAGE (sRAGE) comprises the extracellular fragments of the transmembrane pro-
tein RAGE that bind to AGEs, but because they are lacking the transmembrane protein,
their binding to AGEs does not translate to the expression of inflammatory cytokines.
The sRAGE are also secreted endogenously (called esRAGE). The sRAGE compete for the
binding of the AGEs and thereby the AGE-RAGE interactions and the consequent cellular
damage are circumvented. The latter sRAGE may provide avenues for designing thera-
peutics for various AGE-related diseases, including AD, the secondary pathological effects
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of TBI, and diabetes [50,51]. However, the clinical trials using various endogenous RAGE
antagonists and the genetically engineered sRAGE have had little success to date [52].
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Figure 6. Solution NMR structure of the RAGE-MG-H1 complex (shown here is the extracellular
V-domain of the RAGE bound to MG-H1); the imidazolone moiety of MG-H1 is surrounded by
the positively charged amino acid residues, including Lys 90, Gln 80, and Lys 32; the structure was
created using UCSF Chimera software; PDB ID: 2MOV (MG-H1 is shown as a ball-and-stick model;
red = oxygen, blue = nitrogen).

RAGE antagonists are designed to target either the extracellular V domain of RAGE,
which binds to the RAGE substrates (including AGEs and Aβ1–42), or the intracellular
domain, which modulates RAGE signaling and downstream events; however, the majority
of the potential RAGE antagonist therapeutics are based on targeting the extracellular V
domain [47]. FPS-ZM1 (4-chloro-N-cyclohexyl-N-(phenylmethyl)benzamide; Figure 7),
a RAGE antagonist, binds to the extracellular domain of the BACE and suppresses the
AGE-induced expression of oxidative stress in rat primary microglial cells [53]. FPS-ZM1
suppressed the expression of NF-kB and downstream inflammatory mediators, such as TNF-
α, interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase
(iNOS), and attenuated the AGE-induced formation of the NAPDPH oxidase (NOX) that
activates the production of ROS. The latter RAGE antagonist also elevated antioxidant
enzymes, such as heme oxygenase-1 (HO-1) [53]. It alleviated renal injury in hypertensive
rats [54] and attenuated AGE-induced inflammation in the rat hippocampus [55].
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Azeliragon (PF-04494700; Figure 7), a RAGE antagonist, competitively binds to the
extracellular domain of RAGE, which has a relatively high affinity for RAGE ligands, includ-
ing AGEs, HMGB1 (high-mobility group box 1 protein), and S100B (S100 calcium-binding
protein B). Azeliragon also attenuates the levels of Aβ1–42. Although Azeliragon attenuated
neuroinflammation by lowering the Aβ1–42 levels in a phase 2b clinical study [56], phase
3 clinical studies to evaluate the efficacy and safety of Azeliragon in patients with mild
AD were discontinued because of the failure to achieve the primary endpoints. Other
phase 3 trials of Azeliragon in patients with mild AD and impaired glucose tolerance are
currently in progress [57]. A recent review summarized various RAGE antagonists that
bind to the extracellular and intracellular domains of RAGE and their potential therapeutic
efficiencies [42].

The FDA-approved thiazolidinedione class of drugs (Figure 7) for treating diabetes
attenuate the AGE-RAGE interactions through an indirect mechanism: they inhibit the
formation of RAGE and induce the expression of s-RAGE through the activation of the
peroxisome proliferator-activated receptor gamma (PPAR-γ) [58,59].

Interestingly, in a retrospective cohort study in 362 patients with type 2 diabetes and
125 age- and gender-matched healthy control subjects for 15 years, there was a statisti-
cally significant correlation between the ratio of the circulating AGEs and soluble RAGE
isoforms. In type 2 diabetes patients, circulating AGEs, total sRAGE, cRAGE (RAGE
formed through cleavage from the extracellular surface of the RAGE), and AGEs/sRAGE
and AGEs/esRAGE ratios were significantly increased compared to healthy controls. In
healthy subjects, an inverse correlation of cRAGE and aging was observed, whereas in type
1 diabetes cases there was a positive correlation of these diagnostic markers. The increase
in the AGEs/cRAGE ratio was accompanied by a high risk of all-cause mortality rates in
type 2 diabetes. The increase in sRAGE was associated with the onset of cardiovascular
diseases in type 2 diabetes cases [60]. Other studies also showed positive correlations of
sRAGE levels with the onset of cardiovascular events in type 2 and type 1 diabetes [61,62].
Because the levels of RAGE, sRAGE, and cRAGE are directly related to the circulating
levels of AGEs, a preventative strategy for disease pathogenesis would be to attenuate the
AGE levels in diabetes cases through minimizing the intake of dietary AGEs (such as low
consumption of processed foods) and through exercise-based lifestyle intervention [63–65].

The levels of plasma AGEs, sRAGE, NF-kB, and inflammatory markers were remark-
ably higher in type 2 diabetes patients with vascular complications and nephropathy [64].
sRAGE is also correlated with the severity of the chronic obstructive pulmonary disease
(COPD) and it can be used as a biomarker for disease progression [66]. The high ratio of
AGEs/sRAGE is also a risk factor for chronic kidney disease (CKD) [66].

The SARS-CoV-2-mediated cytokine storm is exacerbated in cases of diabetes, obe-
sity, and high blood pressure in which AGEs are abundantly formed, indicating that the
increased AGE-RAGE interactions and overexpressed RAGEs may be contributing factors
for the severity of the disease in these cases [67]. In accordance with this hypothesis, a
cross-sectional study of COVID-19 patients showed that there is a significant association
between serum sRAGE and COVID-19 severity in severe COVID-19 cases [68]. In ham-
ster models infected with the COVID-19 virus, it was shown that treatment with sRAGE
attenuated the overactivation of inflammatory responses in SARS-CoV-2 [69], suggesting
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that targeting the AGE-RAGE axis may lead to pharmaceutical candidates for treating
COVID-19 complications. In mouse models, the RAGE antagonist FPS-ZM1 (4-chloro-N-
cyclohexyl-N-(phenylmethyl)benzamide) improved survival in infected mice, showing that
impairing RAGE signaling would limit disease progression [70].

3. AGE Inhibitors

AGE inhibitors are naturally occurring polyphenolic compounds or small-molecule-
based synthetic compounds, which act as AGE inhibitors through diverse modes of ac-
tion, including acting as free-radical traps or antioxidants or through the sequestration
of 1,2-dicarbonyl compounds (intermediate products of Maillard or lipid peroxidation
reactions, leading to AGE formation). There is a wide-ranging interest in designing AGE
inhibitors as potential therapeutics for a variety of AGE-related diseases, such as diabetes
and diabetes-related neuropathy and retinopathy and neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), and
amyotrophic lateral sclerosis (ALS). Pyridoxamine (Vitamin B6) is an AGE inhibitor as well
as a lipid peroxidation inhibitor and attenuates the levels of AGEs [71–74]. Pyridoxamine
ameliorated the complications from diabetic retinopathy in experimental rat models [75]
and therefore is potentially useful in the treatment of human diabetes or diabetic retinopa-
thy. However, safety concerns during the clinical trials impeded the use of pyridoxamine as
a therapeutic candidate in diabetic nephropathy [6]. Carnosine, β-(alanyl)histidine, is an an-
tioxidant compound, transition metal ion chelator, and scavenger of reactive 1,2-dicarbonyl
compounds and therefore has antiglycating effectiveness (Figure 8) [76–78]. However, the
relatively fast hydrolytic cleavage of carnosine by the intracellular carnosinase enzyme lim-
its its use as a therapeutic AGE inhibitor [76,79]. The glyoxalase enzymes, glyoxalase I and
glyoxalase II, use reduced glutathione as a cofactor in the detoxification of AGEs. The levels
of the glyoxalase I correlate with decreases in AGE content, and the downregulation of
glyoxalase I is associated with increased levels of AGEs [4,80]. In this glyoxalase-catalyzed
detoxification of methylglyoxal, the reaction of methylglyoxal with glutathione initially
gives a thiohemiacetal, which is then metabolized to the nontoxic D-lactate [81].
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2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195; Figure 8)
was developed as a potential drug candidate for treating diabetes complications. The latter
compound lowers the levels of AGEs as well as advanced lipoxidation end products (ALE),
such as 4-hydroxy-2-nonenal (HNE), a toxic α,β−unsaturated aldehyde that undergoes
Michael additions to amino or thiol moieties of various proteins and deactivates their
enzymatic functions [82].

Aminoguanidine (pimagedine), as an AGE inhibitor, has received more attention than
any other AGE inhibitors. Polyphenolic compounds have multiple mechanisms of action
in attenuating the levels of AGEs and, as naturally occurring compounds, have no adverse
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effects, unlike synthetic AGE inhibitors, including aminoguanidine. The following sections
outline the role of aminoguanidine and polyphenolic compounds as AGE inhibitors and
their effectiveness in treating AGE-related diseases, including diabetes and AD.

3.1. Aminoguanidine

Aminoguanidine was among the earliest AGE inhibitors that went into clinical trials
to treat diabetes and diabetes-related complications, such as diabetic retinopathy. How-
ever, these clinical trials were withdrawn due to the adverse effects of aminoguanidine
in the phase II/III clinical trials [83–85]. Thus, in randomized, double-blinded, placebo-
controlled clinical trials with 690 patients with diabetes mellitus type 1 (type 1 diabetes),
diabetic nephropathy, and diabetic neuropathy, aminoguanidine provided clinical proof
that inhibiting AGEs may ameliorate the complications of diabetes. However, patients
receiving high-dose aminoguanidine exhibited glomerulonephritis, and furthermore, these
studies did not demonstrate statistically significant beneficial effects on diabetic nephropa-
thy [86,87]. These clinical studies and others on AGE inhibitors and AGE breaker com-
pounds, in addition to their toxicity concerns, show marginal effects on the mitigation of
diabetes or diabetes-related complications [73]. However, the potential beneficial effects
of aminoguanidine and other AGE inhibitors and AGE breakers in mitigating various
pathological conditions are substantially supported by animal model studies [73,88–100].
AGE inhibitors, including aminoguanidine and pyridoxamine, trap not only the reactive
1,2-dicarbonyl compound intermediates of the Maillard reaction but also the lipid precur-
sors of advanced lipid peroxidation end products (ALE), thereby showing protective effects
in the development of atherosclerosis, early renal disease, and dyslipidemia in animal
models [101,102].

Due to the high reactivity toward nucleophilic addition reactions, aminoguanidine
traps 1,2-dicarbonyl compounds, such as methylglyoxal, glyoxal, glucosone, and dehy-
droascorbate, at relatively rapid rates. The latter 1,2-dicarbonyl compounds are highly
electrophilic and are relatively more reactive than reducing sugars, such as D-glucose, under
physiological conditions. Thus, the trapping of intermediate 1,2-dicarbonyl compounds pre-
cludes their further transformation to AGEs. The excess accumulation of the 1,2-dicarbonyl
compounds is also called carbonyl stress, which is attenuated by aminoguanidine [103]
(Figure 9) [104,105]. The reactive 1,2-dicarbonyl compounds are also generated through
lipid peroxidation pathways (and through the cellular metabolism of lipids) in addition
to their formation as early Maillard reaction products. The carbonyl stress arising from
unhealthy processed food, thus, is also a major contributing risk factor for the onset of
cardiometabolic and cancer pathologies [6,106]. Both type 1 and type 2 diabetes are major
risk factors for pancreatic cancer, and importantly all these pathologies have excessive
accumulation of AGEs and elevated carbonyl stress. Furthermore, the glyoxalate pathway,
which degrades excessive methylglyoxal in diabetes cases, is impaired, contributing to
carbonyl stress [107]. Glycemic control as well as the attenuation of oxidative stress are
therefore key parameters for designing naturally occurring or synthetic therapeutics, such
as aminoguanidine-based AGE inhibitors.
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The AGE inhibitor compound aminoguanidine prevents decreased myocardial com-
pliance in streptozotocin-induced diabetic rats [108]. The myocardial collagen AGE fluores-
cence intensity is decreased upon the administration of the aminoguanidine in these cases,
which shows that AGEs contribute to myocardial stiffness. Aminoguanidine treatment
increases vascular elasticity and decreases vascular permeability in diabetic rat models
and may exert a mitigating effect on diabetic cardiomyopathy and diabetic heart fail-
ure [103,109]. Aminoguanidine prevents arterial stiffening in diabetic rat models, which is
attributed to the AGE-inhibitory effect of aminoguanidine [110,111]. Thus, AGE accumu-
lation has deleterious effects on vascular collagen crosslinking, which, in turn, increases
the arterial wall stiffness and the permeability to fluids. Therefore, AGE inhibitors have a
positive outcome in these cases, as demonstrated in animal models.

Aminoguanidine is also an inhibitor of inducible nitric oxide synthase (iNOS), thereby
attenuating the levels of nitric oxide (NO) [112]. Thus, the oxidative stress markers of
reactive nitrogen species (RNS), including NO and peroxynitrite (ONOO−), are attenuated
by aminoguanidine, and the levels of the AGEs are thereby attenuated [112].

3.2. Pyridoxamine

Pyridoxamine (Figure 8), due to the presence of the phenolic hydroxy group, can
act as a free-radical scavenging agent, thus sequestering the ROS and RNS and thereby
suppressing oxidative stress and AGE formation. Pyridoxamine inhibits the genera-
tion of hydroxyl radical from the albumin–Amadori system and thereby protects the
albumin–Amadori-induced tryptophan modification and exerts its protective effects on
diabetes complications, including diabetic nephropathy [113,114]. Pyridoxamine was also
shown to affect wound healing in nonhealing diabetic wounds through the scavenging of
methylglyoxal, thereby inhibiting the methylglyoxal-mediated formation of the protein
adducts that cause macrophage dysfunction [115].

In phase 2 clinical studies with type 1 and type 2 diabetes and early-stage diabetic
nephropathy, pyridoxamine attenuated the levels of CML and carboxyethyllysine (CEL)
AGEs, although these studies did not give confirmatory evidence of its beneficial effect
in treating diabetic nephropathy [87,116]. The combined effect of the dietary AGEs and
endogenously formed AGEs contributes to chronic kidney diseases, including diabetic
nephropathy. Kidneys are vital in the clearance of AGEs, and the excessive accumulation
of AGEs, especially in diabetic patients, results in exacerbated pathology and a progression
to end-stage diabetic nephropathy [8]. Thus, AGE clearance by AGE inhibitors or AGE
breakers would be expected to lead to potential therapeutics.

Pyridoxamine was shown to be a better antiglycating agent compared to metformin in
the early, intermediate, and late stages of glycation [117]. In clinical studies, pyridoxamine,
when co-administered along with methylcobalamin and benfotiamine, helped decrease pain
and inflammation in osteoarthritis and rheumatoid arthritis patients [118,119]. Pyridoxam-
ine as well as aminoguanidine attenuated AGE (generated through the Maillard reaction
of glyceraldehyde)-mediated tau-protein phosphorylation and β-tubulin aggregation and
suppressed glyceraldehyde-AGE-induced dysfunctional neurite outgrowth, showing the
potential therapeutic effects of the AGE inhibitor compounds, such as pyridoxamine and
aminoguanidine [120]. Through the suppression of the methylglyoxal-mediated AGEs,
pyridoxamine was shown to revert the methylglyoxal-induced loss of cell survival path-
ways in ischemia [121]. Pyridoxamine may also have potential therapeutic effects in treating
irritable bowel syndrome (IBM), as it attenuates the fermentable-carbohydrate-mediated
AGEs and thereby prevents IBM. The latter gastrointestinal disorder is associated with
increased fermentable carbohydrate intake, and thus AGEs are implicated in this negative
impact of fermentable carbohydrates [122]. Pyridoxamine suppresses the methylglyoxal-
mediated formation of AGEs, including argpyrimidine, and prevented the apoptosis of
methylglyoxal-treated human lens epithelial cells [123]. Pyridoxamine, by inhibiting the
formation of AGEs, attenuates diabetic complications [123].
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Sphingolipid metabolism is impaired in the case of insulin-resistant mice, and this
impaired sphingolipid metabolism is attributed to AGE accumulation in liver and the
associated AGE/RAGE signaling pathways [124]. Pyridoxamine inhibits the formation of
AGEs and thereby prevents sphingolipid alterations and attenuates insulin resistance [124].
AGEs are also involved in the mitigation of liver fibrosis, a common chronic hepatic
disease. Pyridoxamine, in animal models, reduces liver fibrosis, presumably through its
AGE-inhibitory effect and the attenuation of oxidative stress [125].

3.3. Polyphenols as AGE Inhibitors

Polyphenolic antioxidants inhibit the formation of AGEs through a free-radical scav-
enging effect and transition metal ion (e.g., Cu+ and Fe2+)-chelating effects. They also
activate insulin signaling pathways, promoting glucose metabolism [126–128]. The phe-
nolic oxy radicals are stabilized by resonance and are more stable than ROS. Therefore,
polyphenolic compounds effectively quench ROS. In this process, the hydroxyl radical is
transformed to the hydroxide anion, and the phenolic compounds are transformed to phe-
noxy radicals. The polyphenols also sequester RNS, such as peroxynitrite anion (ONOO−),
through electrophilic or free-radical aromatic nitration reactions [44].

RNS and ROS are formed through Fenton reactions involving the reaction of transition
metal ions, such as Cu+ and Fe2+, with the molecular oxygen, initially forming the super-
oxide radical anion (O2

−), which undergoes further metal-ion-catalyzed redox reactions
to give the highly reactive hydroxy radicals (HO·). The reaction of superoxide radical
anion with nitric oxide NO (a metabolic product of nitric oxide synthase) forms the highly
oxidizing RNS peroxynitrite anion (ONOO−) [1,127]. Thus, through metal ion chelation by
polyphenolic compounds, the formation of ROS and RNS is suppressed and thereby the
levels of AGEs are attenuated.

Metal ion chelation by ethylene diamine-N,N,N,N-tetraacetic acid (EDTA) attenu-
ates the formation of ROS and RNS and thereby attenuates the glycoxidation reactions
and the AGEs [129]. In clinical trials, EDTA showed some positive outcomes in the treat-
ment of atherosclerosis and diabetes, although the chelation therapy involves an invasive
procedure [130–132]. It was hypothesized that the AGE-inhibitory effects of some of the
commonly used drugs to treat diabetes, such as ACE inhibitors, angiotensin receptor
blockers, and aldolase reductase inhibitors, may be due to their chelating effect on metal
ions [44,129]. These drugs do not have functional groups that would trap the reactive
1,2-dicarbonyl Maillard intermediate products or that would trap free radical species.

Randomized clinical trials showed that resveratrol, a polyphenolic compound, amelio-
rates, to some extent, the progressive cognitive decline in AD patients [34]. Many other
studies demonstrated that resveratrol has neuroprotective, anti-inflammatory, and antioxi-
dant properties and that it can activate silent information regulator-1 (SIRT1) and thereby
protect neuronal cells from the toxic effects of excessive oxidative stress [133]. Furthermore,
resveratrol inhibits the expression of AGEs and thereby decreases the insoluble Aβ1–42 lev-
els in AD brains and protects the blood–brain barrier (BBB) [134–136]. However, resveratrol
has poor bioavailability and relatively unfavorable pharmacokinetics [120], thus impeding
its AGE-inhibitor therapeutic effectiveness in treating AGE-related diseases, including
diabetic nephropathy.

The levels of AGEs are attenuated in the presence of polyphenolic compounds, includ-
ing resveratrol, curcumin, and flavonoids, such as epigallocatechin gallate and catechin,
and thus polyphenolic compounds have neuroprotective effects [2]. However, effective
therapeutics based on polyphenolic compounds for treating neurodegenerative diseases
are lacking to date. Antioxidants, such as ascorbic acid, glutathione, and vitamin E (α-
tocopherol) also exert antiglycating and neuroprotective effects. Pomegranate-derived
polyphenolic compounds, such as ellagic acid and gallic acid, and their intestinal bacterial
metabolites, urolithin A and urolithin B, show an antiglycating effect and were shown
to be more potent AGE inhibitors compared to aminoguanidine (Figure 10) [137]. These
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polyphenolic compounds, through the attenuation of ROS and RNS, inhibit the formation
of AGEs.
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4. AGE Breakers

AGE breaker compounds reverse the protein crosslinks in AGEs, thereby releasing
the proteins in their natural form and reversing the toxic effects associated with AGEs.
Alteon, Inc. has developed phenacyl thiazolium-based compounds, such as Alagebrium
(ALT-711) and phenacylthiazolium bromide (PTB), as potential therapeutic candidates
(Figure 11) [138–143]. Alagebrium, in phase III clinical tries, ameliorated the stiffening of
the arterial vessels and reduced systolic blood pressure in patients with diastolic heart fail-
ure [144,145]. This drug candidate also has favorable outcomes in the treatment of diabetes
and hypertension and has beneficial effects on other AGE-related diseases; however, the
clinical trials were later abandoned due to other issues unrelated to the safety profile.

The AGE breaker compound TRC-4149 (Figure 12) was studied in vitro and in vivo
in streptozotocin-induced diabetic spontaneously hypertensive rats (SHR) [146]. The
latter AGE breaker compound was shown to break the AGE crosslinks and to reduce
the AGE burden in a dose-dependent manner. In the SHR animal models, it improved
cardiac function compared to the controls and reduced the AGE load, preserving the
endothelial and cardiac functions. TRC-4149 exhibits favorable outcomes in reversing
diabetic complications in in vitro and in vivo studies, and in the phase I clinical trials,
showed favorable safety profiles when administered orally either as a single dose or
multiple doses [147,148]. However, despite these efforts in developing novel therapeutic
candidates, there has been no successful AGE breaker candidate that can be used as a
pharmaceutical to date.
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Alagebrium breaks methylglyoxal-mediated AGE protein crosslinks. However, its
AGE-breaking efficiency toward the AGEs formed from the other 1,2-dicarbonyl com-
pounds (such as glucosone) is not well-demonstrated [145,149]. The mechanism of the AGE-
breaking reaction is not well-established [150]. Using model systems of α-ketoaldehydes, it
was shown that ALT-711 forms cyclic diol products and scavenges methylglyoxal under
physiological conditions [149]. This proposed mechanism is in accordance with that of
Vasan and coworkers’ earlier proposed mechanism for the PTB-mediated degradation of
the protein-crosslinked 1,2-dicarbonyl compounds [138,150].
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The use of the phenacylthiazolium-based compounds, such as ALT-711, may be more
specific to the cleavage of 1,2-dicarbonyl-containing protein crosslinks under physiological
conditions. However, the AGE breaker compound TRC-4149 lacks such N-heterocyclic
carbene (NHC) functionality to form the cyclic diol intermediates with α-ketoaldehydes.
As an alternative mechanism that accounts for the AGE-breaking effect of thiazolium as
well as pyridinium-based AGE breakers, shown in Figure 12, we propose that the AGE-
breaking reaction may involve the nucleophilic addition of the enolate anion of the AGE
breaker compounds (including ALT-711 and TRC-4149) to the imine moiety of the AGE
protein crosslinks, followed by the cleavage of the C-C bond connecting the imino moieties.
Thus, generated protein-bound imines are further hydrolyzed, in situ, to give AGE-free
proteins (Figure 12). Further experiments using various related enolate anions as model
AGE breaker compounds may provide additional evidence for this proposed mechanism.

The thiazolium moiety in PTB and Alagebrium and the pyridinium moiety in TRC-
4149 may also selectively bind to the AGE crosslinks, similar to the selective amyloid
binding to thioflavin T [151,152], thereby facilitating the cleavage of the crosslink imine
moieties. Further research is needed for the elucidation of the mechanism of the AGE-
breaker-mediated degradation of AGEs. However, the AGE breaker compounds, such as
alagebrium and PTB, seem to act specifically on methylglyoxal-mediated AGEs [150]. The
delineation of the AGE breaker and AGE inhibitor mechanisms would enable the design of
AGE breakers that are applicable to the degradation of a broader class of AGE crosslinks.

AGEs induce collagen crosslinking to a greater extent than in the control cases in
the absence of AGEs. Thus, increased collagen crosslinks translate to the stiffening of
arterial walls and the accompanying atherosclerosis. The AGE crosslink breaker ALT-711
was shown to reverse protein crosslinking and the diabetes-induced increase in arterial
stiffness in the streptozotocin-induced diabetes rat models [153]. An ester analog of PTB, 3-
benzyloxycarbonylmethyl-4-methyl-3-thiazolium bromide (C-36; Figure 10), improves the
cardiovascular system of diabetic rats and attenuates the mRNA levels of diabetes-induced
genes, including RAGE [154].

The AGE breaker compound ALT-711 reverses arterial and ventricular wall stiffness
in healthy older rhesus monkeys [155]. It was shown that in diabetic hypertensive rats,
the coadministration of ALT-711 with the Ca2+ channel blocker nifedipine improves the
antihypertensive efficacy [156]. These studies have an impact in AGE-breaker-based drug
discovery for the heart failure associated with arterial and ventricular wall stiffening in
diabetes and hypertension cases. A randomized human clinical trial of ALT-711, during a
period of one year, however, showed no significant effect on arterial stiffness [157]. The
initial clinical trials of alagebrium from 2002 to 2010 (Synvista Therapeutics) provided data
that showed a decrease in arterial pulse pressure and endothelial function in hypertension
patients. However, a separate clinical trial showed no improvement in diastolic or systolic
function or AGE accumulation [158].

In a randomized placebo-controlled clinical study, alagebrium did not improve exercise
tolerance in patients with heart failure and systolic function and thus had no beneficial effect
in systolic heart failure, although it was well-tolerated by patients [73,159]. However, other
clinical trials using ALT-711 showed a decrease in left ventricular mass and improvements
in left ventricular diastolic filling in diabetic heart failure patients [144].

5. Conclusions and Outlook

AGEs play a major role in the pathogenesis of diabetic complications, such as diabetic
neuropathy and nephropathy, and in the onset of neurological disorders, including AD,
PD, and TBI-mediated AD-related dementia (ADRD). Figure 13 outlines the formation
of AGEs; the AGE inhibitor-mediated attenuation of oxidative stress and carbonyl stress
and the attenuation of AGE levels; and the AGE-breaker-mediated degradation of AGEs.
Interactions of AGEs with RAGE initiate cellular signaling, thereby activating nuclear
factors, such as NF-kB, which are involved in the expression of inflammatory cytokines
(such as interleukin-6) and the induction of further oxidative stress.
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AGE protein crosslinks and small-molecule AGEs, including dietary AGEs, through
AGE-RAGE interactions, are involved in the onset and exacerbation of various AGE-
related gastrointestinal diseases and neurological disorders, such as AD and TBI-associated
AD-related dementia (ADRD). The dietary and endogenously formed AGEs affect the
gut microbiota composition and insulin resistance. In addition to the binding to the
RAGE, AGEs also bind to the cell surface receptors of macrophages and other AGE-specific
receptors and are thereby degraded to nontoxic compounds.



Microorganisms 2022, 10, 1848 17 of 24

Although many pathologies outlined in Figure 12 have multifactorial origin, AGEs and
AGE-related oxidative stress are major contributing factors in the onset and exacerbation of
various diseases, collectively called AGE-related diseases. Therefore, there is an enormous
interest in identifying safer and effective AGE inhibitors to treat these AGE-related diseases.
Despite substantial efforts in developing novel drugs based on the AGE inhibitor or AGE
breaker concept, there have been no FDA-approved therapeutics that can be used in the
treatment of the AGE-induced pathologies, such as diabetes and AD, even though AGE
inhibitors, such as aminoguanidine and pyridoxamine, exhibited therapeutic potential in
animal models. There is also renewed interest in developing safer and relatively effective
versions of the AGE breaker compounds to lower AGE levels. Polyphenolic compounds are
relatively safe alternatives to AGE inhibitors, although there have been no wide-ranging
clinical trials of using such compounds to demonstrate their effectiveness in the treatment
of diabetes or neurological disorders. The mechanisms of formation of AGEs may be similar
in intestinal bacteria and humans, as the AGE-mediated protein aggregates in intestinal
bacterial species have features in common with those in neurological disorders. Thus,
intestinal bacterial defense mechanisms toward AGE-mediated pathogenesis may shed
new light on the future AGE inhibitor and AGE breaker therapeutic candidates.
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