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Abstract: Ebola hemorrhagic fever is a deadly disease caused by infection with one of the Ebola
virus species. Although a significant progress has recently been made in understanding of Ebola virus
biology and pathogenesis, development of effective anti-Ebola treatments has not been very productive,
compared to other areas of antiviral research (e.g., HIV and HCV infections). No approved vaccine or
medicine is available for Ebola but several are currently under development. This review summarises
attempts in identification, evaluation, and development of small-molecule candidates for treatment of
Ebola viral disease, including the most promising experimental drugs brincidofovir (CMX001), BCX4430,
and favipiravir (T-705). C© 2015 Wiley Periodicals, Inc. Med. Res. Rev., 35, No. 6, 1175–1194, 2015
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1. INTRODUCTION

Ebolavirus, Marburgvirus (MARV), and Cuevavirus are the only genera of the Filoviridae family
of enveloped viruses with nonsegmented negative-sense RNA genoms.1 They are causative
agents of severe viral hemorrhagic fevers (VHFs) and are classified as biosafety level-4 (BSL-4)
pathogens and Category A agents (in terms of bioterrorism).2 The taxonomy of the Filoviridae
family has kept changing over time and several virus names and abbreviations have been created.
Currently, five ebola species (earlier they were considered strains or subtypes of one species) are
recognized, namely Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV), Taı̈ Forest ebolavirus
(TAFV), Reston ebolavirus (RESTV), and Bundibugyo ebolavirus (BDBV).1, 3 Especially, EBOV
and SUDV are responsible for serious outbreaks of Ebola hemorrhagic fever (EHF), or Ebola
virus disease (EVD), among humans and nonhuman primates in the regions of sub-Saharan
Africa. EBOV is the most virulent ebola virus with fatality rate ranging from 50 to 90%.

EVD was first identified in 1976 in Sudan (now South Sudan)4 and Zaire (now the Demo-
cratic Republic of the Congo)5 and 24 outbreaks were reported by the World Health Organiza-
tion (WHO) since then through 2013.6 The transmissions from animals to humans are believed
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to involve direct contact with an infected wild animal or fruit bat, which are considered to be
the most likely natural reservoir for Ebola virus.

The recent outbreak in West Africa,7 which started in March 2014, represents the biggest
Ebola outbreak so far and it is considered to be the first Ebola epidemic the world has ever
seen.6 It has brought a substantial attention of both scientific community and the public. Over
20,000 confirmed, probable, and suspected cases of EVD have been reported by WHO from
six African countries (with main incidence in Guinea, Liberia, and Sierra Leone) and several
isolated cases also from other countries (Spain and United States).8 The reported case fatality
rate across the most-affected countries is estimated to be at least 70%.9

VHFs caused by filoviruses are usually characterized by nonspecific flu-like symptoms
including high fever, severe headache, myalgia, and prostration, followed by gastrointestinal
symptoms such as diarrhea, nausea, and vomiting, and further signs as bleeding, petechiae,
rash, dry cough, chest pain, behavioral disorders, and seizures, resulting in multiorgan failure
and, ultimately, death.10–12 Death, due to multiorgan failure and a syndrome resembling septic
shock, typically occurs within 6–16 days after development of the clinical signs.13, 14

Commonly applied standard supportive care is based on replacement of the body fluids
patients lose during the infection, and on treatment of other opportunistic infections. Currently,
there are no approved drugs to treat EHF. Although several small-molecule candidates were
developed and approved for the treatment of various RNA virus infections,15 most of them did
not show to be really potent in case of filovirus diseases. Only a handful of potential antiviral
agents are in the pipeline for filovirus infections,16–23 but these experimental drugs actually
represent promising options for the prevention and treatment of EVD.

While development of EBOV vaccines is highly desirable, especially for protection of high-
risk groups (e.g., medical personal or family members of patients), vaccines cannot completely
prevent single cases or even new EBOV outbreaks in remote areas of West Africa. The use of
vaccines is, furthermore, accompanied with more or less serious adverse effects and it is not
even clear how efficient it would be in areas endemic with various other serious human diseases
(e.g., malaria), where, moreover, the local community may strongly disagree with vaccination.
Development and use of humanized monoclonal antibodies (e.g., ZMapp)24 also has significant
limitations, including stability, difficulty with transport, and problematic scale-up production.
For these reasons, usage of small-molecule antivirals is invaluable approach in treatment and
prevention of viral infections in general and development of potent small-molecule anti-EBOV
agents is clearly of high priority.

The EBOV genome contains seven genes (NP, VP35 (where VP is viral protein), VP40,
GP, VP30, VP24, and L) that encode the corresponding VPs. The filovirus replication complex
consists of the genomic RNA molecule and four proteins: NP (nucleoprotein), VP30 (transcrip-
tion activator), VP35 (polymerase cofactor), and L (RNA-dependent RNA polymerase).16 The
matrix proteins VP24 and VP40 connect glycoprotein (GP) (actually, its GP2 segment) to the
central ribonucleoprotein.16 Number of steps in the filovirus replication cycle can, theoretically,
be targeted with small-molecule inhibitors, namely attachment of the virion to a cell-surface re-
ceptor, fusion of the viral envelope with cellular membranes, replication/transcription process,
assembly/maturation of new viral particles, and budding.16

This work summarizes discovery and identification of number of small molecules with
important anti-Ebola virus properties. Promising treatments based on antisense technology
and RNA interference (RNAi) are also briefly mentioned while monoclonal antibodies (e.g.,
ZMapp)24 and Ebola virus vaccine25–27 development is not addressed in this review and can be
found elsewhere.
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Figure 1. Chemical structures of nucleoside analogues with various modes of action: ribavirin (not active
against EBOV); 3-deazaaristeromycin, 3-deazaneplanocin A and “D-like” 1′,6′-isoneplanocin A (SAH hydrolase
inhibitors); dUY11 (fusion inhibitor); BCX4430, CDV, and CMX001 (viral transcription inhibitors); compounds 1–3
(unknown mechanism of action).

2. NUCLEOSIDE AND NUCLEOTIDE ANALOGUES

This group of compounds is represented by structurally modified nucleosides and nucleotides
with various modes of antiviral action. Acyclic nucleoside phosphonates, and compounds that
can be metabolized to nucleotide analogues in cells are also included here.

Among nucleoside analogues, ribavirin (Virazole, Fig. 1), a broad-spectrum antiviral drug,
has received a lot of attention.28 Ribavirin has been reported to be active against some hemor-
rhagic fever viruses (e.g., Rift Valley fever virus and Crimean-Congo hemorrhagic fever virus),
but it had no in vitro or in vivo effects on Ebola and Marburg viruses.29 Later, number of
structural adenosine analogues, for example, 3-deazaaristeromycin (C-c3Ado, Fig. 1) and 3-
deazaneplanocin A (c3-Npc A, Fig. 1), were discovered to inhibit replication of EBOV in vitro
by blocking S-adenosyl-L-homocystein (SAH) hydrolase.30–32

SAH hydrolase is a key enzyme in methylation reactions depending on S-
adenosylmethionine (SAM) as the methyl donor and it has a key role in the methylation
of 5′-end guanine of viral messenger RNA (regulation of capping process). Since the discov-
ery of SAH hydrolase as a valuable pharmacological target for antiviral chemotherapy,33 a
large variety of adenosine (Ado) analogues as potential SAH hydrolase inhibitors have been
reported.34–36 Such inhibitors block the cleavage of S-adenosyl-L-homocystein (SAH) into
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homocysteine (Hcy) and adenosine, which itself can be further metabolized into AMP, ade-
nine, and inosine. As a consequence of the SAH hydrolase inhibition, SAH accumulates in
the cell and leads to an inhibition of the SAM-dependent methylation processes, including
those that are required for the maturation (i.e., 5′-capping) of viral mRNAs. As a consequence,
maturation of viral mRNAs is suppressed, and so is the production of progeny virus particles.

3-Deazaaristeromycin (C-c3Ado, Fig. 1) was the first compound that demonstrated to cure
mice from otherwise lethal EBOV infection.31 Bray et al.32 showed that 3-deazaneplanocin
A (Fig. 1), as a single inoculation of 1 mg/kg, given on the first or second day after virus
infection, also afforded a significant protection of mice against a lethal infection with EBOV
without causing acute toxicity. In later study,37 it was discovered that the protective effect
of 3-deazaneplanocin A might result from massively increased production of interferon-α in
Ebola-infected, but not uninfected mice. SAH hydrolase inhibitors have received only lim-
ited clinical evaluation and should be further tested for their potential antifilovirus prop-
erties as they exert a broad-spectrum antiviral activity and represent an attractive antiviral
strategy.38

Ye and Schneller39 have reported 1′,6′-isoneplanocin A enantiomers (e.g., “D-like” 1′,6′-
isoneplanocin A, Fig. 1) as compounds potent against a variety of important viruses, including
EBOV with submicromolar EC50 values (e.g., EC50 = 0.38 for the “D-like” enantiomer, Fig. 1).
The author also speculated that SAH hydrolase inhibition is not the only site of action of the
“L-like” enantiomer and more studies are needed to fully understand the antiviral potential of
L-like carbocyclic nucleosides.39

Rigid amphipathic fusion inhibitors (RAFIs),40 for example, compound dUY11 (Fig. 1),
are uridine nucleoside analogues bearing a bulky hydrophobic group in the C-5 position. RAFIs
represent another group of synthetic compounds that inhibit infectivity of several unrelated
enveloped viruses, including HCV and HSV-1 and HSV-2 at submicromolar range and with
no cytotoxic or cytostatic effects (selectivity index > 3000).40 It was shown that RAFIs inhibit
virion fusion as a result of their shape and amphipathicity. RAFIs should be further evaluated
against other emerging viruses, such as EBOV and MARV.

Another promising EBOV therapy represents compound BCX4430 (Fig. 1),41 which has
been reported in 2014 as a novel broad-spectrum antiviral agent. It is an adenine analogue
of the so-called Immucillin H,42 a powerful transition-state analogue43 inhibitor of purine
nucleoside phosphorylase, which has a potential for treatment of human T-cell leukemia and
lymphoma. BCX4430 exhibits broad-spectrum activity against numerous viruses, including
filo-, bunya-, arena-, paramyxo-, corona-, and flaviviruses. BCX4430 was shown to inhibit
infection of distinct filoviruses in human cells and postexposure intramuscular administration
of BCX4430 protected rodents both against EBOV and MARV viral disease.41 It, moreover,
completely protected cynomolgus macaques from MARV infection when administered as late
as 48 hr following infection. BCX4430 appeared to inhibit viral RNA polymerase function,
acting probably as a non-obligate RNA chain terminator.41 BCX4430 also effectively treated
yellow fever virus (YFV) infection in a hamster model, even when treatment was initiated at the
peak of viral replication.44 The first-in-man Phase I study to evaluate the safety, tolerability, and
pharmacokinetic properties of BCX4430 administered via intramuscular injection in healthy
volunteers was announced by BioCryst Pharmaceuticals (Durham, NC, USA) in the middle of
December 2014.45

Brincidofovir (CMX001, BCV, HDP-CDV, Fig. 1) is an oral nucleotide analogue with
broad-spectrum in vitro and in vivo antiviral activity against dsDNA viruses that effect
humans,46 including adenoviruses,47, 48 poxviruses,49 and herpesviruses.50 CMX001 is a hex-
adecyloxypropyl prodrug of cidofovir (Fig. 1),51 acyclic nucleoside phosphonate52 approved
by FAD for treatment of cytomegalovirus (CMV) infections. CMX001, being developed by
Chimerix (Durham, NC, USA), has several key advantages compared to the parent compound:
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Figure 2. Chemical structure of favipiravir (T-705) and mode of its enzymatic activation.

improved oral bioavailability, rapid transport across cell membranes leading to higher intracel-
lular concentrations of the active species, greater potency, and elimination of nephrotoxicity.53, 54

Brincidofovir has actually received Fast Track designation from the FDA for treatment of CMV,
adenovirus, and smallpox infections.

Quite surprisingly, investigational antiviral brincidofovir, which was considered by antiviral
experts to be specific for treatment of DNA viral diseases, has been reported55 to show in vitro
activity against EBOV and, thus, to have potential use in patients with EVD. While additional
assessments of CMX001 in animal model studies are being conducted through the Centers for
Disease Control and Prevention (CDC) and the National Institutes of Health (NIH), Chimerix
announced in October 2014 that Emergency Investigational New Drug Applications (EIND)
for brincidofovir were authorized by the US Food and Drug Administration (FDA) for EVD
patients.55 CMX001 probably interferes with certain enzyme(s) of nucleos(t)ide metabolism,
but its exact mechanism of EBOV inhibition remains to be clarified.

A class of imidazole nucleoside and nucleotide analogues, bearing either nitrile or ester
groups at imidazole 4- and 5-positions (compounds of general structure 1 and 2, Fig. 1), has
been reported to inhibit replication of Lassa virus, severe acute respiratory syndrome (SARS)
coronavirus, and EBOV in vitro, employing real-time PCR.56 Acyclic nucleotide analogue 3
(Fig. 1), for example, showed IC50 of 12 μg/mL and CC50 of 75 μg/mL, suggesting that the
reported activity may be linked to cytotoxicity. The IC50 values of all the compounds against
EBOV ranged from 10 to 52 μg/mL and the mechanism of action of these analogues remained
speculative.56

Favipiravir (T-705, Fig. 2),57, 58 or 6-fluoro-3-hydroxypyrazine-2-carboxamide, is a broad-
spectrum antiviral agent active against many RNA viruses, as alpha-, arena-, bunya-, flavi-,
noro-, orthomyxo-, and picornaviruses. It was discovered and developed by Toyama Chemical
Co. (Toyama, Japan) as anti-influenza virus agent,59, 60 and is approved in Japan as an influenza
treatment under the brand name Avigan. Favipiravir is currently undergoing Phase III clinical
trials in the United States. The in vivo efficacy of T-705 was recently confirmed in a mouse
models for EBOV, when postexposure initiation of T-705 administration completely prevented
the lethal consequences.61, 62 In vitro, T-705 is efficiently converted by cellular enzymes to
its ribofuranosyl 5-triphosphate (T-705 RTP, Fig. 2), the active species that was suggested to
selectively inhibit influenza virus RNA-dependent RNA polymerase.60 T-705 RTP is recognized
by influenza A virus polymerase as an efficient substrate for incorporation to the RNA both as
a guanosine and an adenosine analogue and its two consecutive incorporations were shown to
prevent further primer extension.63 Baranovich et al.64 have reported lethal mutagenesis to be
the key antiviral mechanism of T-705, that also explains its broad-spectrum antiviral activity.
Favipiravir has been given to several Ebola patients and with its unique mechanism of action
currently represents a very promising candidate for EVD treatment.

Medicinal Research Reviews DOI 10.1002/med



1180 � JANEBA

3. POTENTIAL VIRAL ENTRY INHIBITORS

This section includes structurally diverse compounds that are reported to inhibit the cell entry
of filoviruses. Several of the agents discussed are repurposed FDA-approved drugs.

Number of compounds of distinct structural features has been reported as potential entry
inhibitors. EBOV entry requires functioning cholesterol transporter protein Niemann–Pick C1
(NPC1).65 It was shown that cells defective NPC1 function, which binds to the viral GP, are re-
sistant to infection by EBOV and MARV. Small-molecule inhibitors, derived from benzylpiper-
azine adamantane diamides (e.g., compounds 3.0 and 3.47, Fig. 3),66 have been described that
interfere with GP binding to NPC1. Since this process is essential for EBOV infection, it seems
to represent a good target for potential antiviral therapy.

Wolf et al.67 have reported the discovery of promising broad-spectrum antiviral agent,
LJ001 (Fig. 3), active against an impressive number of enveloped viruses. It was effective against
influenza A, filo-, pox- arena-, bunya-, paramyxo-, flaviviruses, and HIV, but had no effect on the
infection of nonenveloped viruses. LJ001 intercalates into viral membranes preventing virus–
cell fusion, but the host cells can overcome the toxic effects of LJ001 due to their repair by
cellular lipid biosynthesis. The rhodanine derivative LJ001 was suggested to inhibit viral entry
at a step after virus binding and before virus–cell fusion, but the molecular target and molecular
mechanism remained elusive. Later, Vigant et al.68 identified the unsaturated fatty acid chains of
viral membrane phospholipids as the major target of LJ001 antiviral activity. In the membrane
bilayer, LJ001 generates singlet oxygen (1O2) and subsequent lipid oxidation results in changes to
the biophysical properties of the viral membrane that disrupts the virus ability to undergo virus–
cell fusion. Furthermore, elucidation of the mode of action and subsequent structure–activity
relationship (SAR) optimization of LJ001 led to a new class of oxazolidine-2,4-dithiones, for
example, compound JL103 (Fig. 3),68 as membrane-targeted photosensitizers with increased
potencies, 1O2 quantum yields, and red-shifted absorption spectra.

A series of benzodiazepine compounds, represented by derivative 4 (Fig. 3), has been
reported as potential entry inhibitors for filoviruses.69 Compound 4 was validated as an inhibitor
of EBOV and MARV in cell-based assays, with 50% inhibitory concentrations (IC50s) of 10 and
12 μM, respectively. It was hypothesized that it binds to the hydrophobic pocket of the EBOV
GP1–GP2 interface and as a consequence inhibits EBOV infection of cells.

Pyridinyl imidazole inhibitors of p38 MAP kinase, for example, compound SB202190
(Fig. 3), were found to impair viral entry and reduce cytokine induction by EBOV.70 SB202190
reduced viral replication in macrophage-like human THP-1 cells with an IC50 = 4.73 μM and
primary human monocyte derived dendritic cells (MDDCs) with an IC50 = 2.67 μM. Kinase,
as well as phosphatase inhibitors may represent new leads and a unique strategy for antifilovirus
therapeutic development and such compounds with reported anti-EBOV activity have recently
been reviewed in depth.21

Yermolina et al.71 have reported a novel group of selective inhibitors of filoviral entry that
selectively inhibit the EBOV and MARV GP mediated infection of human cells. Extensive SAR
study led to an identification of lead compound 5 (Fig. 3) as a selective inhibitor of filoviral entry
with an IC50 of 30 μM.71 Also several natural products that are able to impair microfilament
function, including latrunculin A (Fig. 3) and cytochalasins, were shown to be potent inhibitors
of EBOV virus GP mediated entry and fusion.72

A novel high-throughput screening (HTS) assay of some 5000 small molecules led to an
identification of novel broad-spectrum compounds able to block cathepsin L (CatL) cleavage
of viral GPs derived from SARS-CoV and EBOV, Hendra, and Nipah viruses that are required
for their entry into the host cell.73 Parent compound 5705213 (Fig. 3) and its derivative 7402683
(Fig. 3) showed IC50s of 15 and 10 μM against EBOV-GP, respectively, and are not cytotoxic.
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Figure 3. Chemical structures of potential viral entry inhibitors of EBOV: 3.0, 3.47, LJ001, JL103, compound
4, SB202190, latrunculin A, compound 5, 5705213, 7402683; FDA-approved drugs chlorpromazine, clomifene,
and amiodarone, representing examples of potential drug-repurposing.

Fullerene sugar balls represent a new class of biologically active compounds.74 Water-
soluble glycofullerenes were found to efficiently inhibit a DC-SIGN-dependent (DC-SIGN is
a C-type lectin) cell infection by virus-like particles.75 Several mannosylated fullerene sugar
balls showed remarkable IC50s of 2 μM against EBOV and thus can be considered as a very
promising tool to interfere with the EBOV entry.

Drug repurposing (or drug repositioning) is potential application of known compounds
to new indications. Therefore, a systematic screening of FDA-approved drugs could rapidly
become available for a new indication in an emergency, including EBOV infections.76–78

Medicinal Research Reviews DOI 10.1002/med
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Figure 4. Chemical structures of antiviral inhibitors developed by Functional Genetics, Inc. (Gaithersburg, USA)
and related compounds.

Chlorpromazine (trademarketed as Thorazine, Largactil, and Megaphen, Fig. 3),79 a known
psychotropic drug approved by the FDA, was reported as potential inhibitor of EBOV entry,
possibly through inhibition of clathrin-mediated endocytosis.80

FDA-approved selective estrogen receptor modulators (SERMs), including clomifene
(trademarked as Androxal, Clomid, and Omifin, Fig. 3) and toremifene (brand name Fareston)
were identified as potent inhibitors of EBOV infection from an in vitro screening of readily
available approved drugs.77, 81, 82 The authors suggested that mode of the action of SERMs did
not involve classical pathways associated with the estrogen receptor, but instead, interfere with
a late step in viral entry.81

Antiarrhytmic agents amiodarone (a multi-ion channel inhibitor, Fig. 3) and dronedarone
are other examples of FDA-approved drugs that could be repurposed.83 Amiodarone84 was
found to inhibit filovirus entry at concentrations (1.5–2.5 μg/mL) that are routinely reached in
human serum during antiarrhythmic therapy.83 The above examples show that drug repurposing
may be a viable approach for identification of potent anti-EBOV therapeutics.

4. MISCELLANEOUS SMALL MOLECULES

Functional Genetics, Inc. (Gaithersburg, MD, USA) has reported a series of polyaromatic
compounds active against distinct viruses. A small-molecule inhibitor of filovirus infection,
designated as FGI-103 (Fig. 4),85 was identified via HTS of compound library from National
Cancer Institute (NCI). FGI-103 exhibited antiviral activity against wild-type EBOV and
SUDV, as well as multiple strains of MARV.85 Although the mechanism of its action is unknown,
it was shown in the murine model of EBOV infection that FGI-103 reduces viremia and viral
burden in organ tissues and that it could be applicable for both prophylactic and therapeutic
treatments.

FGI-106 (Fig. 4)86 is a diazachrysene (DAAC) based analogue that was discovered in a
cell-based HTS as a potent and broad-spectrum inhibitor of lethal VHF pathogens, including

Medicinal Research Reviews DOI 10.1002/med



ANTIVIRALS FOR EBOLA � 1183

EBOV, Rift Valley, and Dengue Fever viruses. FGI-106 protected mice from otherwise lethal
EBOV infection both in prophylactic and therapeutic settings. FGI-106 also revealed potential
inhibitory activity against other viral pathogens including HIV and HCV,86 but the precise mode
of action remains unclear.22 The broad-spectrum nature of the antiviral activity of DAAC-based
analogues may suggest targeting of a conserved host pathway.86

Conventional antivirals are designed to target virally encoded proteins/enzymes and mech-
anisms. The disadvantage of the conventional antivirals is often their toxicity to the host and
development of the resistant viral strains rendering them relatively quickly ineffective. To pre-
vent the resistance problem, combination therapies using a cocktail of drugs with various
modes of actions were successfully introduced and approved. Host-directed therapeutics repre-
sents another important approach to combat established, as well as emerging viral diseases.87

Such approach is based on targeting host to deny the viral pathogen the ability to cause disease.
Structural modification studies of the promising DAAC-based inhibitors were

performed,88, 89 and compound 6 (Fig. 4) was identified as highly efficacious EBOV and MARV
inhibitor with IC50 values of 0.70 and 2.76 μM, respectively, with little or no associated cellular
toxicity.89

Recently, a broad-spectrum small-molecule inhibitor of EBOV, FGI-104 (structure orig-
inally not given),90 has been reported that might target host protein TSG101 that plays an
essential role in the viral life cycle. The interaction of filovirus matrix protein VP40, the key
VP that drives the budding process,91 with TSG101 facilitates the viral budding.92 In addi-
tion, FGI-104 demonstrated inhibition of multiple emerging viruses (e.g., EBOV, Cowpox)
and blood-borne pathogens (e.g., HBV, HCV, HIV). In the patent,93 chaotically, FGI-104 is a
name used for the whole family of compounds and R19 (Fig. 4) is mentioned as the preferred
compound listed there.

Retinoid thiosemicarbazone derivative, retinazone (RTZ, Fig. 5),94 was described as a
broad-spectrum antiviral agent active against HIV, HCV, VZV, and CMV. RTZ was found to
be a potent suppressor of HCV RNA replicon replication.94 Later, RTZ has also been reported
to be potent and efficacious inhibitor of EBOV with an IC50 value of 1.1 μM,95 but since the
SI50 was only 3.4, the activity may be linked to cytotoxicity.

Iminosugar 1-deoxynojirimycin (DNJ) and its derivatives (as glucose mimics) can serve as
glucosidase inhibitors and were shown to exhibit antiviral effects against a number of enveloped
viruses. DNJ derivative CM-10-18 (Fig. 5) was shown to exhibit in vitro and in vivo inhibitory
activity against endoplasmic reticulum (ER) α-glucosidases I and II,96, 97 and demonstrated in
vivo efficacy against lethal Dengue virus infection in mice.98 Further extensive SAR studies of
CM-10-18 derivatives lead to an identification of novel iminosugars, for example, compound
IHVR17028 (Fig. 5), that significantly reduced the mortality of MARV and EBOV infections
in mice.99 A significant survival rate was, for example, observed for 25 mg/kg of IHVR17028
in a murine protection-of-death model of EBOV infection, when the treatment was initiated
4 hr post virus challenge.

The multifunctional VP35 is another attractive therapeutic target as it plays a critical role
in Ebola viral replication, and knowledge of high-resolution structures of the VP35 C-terminal
domain (termed VP35 IID)100 provides an opportunity for further structure-based antiviral
research.101 Using in silico and NMR-based screening methods, Brown et al.102 identified
several compounds, for example, representative compound GA017 (Fig. 5), capable of binding
of VP35 IID with high affinity and specificity. Some of the compounds were also shown to
inhibit a replication-competent EBOV in a cell-based assay.102

Recent HTS of a subset of FDA-approved drugs has reported that also antimalarials
amodiaquine and chloroquine were active in vitro and in vivo against EBOV in single digit
micromolar range,76, 77 but the mechanism of action was unclear. Later it was shown103 that these
compounds docked favorably in VP35 suggesting they may be targeting this VP. Furthermore,
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Figure 5. Miscellaneous small-molecule agent with potential anti-EBOV properties: retinazone; endoplasmic
reticulum (ER) glucosidase inhibitors CM-10-18 and IHVR17028; GA017; antioxidant compound NSC 62914;
compounds 7, 8, 5539-0062, and 4816-0013 as potential budding inhibitors.

chloroquine was shown to block EBOV virus like particle entry at an IC50 �15 μM with
selectivity index SI > 32.77

Small-molecule screening for EBOV inhibitors leads to identification of NSC 62914
(Fig. 5).104 The compound acts as a scavenger of reactive oxygen species (ROS) and it up-
regulates oxidative stress induced genes. ROS contribute to the pathogenesis of a wide array of
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Figure 6. General structure of PMOplus.

diseases including viral infections. NSC 62914 was shown to inhibit EBOV, MARV, Rift Valley
fever virus, Lassa virus, and Venezuelan equine encephalitis virus in cell-based assays, and in
vivo it protected mice following challenge with EBOV or MARV.

Budding of a broad range of RNA viruses is facilitated by subversion of host proteins
(e.g., Nedd4) by viral PPxY late budding domains expressed within the matrix proteins of
these viruses. In silico design and subsequent SAR study resulted in an identification of lead
compounds 7 and 8 (Fig. 5) with ability to inhibit these critical viral–host (PPxY-Nedd4)
interactions.105 In addition, compounds 7 and 8 exhibited antibudding activity against EBOV
and other RNA viruses and can thus serve as the lead structures for the development of novel
broad-spectrum antivirals.

PTAP type L domain is another domain utilized by number of RNA viruses (e.g., Junin
virus, EBOV, HIV-1) during the budding process and, thus, recently identified PTAP inhibitors,
such as compound 5593–0062 and its structural analogue 4816–0013 (Fig. 5), have the potential
to act as potent broad-spectrum, host-oriented antiviral drugs.

5. SEQUENCE-SPECIFIC ANTIVIRAL AGENTS

RNA viruses present a good target for the rapidly advancing field of sequence-specific
therapeutics.107–110 Antisense strategy usually utilize single-stranded DNA oligonucleotides to
inhibit protein production by binding to specific sites on mRNA essential for translation, or by
mediating the catalytic degradation of target mRNA,111 while double-stranded RNA oligonu-
cleotides, known as short-interfering RNAs (siRNAs), also mediate the catalytic degradation
of complementary mRNAs. Thus, both antisense and RNAi strategies can find therapeutic
applications for treatment of highly pathogenic RNA viral infections.

Phosphorodiamidate morpholino oligomers (PMOs) were designed to inhibit translation
of EBOV VP35, VP24, and L transcripts.112, 113 All anti-EBOV PMOs reported showed reduced
viral titer in cell cultures and provided complete protection to rodents when administered in
both pre- and postexposure therapeutic regimens. PMOs also protected 75% of rhesus macaques
in a prophylactic regimen.113

Sarepta Therapeutics (Cambridge, MA, USA, formerly AVI BioPharma) has developed
PMO containing up to five positively charged linkages (PMOplus, Fig. 6)114, 115 that have signif-
icantly improved the stability, efficacy, specificity, delivery, and safety of antisense complexes.
Chemical evolution of the antisense molecules led to the discovery of two new therapeutic
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agents, AVI-7537 targeting the VP24 transcript of EBOV and AVI-7288 targeting the NP tran-
script of MARV.116 The VP24 protein is an inhibitor of type I interferon responses. It also forms
homodimers and binds to VP35 or NP and, thus, may play an important role in the switch from
viral replication to transcription, a function that is critical to the viral life cycle. Inhibition of
VP24 may lead to an efficient host response to viral infection.

Recently, Heald et al.117 evaluated the safety and pharmacokinetic properties of two com-
bination drugs AVI-6002 (a combination of AVI-7537 and AVI-7539) and AVI-6003 (a combi-
nation of AVI-7287 and AVI-7288) that are under evaluation for postexposure prophylaxis of
EBOV and MARV, respectively. Additional studies in nonhuman primates and humans are in
progress to estimate the protective human doses.117

RNAi may also prove to be an effective and druggable therapy against filovirus
infections.118–120 siRNAs targeting EBOV RNA polymerase, formulated in stable nucleic acid
lipid particles (SNALPs),121 completely protected guinea pigs when administered shortly af-
ter an EBOV challenge.118 The siRNA proof-of-concept experiment in non-human primates
against a lethal Ebola virus infection showed 66% and full postexposure protection of rhesus
monkeys and macaques, respectively.122 Although the observation of adverse events (as fever)
in some subjects in a Phase I study caused TKM-Ebola, siRNA developed by Tekmira Pharma-
ceuticals (Burnaby, Canada), to be placed on partial clinical hold, the FDA has still authorized
its use in treating patients with confirmed or suspected EBOV infection under expanded access
protocols.

6. CONCLUSIONS

The development of successful antiviral therapies to treat filovirus diseases is under way. The
research programs should be facilitated by use of specific technologies and strategies,123, 124

as well as high-throughput systems125, 126 and suitable animal models,127–130 that have been
recently reported. Especially, the use of laboratory animals is fundamental for the development
of potent antifiloviral agents. Since guinea pigs are, for their size, less useful, newborn mice
and immunodeficient adult mice represent a suitable model for preliminary testing of potential
vaccines and antiviral agents.16 But namely use of non-human primates (NHPs), in which
filoviruses cause severe VHF, is crucial for the successful development of efficient anti-EBOV
treatments.16

All of the filoviral proteins (GP, L, NP, VP24, VP30, VP35, and VP40)16, 131 can potentially
be chosen as a suitable target for development of druggable anti-EBOV agents. For example,
VP24 and VP35, and RNA-dependent RNA polymerase L have been shown so far to be ex-
ploitable targets for potential antiviral therapy. It has also been demonstrated that host-directed
therapeutics, those targeting host proteins (e.g., TSG101, SAH hydrolase), represent another
viable approach to combat various viral diseases. The number of small-molecule inhibitors
was shown to interfere with the filoviral entry/fusion step, but mode of action of many other
inhibitors of viral replications is not yet known or fully understood.

Two potential small-molecule antivirals were intended to be tested in human trials during
the 2014 epidemic in Africa: brincidofovir (as orally bioavailable prodrug of cidofovir), an
experimental drug originally developed by Chimerix to treat DNA viruses,55 and favipiravir
from Toyama Chemicals, approved in Japan to treat influenza.132 These agents were considered
to receive the Fast Track designation from FDA to speed up the development of potent anti-
EBOV drugs as much as possible.

Although this most frightening disease is endemic mainly to developing and third-world
African countries, the recent Ebola outbreak has triggered new drug- and vaccine-development
programs by a number of pharmaceutical companies, as well as by many academic research
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teams. It has become evident that remaining challenge for development of any VHF treatment
currently is to move the most promising vaccine and drug candidates forward into human trials,
so we are ready when the next Ebola outbreak strikes.

7. ABBREVIATIONS

BDBV = Bundibugyo ebolavirus
CMV = cytomegalovirus

EBOV = Zaire ebolavirus or ebola
EHF = Ebola hemorrhagic fever
EVD = Ebola virus disease
HTS = high-throughput screening

MARV = Marburgvirus
PMO = phosphorodiamidate morpholino oligomer
RAFI = rigid amphipathic fusion inhibitor

RESTV = Reston ebolavirus
SAH = S-adenosyl-L-homocystein
SAR = structure–activity relationship

siRNA = short-interfering RNA
SNALP = stable nucleic acid lipid particle

SUDV = Sudan ebolavirus
TAFV = Taı̈ Forest ebolavirus

VHF = viral hemorrhagic fever
VP = viral protein
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62. Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment
of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res
2014;105:17–21.

63. Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. The ambiguous basepairing and high substrate
efficiency of T-705 (favipiravir) ribofuranosyl 5′-triphosphate towards influenza A virus polymerase.
PLoS One 2013;8:e68347.

64. Baranovich T, Wong S-S, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA. T-705
(Favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 2013;87:3741–
3751.

65. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne
AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K,
Brummelkamp TR. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature
2011;477:340–343.
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