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Urban blue–green space landscape 
ecological health assessment based 
on the integration of pattern, 
process, function and sustainability
Shuang Song1,2, Shaohan Wang1,2, Mengxi Shi1,2, Shanshan Hu1,2 & Dawei Xu1,2*

Landscape ecological health (LEH) assessment of blue–green space is vital for the management and 
restoration of the urban environment. At present, existing LEH assessment research has mainly 
focused on the single measurement of landscape pattern or external ecological service function, 
ignoring the effect mechanism. Moreover, there is a lack of targeted assessment of urban blue–green 
space LEH. In this study, we constructed an urban blue–green space LEH assessment framework 
based on the integration of pattern, process, function and sustainability, and conducted an empirical 
analysis in Harbin, a megacity in Northeastern China. The results showed that the spatial changes in 
the four assessment units of landscape ecological pattern, process, function and sustainability were 
not coordinated in the study area. From 2011 to 2020, the overall condition of blue–green space 
LEH in the study area improved but still at an unhealthy level, and the spatial difference increased. 
Grassland, water and wetland suffered from the widespread degradation of LEH in the study area, 
and the LEH level improvement type had the largest area proportion, and the stabilization type had 
the smallest. Moreover, based on the spatial autocorrelation analysis, we clarified the LEH spatial 
correlation characteristics of the study area and proposed targeted optimization suggestions. Our 
assessment framework will extend the LEH assessment scope and methodology, and the research 
results can provide significant references for urban blue–green space protection and management.

Landscape ecological health (LEH) is a new and intersecting ecology concept in the field of landscape ecology 
and ecosystem health. LEH mainly studies ecosystem issues that are severely affected or degraded or even disap-
peared under intense human disturbance1–3. The spatial scale of the landscape is between the ecosystem and the 
region, and it is the broad spatial scale most closely related to human beings4,5. At such a spatial scale, LEH is 
more suitable for conducting targeted research on resource and environmental issues6–8. Meanwhile, the natu-
ral regulation process at the landscape scale has high stability, which can better reflect the development rule of 
ecosystems9,10. Urban blue–green space is the most severely disturbed ecosystem by human social and economic 
activities5,11, its status is directly related to the sustainable development of the urban environment. Therefore, it 
is of great significance to study the ecological health of urban blue–green space at the landscape scale.

To date, the LEH research has roughly undergone a transformation from macro-discussion to micro-survey, 
from overall trend structure to specific driving factor analysis12,13. The early research achievements are mainly 
concept elaboration, research progress, and results review14,15. These achievements have laid the foundation for 
promoting theory research, but have limited guidance for solving specific problems. After that, the research on 
LEH has mainly focused on the quality of landscape ecology planning, the balance between ecological health 
and landscape aesthetics, the construction of a comprehensive ecological index system, the spatial patterns and 
evolutionary characteristics, and so on15–17. And the LEH study scale is mainly in watershed or municipality, the 
objects mainly focused on forests, wetlands, islands, and parks18,19.

The urban blue–green space is driven by both human activities and natural disasters, resulting in changes in 
landscape pattern, process, and function that ultimately lead to LEH deterioration20,21. The concept of blue–green 
space was first proposed in 2015, but there is no specific explanation of the definition20–22, and researchers 
generally understand blue–green space as a composite space made up of blue space represented by rivers and 
lakes and green space represented by grasslands. As a semi-natural ecosystem, there is an argument about 
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whether cultivated land belongs to blue–green space. Taylor & Hochuli (2017) proposed two definitions of urban 
blue–green space at macro and micro levels after analyzing and summarizing 125 journal articles on urban 
blue–green space23,24. The macro-level refers broadly to ecological areas in general, including water bodies and 
vegetated areas, such as forests, coastal areas, cultivated areas, parks, and gardens. The micro-level refers to the 
open space covered by vegetation, including urban parks, gardens, courtyards, urban forests, and urban farms. 
As a link between various natural patches, cultivated land has an irreplaceable role in the stable development 
of urban ecology, promoting biodiversity, and improving the comprehensive ecological health of the city. It 
interlaces with other types of ecological patches, sharing risks and complementing each other to form the urban 
landscape ecological pattern25. Meanwhile, these patches together embody the qualities and potentials of recrea-
tion, economy, and ecology to maintain the ecological balance and development of the urban landscape. Thus, 
cultivated land is an important part of the blue–green space.

The existing assessment studies on urban blue–green space LEH are rare and unsystematic, and the critical 
to scientifically carrying out the urban blue–green space LEH assessment is the selection of methods. Common 
methods include the indicator species method and the index system method. The indicator species method is 
unclear in terms of selection criteria and the indicated extent for LEH5,9. And it cannot take into account many 
factors such as economic, social, and human health, which makes it difficult to reflect LEH in an accurate and 
scientific way17. The index system method could cover a wide range of factors besides ecology, so its results are 
more comprehensive. At present, a series of assessment models are available, such as Ecological-Feature-Func-
tion-Social-Economic Model, Drive-Pressure-State-Exposure-Effect-Response (DPSEEA) model, Pressure-State-
Response (PSR) model, Vigor-Organization-Resilience (VOR) model, Condition-Vigor-Organization-Resilience 
(CVOR) model and so on9,17. These models could assess the status of the object fairly well, but the research on the 
nature and mechanism of LEH is insufficient, and practical guidance is limited. Urban planning, ecological safety, 
and social development all rely on blue–green space, which is an irreplaceable ecological carrier. It is urgent to 
build a scientific and comprehensive LEH assessment framework of urban blue–green space.

Harbin is an important hub for the first Eurasian land bridge and air corridor, a significant city for develop-
ment and opening along the border in China22–24. With the introduction of “Measures of the State Council on 
Revitalizing the Old Industrial Bases of Northeast China” in 2009, the further acceleration of resource-based cities 
transfer has posed higher challenges to the development and management of blue–green space in Harbin25,26. 
Thus, it is significant to identify the LEH status and spatial and temporal change characteristics. The objectives 
of this study were to (1) construct a scientific and integrated urban blue–green space LEH assessment framework 
by clarifying the effect mechanism; (2) conduct an empirical assessment of blue–green space in the study area 
from 2011 to 2020; (3) identify the spatial and temporal changes of blue–green space LEH in the study area; (4) 
clarify the LEH spatial correlation characteristics based on the spatial autocorrelation analysis. The study results 
will provide theoretical and practical support for the formulation of a rational and scientific urban blue–green 
space development strategy during the rapid urban expansion. Figure 1 presents the flowchart of present research.

Materials and methods
Study area.  Harbin is located in the centre of Northeast Asia, between 44°04’–46° 40′ N and 125° 42′–130° 
10′ E24,26. The site has a mid-temperate continental monsoon climate, with an average annual temperature of 
3.6° C and an average annual precipitation is 569.1 mm. The main precipitation months being from June to 
September, accounting for about 60% of the annual precipitation, the main snow months are from November to 
January24,25. The overall topography is high in the east and low in the west, with mountains and hills predominat-
ing in the east and plains predominating in the west27. In this study, we identified the central district of Harbin, 
where urban construction activities are frequent and the population is dense, as the study area. According to the 
“Harbin City Urban Master Plan (2011–2020)” (revised draft in 2017), the specific scope includes Daoli District, 
Daowai District, Nangang District, Xiangfang District, Pingfang District, Songbei District’s administrative dis-

Figure 1.   The flowchart of present research.
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trict, Hulan District, and Acheng District part of the area, with a total area of 4187 km2 (Fig. 2). The blue–green 
space in this study included woodland, grassland, cultivated land, wetland and water that permeate inside and 
outside the construction sites. They all have integrated functions such as ecology, supply, beautification, culture, 
and disaster prevention and avoidance, and have a decisive influence on the urban ecological environment.

Data sources.  The data used in this research included the following: land-cover date (30 m × 30 m) of two 
periods (2011, 2020) spported by the China Geographic National Conditions Data Cloud Platform (http://​www.​
dsac.​cn/), Meteorological datasets (1 km × 1 km) were obtained from the Resource and Environmental Science 
Data Center of the Chinese Academy of Sciences (http:∥www.​resdc.​cn/), including air temperature, precipita-
tion, and surface runoff. ASTER GDFM elevation data (30 m × 30 m) came from the Geospatial Data Cloud 
(http:∥www.​gsclo​ud.​cn), from which the slope was extracted. Soil data (1 km × 1 km) were from the World Soil 
Database (HWSD) China Soil Data Set (v1.1). The normalized difference vegetation index (NDVI) and modified 
normalized difference water index (MNDWI) data (30 m × 30 m) came from the National Comprehensive Earth 
Observation Data Sharing Platform (http://​www.​china​geoss.​org/), ET datasets (30 m × 30 m) were drawn from 
the NASA-USGS (https://​lpdaac.​usgs.​gov/). Social and economic data were mainly obtained through the Harbin 
statistical yearbook and the Harbin social and economic bulletin.

Framework of urban blue–green space LEH assessment.  Urban blue–green space is a politically 
defined man-land coupling region composed of ecological, economic, and social systems, which is greatly 
disturbed by human activities11. The essence of urban blue–green space LEH is that the landscape ecological 
function sustainably meets human needs28,29. The landscape ecological function reflects the value orientation 
of human beings to blue–green space, and to a large extent affects the blue–green landscape ecological pattern 
and process. The interaction between the blue–green landscape ecological pattern and process drives the over-
all dynamics of blue–green space. Meanwhile, presenting certain landscape ecological function characteristics, 
which provide ecological support for various human activities30–32. While the pattern and process of blue–green 
space both profoundly influence and are influenced by human activities33,34. This influence is long-term, the 
standard of LEH should not be fixed in real-time health, but should fully consider the sustainability of the health 
state.

In summary, the landscape ecological pattern, process, function, and sustainability are not separate, but a 
complex of mutual integration, and organic unity. In this study, we constructed an integrated assessment frame-
work of blue–green space LEH that included four units: pattern, process, service, and sustainability (Fig. 3). In 
the assessment framework, the LEH of urban blue–green space involves two dimensions: the first is the health 
status of the urban blue–green space itself, emphasizing the maintenance of the ecological conditions, thereby 

Figure 2.   Schematic of study area. The Figure is created using ArcGIS ver.10.2 (https://​www.​esri.​com/).

http://www.dsac.cn/
http://www.dsac.cn/
http://www.resdc.cn/
http://www.gscloud.cn
http://www.chinageoss.org/
https://lpdaac.usgs.gov/
https://www.esri.com/
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potentially satisfying a series of diversity goals. The other is that urban blue–green space, as a part of social and 
economic development, could sustainably provide the ability to meet (subject) needs and goals.

Landscape ecological pattern.  The landscape ecological pattern of urban blue–green space is a spatial 
mosaic combination of landscape elements at different levels or the same level. Affected by human activities 
interference31, the landscape ecological pattern shows the changing trend of landscape structure complexity, 
landscape type diversification, and landscape fragmentation. The assessment of urban landscape ecological pat-
tern should be a comprehensive reflection of this changing trend1. Landscape pattern indexes are the most fre-
quently applied which could reflect the structural composition and spatial configuration characteristics of the 
landscape4,35. This study took landscape ecology as the entry point and selected the landscape pattern indexes 
that can quantitatively reflect the change characteristics of landscape structural composition and spatial con-
figuration under the disturbance. In this way, the landscape disturbance index (U), landscape connectivity index 
(CON), and landscape adaptability index (LAI) were used as the indexes for the assessment of landscape ecologi-
cal pattern health.

(1)	 Landscape disturbance index (U)

There are two kinds of relationships between the landscape ecological pattern and the external disturbance: 
compatibility and conflict. As the landscape ecological pattern has accommodating characteristics, the distur-
bance beyond the accommodating capacity will degrade the landscape ecological pattern36,37. The landscape 
disturbance index (U) could characterize the degree of fragmentation, dispersion, and morphological changes 
in landscape pattern38. The index is a comprehensive index that can reflect the health of the landscape pattern 
by quantifying the ability of ecosystems to accommodate external disturbances. It consists of the landscape 
fragmentation index, the inverse of the fractional dimension, and the dominance index. They measure the 
response of the landscape pattern to external disturbance from the perspective of different landscape types, the 
same landscape type, and landscape diversity, respectively36,38, and their weights were determined by the entropy 
weight method. The formula is as follows:

where NFi is the landscape fragmentation index, DFi is the inverse of the fractional dimension, DOi is the domi-
nance index, and a, b, and c are the corresponding weights, which were 0.20, 0.5, and 0.3 in this study, respectively.

(2)	 Landscape connectivity index (CON)

The most direct result of landscape ecological pattern degradation caused by external disturbance is that 
the flow of energy, material, and information among ecological patches is reduced or even blocked, ultimately 
the stability of the landscape pattern is decreased. The connectivity could characterize the ability of landscape 
ecological pattern to mitigate risk transmission, which is significant for the dynamic stability of landscape eco-
logical pattern39,40. The landscape connectivity index (CON) could measure the connectivity between ecosystem 
components through the aggregation or dispersion trend of patches41. The better the connectivity, the stronger 
the stability of landscape ecological pattern. The formula is as follows:

(1)U = αNFi + bDFi + cDOi

Figure 3.   Key units, interactions of urban blue–green space LEH.
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where qs is the number of plaques of patch type s, Cshl is the link between patch h and patch l in s within the 
delimited distance.

(3)	 Landscape Restorability Index (LRI)

The ability to recover to its original structure when subjected to disturbances is an important criterion for 
the landscape ecological pattern42. Research confirmed that the restorability of the landscape ecological pattern 
is closely related to the structure, function, diversity, and uniformity of distribution. The landscape restorability 
index (LRI) combines the above landscape information and could indicate the restorability of the landscape 
ecological pattern in response to disturbance43. The index consists of the patch density, Shannon diversity index, 
and the landscape evenness, the patch density is the number of patches per square kilometer. The Shannon 
diversity index reflects the change in the proportion of landscape types. The landscape evenness index shows 
the distribution evenness of patches in terms of area. The larger the LRI index, the more complex and evenly 
distributed the structure is, and the more recovery ability of the landscape pattern against disturbance is. The 
formula is as follows:

where PD is the patch density, SHDI is the Shannon diversity index, and SHEI is the landscape evenness index.

Landscape ecological process.  The landscape ecological process of urban blue–green space is extremely com-
plex for it involves multiple factors such as natural ecology, economy, and culture. Landscape ecological process 
assessment is the measure of the self-organized capacity and the efficiency of ecological processes within and 
among patches44. A blue–green space with a healthy landscape ecological process should have the ability to adapt 
to conventional land use under human management and maintain physiological integrity while maintaining the 
balance of ecological components. Specifically, the landscape ecological process could quickly restore its balance 
after severe disturbances, with strong organization, suitability, recoverability, and low sensitivity45,46. A single 
model hardly to gets good research on landscape ecological process under the urban scale. The comprehensive 
application of multidisciplinary methods is effective means to solve the problem. Regarding this, we selected 
ecological indexes and models from four aspects: organization, suitability, restoration, and sensitivity to assess 
the landscape ecological process of urban blue–green space.

(1)	 Organization index (O)

The organization of the landscape ecological process is the maintenance ability of stable and orderly mate-
rial cycling and energy flow within and between landscapes47. The normalized vegetation index (NDVI) and 
the modified normalized difference water index (MNDWI) could reflect the efficiency and order of ecological 
processes. Such as accumulation of organic matter, fixation of solar energy, nutrient cycling, regeneration, and 
metabolism13. The indexes are the external performance of the internal dynamics and organizational capabili-
ties of the ecological process. In recent years, it has been widely used in the assessment of related to landscape 
ecological process. The formulas are as follows:

where NDVI is the normalized vegetation index, MNDWI is the modified water body index, NIR is the reflec-
tance value in the near-infrared band, R is the reflectance value in the visible channel, p(green) and p(MIR) are 
the normalized values in the green and mid-infrared bands.

(2)	 Suitability index (Q)

The suitability of the landscape ecological process is a measurement of the self-regulating ability of the 
landscape ecosystem. That is, to effectively maintain the ecological process in a state of being protected from 
disturbance during the occasional changes caused by the external environment2. The water conservation amount 
index (Q) can measure the operating capacity of ecosystems to maintain ecological balance, water conservation, 
climate regulation, and other ecological processes by integrating the water balance of rainfall, surface runoff, 
and evaporation41. It could reflect the suitability of landscape ecological process to regional environment and 
developmental conditions. The formula is as follows:

(2)CON =

100
q
∑

s=1

p
∑

h�=l

Cshl

s
∑

s=1

[

qs(qs − 1)/2
]

(3)LRI = PD × SHDI × SHEI

NDVI =
NIR − R

NIR + R

(4)MNDWI =
p(green)− p(MIR)

p(green)+ p(MIR)
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where Q is the water conservation amount, R is the annual rainfall, J is the surface runoff, ET is the 
evapotranspiration.

(3)	 Recoverability index (ECO)

The recoverability of the landscape ecological process refers to the ability of an ecosystem to return to its 
original operating state after being subjected to external impacts. Land-use types play an essential role in land-
scape ecological recoverability48. The ecological recoverability index (ECO) uses the resilience coefficients of 
land-use types to reflect the level of ecosystem resilience38. Based on previous studies, the resilience coefficient 
of land-use types was assigned (Table 1).

(4)	 Sensitivity index(A)

The sensitivity index (A) could be used to indicate landscape ecological process formation, change, and 
vulnerability to disturbance31. We started from the physical effects of blue–green space on sand production, 
water confluence, and sediment transport, introduced the Soil Erosion Modulus to characterize the sensitivity 
of landscape ecological processes to disturbance. The index effectively combines landscape ecology, erosion 
mechanics, soil science, and sediment dynamics49. The formula is as follows:

where A is the soil erosion modulus. Ri is the rainfall erosion factor, K is the soil erosion factor, L and S are slope 
the length factor and the slope factor respectively, C is the vegetation coverage and management factor, P is the 
soil and water conservation factor, l is the slope length value, m is the slope length index, and θ the is slope value.

Landscape ecological function.  The landscape ecological function determines the ability of ecological 
service50–52, the ecological service of urban blue–green space depends on the human value orientation48. It 
includes four categories: supply, support, regulation, and culture. Based on Maslow’s Hierarchy of Needs and 
Alderfer’s ERG theory, scholars have summarized the three major needs of human beings for urban blue–green 
space. Namely, securing the living environment to meet the survival needs, improving social relationships to 
meet the interaction needs, and cultivating cultural cultivation to meet the development needs53. Specifically 
corresponding to the landscape ecological function of urban blue–green space, supply is not the main function, 
only plays a subsidiary role, support is the basic guarantee, regulation is the basic need for urban environmental 
construction, and culture is an important element of high-quality social life. Ecosystem service value (ESV) can 
realize the measurement of ecological service function by calculating the specific value of life support products 
and services produced by the ecosystem54–56. Considering the human value orientation of the urban blue–green 
space landscape ecological function, the weights were given by consulting 16 experts, with supply, regulation, 
support, and culture weights of 0.2, 0.3, 0.3, 0.2, respectively. The formula is as follows:

where Sk is the area of landscape type k, Vk is the value coefficient of the ecosystem service function of landscape 
type k .

Landscape ecological sustainability.  Wu (2013) proposed a research framework for landscape sustainability 
based on a summary of related studies, stating that landscape ecological sustainability is the ability to provide 
ecosystem services in a long-term and stable manner34. The framework emphasized that landscape sustainability 

(5)Q = R − J − ET

(6)

A = Ri · K · LS · C · P

L = (l/22.1)m

S =







10.8 sin θ + 0.03, θ < 5◦

16.8 sin θ − 0.50, 5◦ ≤ θ < 10◦

21.9 sin θ − 0.96, θ ≥ 10◦

C =







1, c = 0

0.6508− 0.3436 lg c, 0 < c ≤ 78.3%

0, c > 78.3%

(7)ESV =

n
∑

k=1

Sk × Vk

Table 1.   Resilience coefficients of different land use types.

Land-use types Cultivated land Woodland Grassland Water area Wetland Construction land Unused land

Resilience coefficients 0.3 0.8 1.0 0.8 0.7 0.4 0



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7707  | https://doi.org/10.1038/s41598-022-11960-9

www.nature.com/scientificreports/

should focus on the analysis of ecosystem service trade-offs effect34,57. In the process of dynamic change of urban 
blue–green space ecosystem, there are complex trade-offs among various ecosystem services. This is important 
for promoting the optimal overall benefits of various ecosystem services and achieving sustainable development 
of urban ecology58. In addition, as a special type of human-centered ecosystem developed by humans based on 
nature, human well-being is also very important for the landscape ecological sustainability of urban blue–green 
space. For this reason, we introduced ecosystem service trade-offs (EST) and ecological construction input (IEC) 
as assessment indexes of landscape ecological sustainability.

(1)	 Ecosystem service trade-offs (EST)

This study applied the root mean square deviation of ecological services to quantify ecosystem service trade-
offs (EST). The index could effectively measure the average difference in standard deviation between individual 
ecosystem services and the average ecosystem services. It is a simple and effective way to evaluate the trade-offs 
among ecosystem services. The formula is as follows:

where ESstd is the normalized ecosystem services, n is the number of ecosystem services , and ESstd is the mean 
value of normalized ecosystem services.

(2)	 Ecological construction input (ECI)

Human well-being is a premise for the landscape ecological sustainability of urban blue–green spaces, it is 
closely related to government investment in ecological construction planning34. From the perspective of econom-
ics, this study assessed the human well-being obtained by urban blue–green space with the ratio of urban ecologi-
cal construction investment to GDP, that is, the ecological construction input (ECI). The formula is as follows:

where EI is the amount of ecological construction investment, and G is the gross regional product.

Evaluation method.  The index weight determines its relative importance in the index system, and the 
selection of the weight calculation method in the decision-making of multi-attribute problems has an important 
impact on the assessment results21. Traditional weighting methods can be divided into two categories, subjec-
tive weighting method and objective weighting method21,38. The subjective weighting method is represented 
by the analytic hierarchy process (AHP), Delphi method, and so on. It has the advantage of simplicity, but the 
disadvantage is too subjective and randomness because it was completely dependent on the knowledge and 
experience of decision makers. The objective weighting method is represented by the entropy weighting method 
(EWM), principal component analysis, variation coefficient method, and so on. And it has been widely recog-
nized for reflecting the variability of assessment results18, but the values of indexes have significant influence and 
the calculation results are not stable. Considering the limitations of the single weighting method, the weights 
of each assessment index in this study were determined by the combination of subjective weight and objective 
weight. Among them, the subjective weighting selected the AHP, and the objective weighting selected the EWM 
(Table 2). The formula is as follows:

(8)EST =

√

1

n− 1

∑n

i=1
(ESstd − ESstd)

2

(9)ECI = EI/G

(10)wj = αwAHP
j + (1− α)wEWM

j

Table 2.   Weight of assessment index. ( +) positive index, (−) negative index.

Index WEWM
j (±) WAHP

j (±) Wj(±)

Landscape disturbance 0.070 (−) 0.078 (−) 0.074 (−)

Landscape connectivity 0.085 ( +) 0.088 ( +) 0.086 ( +)

Landscape restorability 0.093 ( +) 0.082 ( +) 0.088 ( +)

Organization index 0.093 ( +) 0.111 ( +) 0.102 ( +)

Suitability index 0.096 ( +) 0.110 ( +) 0.103 ( +)

Recoverability index 0.106 ( +) 0.102 ( +) 0.104 ( +)

Sensitivity index 0.090 (−) 0.094 (−) 0.092 (−)

Ecological service value 0.192 ( +) 0.168 ( +) 0.180 ( +)

Ecosystem service trade-offs 0.081 (−) 0.077 (−) 0.079 (−)

Environmental construction input 0.094 ( +) 0.090 ( +) 0.092 ( +)
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where Wj is the combined weight. WAHP
j  is the weight of the j-th index of the AHP, WEWM

j  is the weight of the 
j-th index of the EWM, dj is the information entropy of the j-th index, ej is the entropy value of the j-th index, 
fij is the proportion of the index value of the j-th sample under the i-th indexm, X ′

ij is the standardized value of 
the i-th sample of the j-th index, m is the number of index, n is the number of samples, and α was taken as 0.5.

Since the dimensions of indexes are different, it is necessary to unify the dimensions of the index to avoid 
the errors caused by direct calculation to make the evaluation results inaccurate. The range standardization was 
used to normalize the index data and bound its value in the interval [0, 1], the range standardization can be 
expressed as follows15,23:

Additionally, we divided the LEH index into five levels from high to low using an equal-interval approach 
as follows40: [1–0.8) healthy, [0.8–0.6) sub-healthy, [0.6–0.4) moderately healthy, [0.4–0.2) unhealthy, [0.2–0] 
pathological, corresponding level I–V. And the level transfer of LEH in different periods was divided into three 
types: improvement type, degradation type, and stabilization type. For example, III-II means that the transfer 
from level III to level II is the improvement type.

Spatial autocorrelation analysis.  Spatial autocorrelation analysis is one of the basic methods in theoreti-
cal geography. It could deeply investigate the spatial correlation characteristics of data, including global spatial 
autocorrelation and local spatial autocorrelation23. The global spatial autocorrelation uses global Moran’s I to 
evaluate the degree of their spatial agglomeration or differentiation of an attribute value in the study area. The 
local spatial autocorrelation is a decomposed form of the global spatial autocorrelation18,21, including four types: 
HH(High-High), LL(Low-Low), HL(High-Low), LH(Low–High). In this study, spatial autocorrelation analysis 
was applied to study the spatial correlation characteristics of blue–green space LEH. The calculation formulas 
are as follows:

where N is the number of space units, Wiv is the spatial weight, Yi ,Yv are the variable attribute values of the area 
i, v , Y  is the variable mean, S2x is the variance, I is the global Moran’s I index, and Ii is the local Moran’s I index.

Results
Assessment unit of urban blue–green space LEH.  Landscape ecological pattern.  The landscape eco-
logical pattern of the study area in 2011 and 2020 had the same maximum (0.730) value and mean (0.392) value, 
with an overall spatial distribution of higher west than east, higher north than south (Fig. 4). The high values of 
the landscape ecological pattern in both periods were mainly distributed in Acheng and Songbei Districts. The 
low values were mainly concentrated in Pingfang, Nangang, and Xiangfang Districts. Compared with 2011, the 
landscape ecological pattern in 2020 had a decrease in the minimum value and a larger mean square error. The 
improvement areas were mainly concentrated in the north of Daowai District, the west and south of Acheng 
District, the east of Songbei District, and the south of Nangang District. Although the blue–green spatial patches 
in these areas were mostly artificial, they formed a network of patches with good interactions26. The Degradation 
areas were gathered in the north of Hulan District, the central part of Acheng District, and the southern part of 
Songbei District. In these areas, the blue–green space patches were large scale and few, and the regional ecologi-
cal network was weak and unformed.
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Landscape ecological process.  The overall distribution of landscape ecological process in the study area was 
high in the east and low in the west, high in the south and low in the north in both periods (Fig. 5). The high 
values of the landscape ecological process in 2011 emerged in the Acheng District, the north and east of Daowai 
District, and the east of Hulan District. The low values were concentrated in Xiangfang, Nangang, and Pingfang 
Districts. In 2020, the minimum, maximum, and mean values of the landscape ecological process were higher 
than those in 2011, and the overall trend was on the rise. Among them, the landscape ecological process had 
a certain degree of degradation in the north-central part of Songbei District, Daoli District, and the west of 
Acheng District.

Landscape ecological function.  The high values of landscape ecological function in the study area were located 
in the water and wetland. The low values were concentrated in the beach in the southeast of Hulan District, the 
northwest of Daowai District, and the south of Daoli District. Due to the large proportion of dry land, the overall 
of landscape ecological function was at a low level in the study area (Fig. 6). In 2020, the maximum, minimum, 
and mean values of the landscape ecological function in the study area were all smaller than in 2011, while the 
mean square error increased from 0.176 to 0.194, and the regional differences rose. Among them, only the south-
eastern part of Hulan District and the northern part of Daowai District improved, most of these areas were the 
floodplain on both sides of the Songhuajiang.

Figure 4.   Spatial distribution of landscape ecological pattern. The Figure is created using ArcGIS ver.10.2 
(https://​www.​esri.​com/).

Figure 5.   Spatial distribution of landscape ecological process. The Figure is created using ArcGIS ver.10.2 
(https://​www.​esri.​com/).

Figure 6.   Spatial distribution of landscape ecological function. The Figure is created using ArcGIS ver.10.2 
(https://​www.​esri.​com/).

https://www.esri.com/
https://www.esri.com/
https://www.esri.com/
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Landscape ecological sustainability.  The low values of landscape ecological sustainability in the study area were 
mainly distributed in Hulan, Acheng, and Nangang Districts, and the high values mainly emerged in Nangang 
District and along the Songhuajiang in 2011 (Fig. 7). In 2020, the maximum, minimum, and mean values of 
landscape ecological sustainability increased, and the mean square error decreased from 0.158 to 0.149. The 
improvement areas were concentrated in Hulan, Daoli, Daowai, Pingfang, and Acheng Districts. The degrada-
tion areas were mainly found in Songbei, Daoli, and Nangang Districts. As the Environmental construction 
input (ECI) of the Harbin government has district difference characteristics, it leads to the change of landscape 
ecological sustainability also showed district difference characteristics and degradation in Songbei, Nangang, 
and Xiangfang Districts.

Assessment of blue–green space LEH.  The mean value of blue–green space LEH of the study area from 
2011 to 2020 increased from 0.377 to 0.386, with slightly improved but still at an unhealthy level, and the mean 
square error changed from 0.140 to 0.149, with the spatial difference of the overall enhancement. In 2011, the 
LEH was dominated by the level IV (Fig. 8), the area proportion accounted for 35.392%, which was concen-
trated in Songbei, Daoli, and Daowai Districts (Fig. 9). Level V had a large-scale distribution in the study area, 
with an area proportion of 31.248%, focused on Hulan and Acheng Districts. The level III was the most widely 
distributed in the study area, except for Nangang District. While the level I and the level II mainly emerged in 
Xiangfang District, the forestland in the east of Acheng District, and the Songhuajiang. In 2020, the dominant 
level of LEH transferred to level III, and the area proportion raised from 13.162% in 2011 to 39.507% in 2020, 
mainly distributed in Hulan, Daoli, and Acheng Districts. The area proportion of level IV decreased by 19.992%, 
with the most noticeable decrease, mainly concentrated in Daowai District, and the area proportion of levels I, 
II, and V increased in 2020.

Assessment of various types blue–green space LEH.  From 2011 to 2020, among the various types of blue–green 
space, the most drastic change in LEH level was found in cultivated land (Fig. 10). In 2011, the LEH level was 
mainly distributed in IV and V. In 2020, the level III became the dominant of cultivated land LEH, with the 
area proportion increasing from 9.846 to 49.166%. There was an overall trend of improvement in the woodland 
LEH and was mainly concentrated in level II, with the area proportion increasing from 82.150 to 91.896% dur-
ing the study period. The grassland LEH level degraded sharply from 2011 to 2020, the area proportion of level 
III decreased rapidly from 80.843 to 22.772%, and level IV became the main level with an area proportion of 

Figure 7.   Spatial distribution of landscape ecological sustainability. The Figure is created using ArcGIS ver.10.2 
(https://​www.​esri.​com/).

Figure 8.   Area proportion of blue–green space LEH level.

https://www.esri.com/
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57.114%. As for the LEH level of water and wetland, the area proportion of level I decreased from 44.941 to 
38.808% and level II increased from 28.837 to 53.743% during the study period, with a slight decrease in overall 
LEH.

Level transfer of blue–green space LEH.  From 2011 to 2020, the level transfer type of blue–green space LEH in 
the study area showed that the improvement type accounted for the largest area proportion, which was 48.297%, 
mainly distributed in Hulan, Daoli, and Acheng Districts (Fig. 11). Of them, the V-III accounted for the larg-
est area proportion of the improvement type, amounting to 63.572%, mainly distributed in Hulan and Acheng 
Districts. The IV-III accounted for 13.240% area proportion of the improvement type, which was concentrated 
in Daoli District with sufficient water resources and relatively flat terrain. The III-II, IV-I, V-I, and V-IV all 
accounted for a minor area proportion, with a total area of 18.117 km2, scattered at the junction of Dawai and 
Hulan Districts and the northwestern part of Acheng District.

Among the stabilization type, the IV-IV accounted for the largest area proportion, amounting to 48.835%, 
gathered in the north of Daowai District. The landscape ecological function of these areas balanced the negative 
impact of pattern, and the values of landscape ecological process and sustainability changed slightly during the 
study period, leaving the LEH level unchanged. The area proportion of the V-V was the lowest in the stabilization 

Figure 9.   Spatial distribution of blue–green space LEH level. The Figure is created using ArcGIS ver.10.2 
(https://​www.​esri.​com/).

Figure 10.   Area proportion of various types blue–green space LEH level.

Figure 11.   Spatial distribution of blue–green space LEH transfer type. The Figure is created using ArcGIS 
ver.10.2 (https://​www.​esri.​com/).

https://www.esri.com/
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type, mainly distributed at the junction of Hulan and Songbei Districts, and the junction of Acheng and Xiang-
fang Districts. The value of landscape ecological process in the above areas was relatively low, while the values 
of pattern, function, and sustainability were comparatively high so that the LEH maintained the same level.

The degradation type was mainly located in Songbei, Nangang, Pingfang, and Xiangfang Districts and the 
northwestern part of Daowai District, accounting for 33.295% area proportion of the blue–green space. Of which, 
the IV–V was the largest area proportion, accounting for 40.638% of the degradation type, concentrated in Song-
bei and Nangang Districts. The transfer types with greater degradation of the I–V, I–IV, and II–V accounted for 
a total of 19.097% area proportion of the degradation type, with a total area of 220.955 km2, mainly emerged in 
the central and southeastern parts of Acheng District, the northwestern part of Hulan District.

Spatial autocorrelation analysis.  In 2011, the global spatial autocorrelation Moran’s I index of blue–
green space LEH in the study area was 0.145, with significant positive spatial correlation and strong spatial 
agglomeration. In 2020, the Moran’s I index was increased to 0.148, and the spatial agglomeration increased. 
From 2011 to 2020, the dominant type of local spatial autocorrelation of blue–green space LEH changed from 
HL type to HH. In terms of the spatial distribution changes of local spatial autocorrelation types, the HH type 
was concentrated in the south of the study area in 2011 and mainly distributed in the central part of the study 
area and Hulan District in 2020. The LL type shifted from the northwestern part of the study area to the Song-
huajiang and coastal wetland, and the southeastern part of the Acheng district during the study period. The LH 
type gradually shifted from the south bank of the Songhuajiang and the cultivated land in Xiangfang District to 
the north bank of the Songhuajiang from 2011 to 2020. The HL type mainly appeared in Songbei District and 
Acheng District in 2011 and it was concentrated in the Songbei District in 2020 (Fig. 12).

Discussion
Advantages of the assessment framework.  Blue–green space is a network system consisting of vari-
ous ecological spaces23. The overall evaluation of various ecological spaces that we conducted could enrich the 
research scope of LEH and provide more guidance for urban ecological construction. An accurate assessment 
of LEH is the basis for recognizing regional and stage differences in the evolution of urban ecological health. At 
present, existing LEH research either overemphasizes the balanced state of the landscape away from disturbance 
or ignores the effect mechanism of landscape ecology. The majority of research means assessing LEH through 
the changes in internal landscape pattern or external service function performance15,38, leading to large differ-
ences in the assessment results. Moreover, landscape ecological sustainability has been considered an important 
research topic in landscape ecology for more than a decade, but it has not been addressed in existing LEH evalu-
ation studies. Thus, the research results are unable to support the comprehensive and sustainable development 
of urban ecology. A comprehensive and integrated study of the units involved in LEH is the key to solving the 
problem.

In this study, based on the analysis of the effect mechanism of urban blue–green space LEH, we constructed 
an integrated assessment framework of pattern, process, function, and sustainability. The framework not only 
focused on the real-time health status of the landscape ecosystem but also emphasized the long-term (intergen-
erational) sustainability of the landscape ecosystem. The assessment system could provide a more scientific and 
comprehensive integrated framework for understanding the complex interactions between blue–green space and 
socio-economic systems as well as human-land relationships. It could screen out the key or vulnerable landscape 
ecosystem pattern characteristics, critical landscape ecological processes, important ecosystem functions, the 
constraints to sustainable development, and provide specific directions for optimizing the landscape ecosystem. 
Meanwhile, the proposed assessment framework can contribute to the methodological extension, and could 
be applied to other rapidly urbanizing regions. In addition, the research results made up for the shortcomings 
of unilateral analysis in previous studies, which has significant practical implications for achieving the goal of 
constructing cities with economic prosperity, human health, and ecological harmony worldwide.

Figure 12.   Local spatial autocorrelation types of blue–green space LEH. The Figure is created using ArcGIS 
ver.10.2 (https://​www.​esri.​com/).

https://www.esri.com/
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Discussion of assessment units.  The degraded areas of landscape ecological pattern in the study area 
were generally with a single patch type and only a small number of large-scale ecological patches. There are three 
elements of landscape ecological pattern: patch, corridor, and matrix. In recent years, scholars have combined 
“organic renewal” and “urban renovation” to optimize the urban ecosystem, that is, by adjusting the number and 
form of ecological patches, organizing and integrating the ecological patches with the blue channels and green 
corridors35,58. The practices confirm that enhancing the connectivity of landscape patches is the most effective 
way to optimize landscape ecological pattern.

The landscape ecological process is the key optimization unit of blue–green space LEH according to the 
current status in the study area and its assessment weights. From 2011 to 2020, the degraded area of landscape 
ecological process was highly coincident with the spatial expansion scope of “leap north and west, extend south 
and east, and expand in the middle and outside” proposed by the Harbin municipal government in 2011. Urban 
construction activities changed the blue–green space from dense clusters to dispersed clusters26,39, which brought 
a series of negative impacts on landscape ecological processes. Such as reduced ecological stability, less internal 
biodiversity, and blocked material and energy transfer. There are numerous studies that also confirm that urban 
construction activities are the main factor affecting landscape ecological efficiency5,9.

From 2011 to 2020, the landscape ecological function decreased in most parts of the study area, except for the 
floodplain on both sides of the Songhuajiang. Due to long-term river flood erosion and river sand accumulation, 
has formed a large area of wetland landscape on both sides of the Songhuajiang. The water system in the area is 
rich and self-contained, and the landscape ecological function has been improved, the assessment result was con-
sistent with the findings of other scholars22,39. The degradation of landscape ecological function will destroy the 
balanced land-use structure. Meanwhile, the land-use structure will have an impact on the formation, supply, and 
distribution of landscape ecological function, which form a mutual restriction and promotion relationship43,45,55.

Landscape ecological sustainability of the study area was greatly influenced by ECI, showing obvious district 
differences, which were related to the ecological construction priorities of the districts. Among them, Hulan and 
Acheng Districts had larger ecological construction input, mainly for environmental pollution prevention and 
control. Daoli and Daowai Districts were mainly used for the renovation of farmland ecosystem in the urban 
fringe area. And the Pingfang District was mostly for the treatment of heavy industry and heavy pollution. 
While other districts were mainly spent on urban infrastructure improvement. Therefore, landscape ecological 
sustainability requires scientific adjustment of environmental construction input, and obtaining the maximum 
ecological output with the least input is a matter of considerable concern.

In the study area, the spatial changes of the four assessment units of LEH: pattern, process, function, and 
sustainability were not coordinated. The assessment results further proved that there are limitations in assessing 
LEH by relying only on landscape pattern or external functional performance. Optimization of urban blue–green 
space LEH should be to promote the unity, coordination of pattern, process, function, and sustainability based 
on strengthening the weak units in the landscape scale. According to the results of the study, increasing the con-
nectivity of ecological patches is the key to improving the landscape ecological pattern. The landscape ecological 
process is subject to the expansion of non-ecological land. A comprehensive adjustment of land-use structure is 
an effective way to improve landscape ecological function. And the landscape ecological sustainability is closely 
related to the scientific input of ecological construction. Discussing the change characteristics of landscape 
ecological pattern, process, function, and sustainability in the study area could be a targeted reference for LEH 
optimization in Northeast China and other cities with the same type of development.

Discussion of LEH assessment results.  From 2011 to 2020, the blue–green space LEH in the study area 
was improved, and the major level was transformed from IV to III, but the spatial difference increased, and this 
assessment result is consistent with the previous studies20,22,24. It can be seen that since the introduction of the 
“12th Five-Year Plan for the Revitalization of Northeast China”, Northeast China has actively practiced the con-
cept of green development and ecological construction and achieved certain results. Yet, we also found that the 
LEH of blue–green space in the study area was still at an unhealthy level, there was a large space to be improved.

From 2011 to 2020, the improvement type of LEH accounted for the largest area proportion. These areas 
were generally distributed in the ecological input priority areas, how to get rid of excessive reliance on financial 
investment, and use the effect mechanism of LEH to optimize the blue–green space is urgent. The IV–V had the 
largest area proportion of the degradation type, indicating that areas with a worse LEH foundation are more 
likely to be degraded. The I–V, I–IV, and II–V degradation types with large level decline accounted for a small 
area proportion, but will have a strong negative impact on the overall LEH of the study area and should be given 
full attention.

As for the changes in various types of blue–green space LEH in the study area, the most significant LEH 
degradation occurred in grassland. The same results were also found in related studies of other cities with rapid 
urbanization16,17. Urban grassland mostly comes from urban settlements and parks, and the development of 
urbanization has made it increasingly artificial. This will certainly lead to the decline of structural and functional 
integrity50, and eventually the degradation of grassland LEH. The improvement of the woodland LEH in the study 
area was mainly due to the implementation of the National Ecological Environment Construction Plan during the 
study period. Urban woodland is generally less disturbed in general, but once destroyed, later ecological recov-
ery is slow. Therefore, attention must be paid to the woodland protection to prevent LEH degradation21,26. The 
improvement of cultivated land LEH in the study area was directly related to the optimal deployment of agricul-
tural cropping structures and the construction of high-standard basic farmland23. Such a series of cultivated land 
adjustment measures are of great value to other regions. The decline of water and wetland LEH in the study area 
was mainly due to the support policies for agriculture development. Excessive exploitation of groundwater for 
cultivated land irrigation has led to a serious decline in the groundwater level and an imbalance in the dynamic 
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balance of water resources, leaving its LEH at risk. From the above analysis, we can conclude that optimizing the 
internal pattern of grassland, avoiding woodland from external interference, implementing effective cultivated 
land protection measures, scientifically adjusting the land-use structure of blue–green space, and developing 
high standard watershed planning and management methods are essential for the LEH of blue–green space.

Implications of spatial autocorrelation analysis.  The relevant theories and practices of regional devel-
opment show that there is a diffusion or polarization effect between regions, which can reduce or enlarge regional 
spatial differences. HH and LL types of local spatial autocorrelation can be regarded as an objective reflection 
of the spatial diffusion effect. While HL and LH types are a manifestation of the spatial polarization effect18, this 
effect will show an intensified trend under the “Matthew effect” of spatial correlation. For this reason, it is neces-
sary to clarify the effect characteristics of local spatial autocorrelation types, which will be a new perspective to 
explore urban blue–green space LEH optimization methods using spatial correlation effects.

The HH type is a high aggregation area of blue–green space LEH high levels, where has an obvious diffusion 
effect in the region and has a positive contribution to the overall blue–green space LEH in the region21. As these 
blue–green spaces have high levels of LEH, it should continue to strengthen protection measures and enhance 
the impact of diffusion effects with these areas as the center in the future.

The LL type is a high aggregation area of blue–green space LEH low levels, where has an obvious diffusion 
effect in the region and is the primary area for LEH restoration. For such areas, their improvement should be 
treated differently. It is necessary to actively promote various landscape ecological improvement means and pro-
tection implementation from an integrated perspective. In addition, if there is a land requirement for conversion 
of blue–green space to non- blue–green space, the area where LL type is located is the relatively ideal choice21,58.

The LH type is similar to a concave, that is, the blue–green space with LEH high levels is distributed around 
the low levels15,21. Under the influence of the spatial polarization (echo) effect, the areas with LEH low levels are 
easily assimilated by the surrounding areas with LEH high levels and then evolve into the HH type. For such 
areas, we should focus on curbing the effects of polarization in areas with LEH low levels, actively cultivating 
the natural conditions of blue–green space with LEH low levels. And making full use of the diffusion effect of 
surrounding areas with high LEH levels to accelerate the transition to HH type.

The HL type is similar to a convex, that is, the blue–green space with LEH high levels is concentrated in the 
middle, surrounded mostly by LEH low levels. Under the influence of the spatial polarization (echo) effect, the 
areas with LEH high levels are easily assimilated by the surrounding areas with LEH low levels and then evolve 
into the LL type21,23. For such areas, we should actively protect the areas with LEH high levels that produce 
polarization effects. It is necessary to isolate or reduce the influence of the surrounding areas with LEH low levels 
on them, and gradually expand the protection scope to promote the overall improvement of LEH.

Limitations and prospects.  Some uncertainties and limitations also exist in this study, there may be 
uncertainties in the calculation of metrics due to inconsistent spatial resolution of data or excessive parameter 
settings.

Meanwhile, it failed to clarify the driving mechanism of blue–green space LEH and the effect of its optimiza-
tion on the future development of the city. Thus, in the subsequent research, we will explore the effects of multiple 
factors on blue–green space LEH and conduct multiple scenarios simulation. So as to reduce the problems caused 
by uncertainty factors, maintaining the sustainable development capacity of blue–green space, and identifying 
more effective measures to optimize the LEH of blue–green space.

Conclusions
In this study, by clarifying the effect mechanism, we constructed an urban blue–green space LEH assessment 
framework based on the integration of pattern, process, function and sustainability. The assessment framework 
can contribute to the methodological extension, and could be applied to other rapidly urbanizing regions. The 
results showed that the spatial changes in the four assessment units of landscape ecological pattern, process, 
function and sustainability were not coordinated in the study area. The overall condition of blue–green space 
LEH improved but still at an unhealthy level, and the spatial difference increased during the period of 2011 to 
2020 in the study area. Grassland, water and wetland in the study area suffered from the widespread degrada-
tion of LEH, while cultivated land and woodland showed an overall trend of improvement in the LEH. The LEH 
level improvement type had the largest area proportion, and the stabilization type had the smallest. The spatial 
agglomeration of blue–green space LEH in the study area increased, and its local spatial autocorrelation dominant 
type changed from HL to HH, with large differences in the spatial distribution in 2011 and 2020. These findings 
are vital for promoting the creation of a more harmonious and sustainable human living environment, and can 
provide significant references for urban blue–green space protection and management.
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