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Abstract

The immediate precursor to murine type 1 conventional DCs (cDC1s) has recently been

established and named “pre-cDC1s”. Mature CD8α+ cDC1s are recognized for suppressing

graft-versus-host disease (GvHD) while promoting graft-versus-leukemia (GvL), however

pre-cDC1s have not previously been investigated in the context of alloreactivity or anti-

tumor responses. Characterization of pre-cDC1s, compared to CD8α+ cDC1s, found that a

lower percentage of pre-cDC1s express PD-L1, yet express greater PD-L1 by MFI and a

greater percent PIR-B, a GvHD-suppressing molecule. Functional assays were performed

ex vivo following in vivo depletion of CD8α+ DCs to examine whether pre-cDC1s play a

redundant role in alloreactivity. Proliferation assays revealed less allogeneic T-cell prolifera-

tion in the absence of CD8α+ cDC1s, with slightly greater CD8+ T-cell proliferation. Further,

in the absence of CD8α+ cDC1s, stimulated CD8+ T-cells exhibited significantly less PD-1

expression compared to CD4+ T-cells, and alloreactive T-cell death was significantly lower,

driven by reduced CD4+ T-cell death. Tumor-killing assays revealed that T-cells primed with

CD8α-depleted DCs ex vivo induce greater killing of A20 B-cell leukemia cells, particularly

when antigen (Ag) is limited. Bulk RNA sequencing revealed distinct transcriptional pro-

grams of these DCs, with pre-cDC1s exhibiting activated PD-1/PD-L1 signaling compared

to CD8α+ cDC1s. These results indicate distinct T-cell-priming capabilities of murine pre-

cDC1s compared to CD8α+ cDC1s ex vivo, with potentially clinically relevant implications in

suppressing GvHD while promoting GvL responses, highlighting the need for greater inves-

tigation of murine pre-cDC1s.
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Introduction

A distinct murine dendritic cell (DC) has been identified as the immediate precursor to

CD8α+ type 1 conventional DCs (cDC1s), termed “pre-cDC1”, phenotypically classified as

CD24highCD8α- [1–5]. Pre-cDC1s become committed to the cDC1 lineage in the bone mar-

row (BM), and migrate out to the periphery where they acquire tissue-specific signals for

their maturation into terminally differentiated CD8α+ or CD103+ cDC1s [1, 6–9]. Outside

of their differential expression of CD24 and CD8α, pre-cDC1s express the same pattern rec-

ognition receptors (PRRs) and other receptors as mature cDC1s (TLR3, DNGR1, Xcr1, etc.)

[4, 10–14]. CD24 is a membrane glycoprotein that senses damage-associated molecular pat-

terns (DAMPs), whereas CD8α does not have any identified function [15, 16]. The expres-

sion levels of antigen (Ag)-processing enzymes has been compared among DCs and their

precursors in the BM and spleen and found that pre-cDCs in the BM express relatively high

levels of proteases compare to mature cDCs, but lose this high expression once they migrate

to the spleen [17].

Direct comparisons of the two DC subsets have been conducted in the context of viral infec-

tion due to the central role of mature CD8α+ cDC1s in cross-presentation and cross-priming

of CD8+ T-cells for anti-viral responses. One study found that pre-cDC1s induce greater

expansion of Ag-specific memory T-cells and are better at reducing viral load compared to

CD8α+ cDC1s [10]. This effect was largely attributed to the longer lifespan of pre-cDC1s in

lymphoid organs [10]. It has also been determined that pre-cDC1s are not as efficient at cross-

presentation of necrotic, cell-associated material [5, 10]. Further, de Brito et. al. reported that

pre-cDC1s do not acquire co-stimulatory capacity upon uptake of necrotic cell material, but

are still able to cross-present [5]. They also found that, following TLR9 activation with CpG,

pre-cDC1s are superior to CD8α+ cDC1s in CD8+ T-cell cross-priming of viral Ag [5].

Aside from anti-viral CD8+ T-cell responses, CD8α+ cDC1s also play a seminal role in pro-

moting anti-tumor CD8+ T-cell responses via cross-presentation and cross-priming. Further,

in the context of hematopoietic cell transplantation (HCT) CD8α+ cDC1s are recognized as

potent suppressors of graft-versus-host disease (GvHD) through their ability to induce clonal

deletion of alloreactive donor T-cells [18]. To our knowledge, the role of pre-cDC1s in allor-

eactivity and GvHD, and in generating anti-tumor responses, has not been previously investi-

gated, despite studies documenting their superior ability to cross-prime CD8+ T-cells

compared to mature CD8α+ cDC1s [5, 10]. This represents a significant gap in the literature

regarding DC function, plasticity, and development in the contexts of transplantation and can-

cer. Herein we first characterized expression levels of various activating and inhibiting co-

stimulatory molecules on pre-cDC1s compared to CD8α+ cDC1s at steady state. We then

used a CD8α-depleting antibody to remove CD8α+ cDC1s in vivo and then determine pan-

DC function in their absence ex vivo in the context of alloreactive T-cell stimulation and

tumor-killing. Finally, we performed bulk RNA sequencing of cell-sorted pre-cDC1s com-

pared to CD8α+ cDC1s to discern underlying functional differences between these DC

subsets.

Materials and methods

Ethics statement

Mouse studies were carried out in strict accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols

were approved by the Institutional Animal Care and Use Committee at the University of Ari-

zona (IACUC #14–171).
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Mice

All strains of mice used (BALB/c and C57BL/6) were age-matched 6-10-week-old females pur-

chased from The Jackson Laboratory. Mice were housed in specific pathogen-free conditions

and cared for according to the guidelines of the University of Arizona’s Institutional Animal

Care and Use Committee. The method of sacrifice used for these studies was carbon dioxide

(CO2) overdose, in accordance with IACUC-approved methods of providing rapid, painless,

stress-free death.

Drug preparation and administration

The CD8α-depleting antibody (2.43 mAb) (BioXCell, BE0061) was diluted in sterile saline for

in vivo administration. BALB/c mice were injected with 200 μg 2.43 mAb intraperitoneally on

day -3 and day -1 relative to the start of the functional assay on day 0.

Pan-dendritic cell isolation

Spleens were collected from naïve BALB/c mice and single-cell suspensions were generated.

Red blood cells were lysed using Pharm Lyse (BD Biosciences). Splenocytes were washed in

PBS (HyClone) and then Pan-DCs were isolated using the Pan-DC Isolation Kit (Miltenyi Bio-

tec). Absolute counts were obtained using a hemocytometer and Trypan Blue.

Flow cytometry

Cells were washed in flow buffer (PBS with 0.5% FBS), incubated with anti-mouse Fc Block

(Thermo Fisher Scientific), and flow cytometry was performed as previously reported [19–23].

All antibodies used for flow cytometry are listed in Table 1. T-cell death was determined using

Propidium Iodide Ready Flow Reagent (Invitrogen). Fluorescence data were collected using

an LSRFortessa cell analyzer (BD Biosciences) and analyzed using FlowJo 2 (Tree Star).

Table 1. Antibodies used for flow cytometry.

Antibody Clone(s) Vendor

Anti-mouse B220 Brilliant Violet 510 RA3-6B2 Biolegend

Anti-mouse CD4 APC/Cy7 GK1.5 Biolegend

Anti-mouse CD8α PE-Cyanine7 53–6.7 Thermo Fisher

Anti-mouse CD11c FITC N418 Miltenyi Biotec

Anti-mouse CD24 Pacific Blue M1/69 Biolegend

Anti-mouse CD24 PE-Dazzle 594 M1/69 Biolegend

Anti-mouse CD25 AlexaFluor700 PC61 Biolegend

Anti-mouse CD69 PE/Cyanine5 H1.2F3 Thermo Fisher

Anti-mouse CD70 PerCP-eFluor710 FR70 Thermo Fisher

Anti-mouse H2Kb PerCP-eFluor 710 AF6-88.5.5.3 Thermo Fisher

Anti-mouse H2Kd PE SF1-1.1.1 Thermo Fisher

Anti-mouse ICOS VioGreen REA192 Miltenyi Biotec

Anti-mouse ICOSL PE HK5.3 Biolegend

Anti-mouse PD-1 APC 29F.1A12 Biolegend

Anti-mouse PD-L1 PE/Dazzle594 10F.9G2 Biolegend

Anti-mouse PIR-B APC 10-1-PIR Thermo Fisher

Anti-mouse TIM-3 PE REA602 Miltenyi Biotec

https://doi.org/10.1371/journal.pone.0273075.t001
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Mixed leukocyte reaction (MLR)

Splenic pan-DCs were isolated from the spleens of untreated or 2.43 mAb-treated BALB/c

mice as described above. Some DCs were set aside to confirm CD8α+ cDC1 depletion by flow

cytometry. Allogeneic T-cells were isolated from the spleens of naïve C57BL/6 mice using the

Pan T-cell isolation kit II (Miltenyi Biotec). Purified T-cells were stained with CellTrace Violet

(Invitrogen). Splenic DCs were co-cultured with allogeneic T-cells in proliferation assay media

(PAM) (RPMI-1640, 10% FBS, 0.5% Sodium Pyruvate, 0.5% MEM, and 55 μM BME) at a ratio

of 1:5 and incubated at 37˚C with 7.5% CO2. T-cells were stimulated with CD3/CD28 Dyna-

Beads (Thermo Fisher Scientific) as a positive control. After 16–24 hours, rIL-2 (PeproTech)

was added to each well at a final concentration of 50 IU/mL. Flow cytometry was performed to

determine DC composition on day 2 of co-culture. After 3–4 days of co-culture flow cytometry

was performed. Data were analyzed using Modfit software (Verity Software House) to deter-

mine the proliferation index (PI) of H2Kb+ T-cells.

Tumor-killing assay

A BALB/c B-cell lymphoblastic leukemia cell line, A20-luciferase (A20-Luc), was provided by

Dr. Xue-Zhong Yu, MD (Medical University of South Carolina) and has previously been used

in murine BMT studies [20]. A20-luc was cultured in RPMI 1640 (Hyclone SH30027) with

10% FBS, MEM, sodium pyruvate (Hyclone SH30239), and 2 μL/mL Zeocin (Gibco) at 37 ˚C

and 5% CO2. This tumor-killing assay was performed according to previous reports [24] and

optimized for our purposes. Splenic pan-DCs were isolated from the spleens of naïve or 2.43

mAb-treated BALB/c mice as described. Allogeneic T-cells were isolated from the spleens of

naïve C57BL/6 mice using the Pan T-cell isolation kit II (Miltenyi Biotec). Splenic DCs were

co-cultured with allogeneic T-cells in a 96-well U-bottom TC-treated plate at a ratio of 1:5 and

incubated at 37˚C with 7.5% CO2.

On day 3 of co-culture 1x105, 2x105, or 4x105 A20-Luc mouse (H2Kd+) B-cell lymphoma

target cells were added to the respective wells and mixed well with the pipette. Tumor alone

controls were added to wells containing a volume of media equivalent to that of the DC:T-cell

cultures. The following day, on day 4, each individual well was harvested and transferred into

a black, clear-bottom, flat-bottom 96-well plate. Immediately prior to imaging, 50 μL of lucif-

erin (GoldBio, LUCK) was added to all wells using a multi-channel pipette. Bioluminescence

(BLI) was measured using LagoX (Special Instruments Imaging, Tucson, AZ) and quantified

using Aura software (Verity). BLI was averaged for technical replicates. Specific killing was cal-

culated as a percent of the tumor alone control at each respective tumor concentration.

FACS cell sorting

Splenic pan DCs were isolated from nine age-matched, female, littermate BALB/c mice and

pooled per three mice for a total of three biological replicates. Pooled DCs were washed in flow

buffer (PBS with 0.5% FBS), incubated with anti-mouse Fc Block (Thermo Fisher Scientific),

and then stained with CD8α PE-Cy7 (Thermo Fisher; clone: 53–6.7), and CD24 Pacific Blue

(Biolegend; clone: M1/69). CD8α+ and pre-cDC1 (CD24high CD8α-) were sorted using FAC-

SAria III (BD).

RNA sequencing

All cell samples were stored in PBS and RNAlater (Thermo Fisher) at 4˚C prior to processing

by the University of Arizona Genomics Core (UAGC). RNA Samples were assessed for quality

with a High Sensitivity RNA Fragment Analyzer Kit (Advanced Analytics) and quantity with
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an RNA HS assay kit (Qubit). Quality samples were used for library builds with the Rapid

RNA Library Kit (Swift) and Dual Combinatorial Indexing Kit (Swift). Samples had quality

and average fragment size assessed with the High Sensitivity NGS Analysis Kit (Advanced

Analytics). Quantity was assessed with the Kapa Library Quantification kit (Illumina), and

then samples were equimolar-pooled and clustered for sequencing using Illumina NextSeq500

run chemistry (NextSeq 500/550 High Output v2 kit 150 cycles). Data were sent to UAGC Bio-

computing Group for further analysis.

Informatics

Paired-end reads were demultiplexed using Illumina’s BaseSpace service. Reads were trimmed

using Trimmomatic version 0.32 (USADelLab). Fastq files were aligned to the GRCm38 ver-

sion of the mouse reference genome using STAR version 2.5.2b [25]. Gene level quantification

was performed using htseq-count version 0.6.1 [26]. DESeq2 was used to conduct differential

expression analysis with genes having an adjusted p-value (padj) < 0.05 being considered sig-

nificant [27]. Pathway enrichment was performed on the significant DEGs using QIAGEN’s

IPA software tool. P value = 0.05 corresponds to a 1.3 -log p-value and is considered statisti-

cally significant. Gene expression patterns of molecules for each identified pathway were used

to determine a z-score, with a z-score >2 meaning “activated” and a z-score<-2 meaning

“inhibited”. RNA sequencing data have been deposited to the UA Research Data Repository

reDATA and are publicly available (https://doi.org/10.25422/azu.data.14241902).

Statistical analysis

Unpaired t-tests were used to determine significance between absolute counts, percent, MFI

expression, and proliferation indices. Two-way ANOVA tests and Šidák’s multiple compari-

sons tests were used to determine significance in CD8α+ cDC1 and pre-cDC1. Ordinary One-

way ANOVA tests and Tukey’s multiple comparisons tests were used to determine significance

in percent specific killing of A20-Luc. P values<0.05 were considered statistically significant.

Results

Pre-cDC1s differ from CD8α+ cDC1s in their steady-state expression of co-

stimulatory and co-inhibitory molecules

Splenic pan DCs were isolated from naïve mice and phenotypically characterized by flow

cytometry. Pre-cDC1s are less abundant than CD8α+ cDC1s in the spleens of BALB/c mice

(Fig 1A and 1B). Pre-cDC1s and CD8α+ cDC1s have been reported to express all the same

PRRs and receptors for dead cell-associated Ag, and to have the same cross-presentation capa-

bilities [10]. We first sought to determine the surface expression levels of various activating

and inhibiting co-stimulatory molecules on the two DC subsets at steady state to confer poten-

tial differences in how they may stimulate adaptive T-cell responses. Compared to CD8α
+ cDC1s, a lower percentage of pre-cDC1s express PD-L1 while those positively expressing

PD-L1 have a higher MFI (Fig 1C). Notably, CD8+ cDC1s appear to have PD-L1high and

PD-L1dim populations, whereas PD-L1-expressing pre-cDC1s primarily fall within the

PD-L1high population, with relatively fewer PD-L1dim pre-cDC1s. Pre-cDC1s exhibit signifi-

cantly greater percent expression of PIR-B (Fig 1D), a co-inhibitory molecule that suppresses

lethal GvHD [28]. Regarding activating co-stimulatory molecules, pre-cDC1s express lower

percent CD70 (Fig 1E), and greater percent ICOS-L (Fig 1F), with no differences in MFI.

These data demonstrate that pre-cDC1s and CD8α+ cDC1s differ in their expression of vari-

ous activating and inhibiting co-stimulatory molecules. While it is unclear whether the
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expression pattern of pre-cDC1s results in a net function that is more immunogenic or tolero-

genic compared to CD8α+ cDC1s, these results suggest potential differences in T-cell effector

function modulation by these DC subsets following the same antigenic stimulus.

Using a CD8α-depleting antibody to test functional redundancy

We next sought to compare the functions of pre-cDC1s and CD8α+ cDC1s. Unfortunately,

there are no suitable mouse models commercially available that would allow us to properly

investigate the separate functions of these DC subsets. The extreme rarity of these two DC pop-

ulations complicate their examination in vivo and make cell-sorting for ex vivo assays unfeasi-

ble. Since the differentiating feature of these subsets is expression of CD8α, we used a CD8α-

depleting antibody (2.43 mAb) to remove CD8α+ cDC1s in vivo. Depletion was confirmed by

flow cytometry of splenocytes harvested from mice receiving CD8α-depleting antibody com-

pared to untreated mice (Fig 2A and 2B). As previously reported, depletion of CD8α+ cDC1s

also resulted in an increase in the proportion and absolute number of pre-cDC1s (Fig 2B and

2C) [10]. This strategy allowed us to evaluate splenic DC function in the presence and absence

of CD8α+ cDC1s to determine whether pre-cDC1s exhibit functional redundancy. We there-

fore proceeded with the ex vivo proliferation assay outlined in the schematic in Fig 2D.

Fig 1. Pre-cDC1s differ from CD8α+ cDC1s in their steady-state expression of co-stimulatory and co-inhibitory molecules. Splenic pan DCs were

isolated from naïve BALB/c mice and analyzed by flow cytometry to characterize pre-cDC1s and CD8α+ cDC1s. (A) Representative flow plot

demonstrating gating strategy. Gated on CD11c+B220- (conventional DCs); pre-cDC1s are gated as CD24highCD8α- and CD8α+ cDC1s are gated as

CD8α+. (B) Mean absolute cell number of respective DC subsets shown with SEM. (C-F) Mean percent and MFI with representative histograms shown

with SEM for expression of (C) PD-L1, (D) PIR-B, (E) CD70, and (F) ICOSL on CD8α+ cDC1s (black) and pre-cDC1s (cyan). Data is representative of

two experiments. (n = 5 per group). Paired t tests were used to determine significance between DC subsets. ��P<0.01, ���P<0.001.

https://doi.org/10.1371/journal.pone.0273075.g001
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2.43 mAb-treated DCs induce less proliferation, altered PD-1 expression,

and depressed induction of cell death of alloreactive T-cells

We first sought to compare the ability of 2.43 mAb-treated DCs to stimulate alloreactive T-cell

proliferation using an ex vivo allogeneic MLR. Using ModFit software, we first gated on

H2Kb+ cells to distinguish T-cells, then fit the parent peak using each corresponding T-cell

alone control and generated the representative CellTrace dilution histograms for each experi-

mental condition and timepoint (Fig 3A). ModFit software calculates a proliferation index

(PI) based on the area under the curves representing consecutive cell divisions. We found that

2.43 mAb-treated DCs induced significantly less allogeneic T-cell proliferation on day 3 (Fig

Fig 2. Using a CD8α-depleting antibody to determine functional redundancy. BALB/c mice were dosed with 200 μg of 2.43 mAb antibody

intraperitoneally on day -3 and day -1. On day 0, splenic DCs were isolated and analyzed by flow cytometry. Data is representative of three independent

experiments. (n = 4 per group) (A) Representative flow plots depicting relative cDC1 proportions in naïve DCs (left) and 2.43 mAb DCs (right). Gated

on CD11c+B220- (conventional DCs). (B) Mean percent of CD8α+ cDC1s (black) and pre-cDC1s (cyan) in untreated and 2.43 mAb-treated DCs

shown with SEM. Two-way ANOVA and Dunnett’s multiple comparisons used to determine significance. ��P<0.01, ����P<0.0001. (C) Mean absolute

cell number of pre-cDC1s (CD24highCD8α-) in untreated (black) and 2.43 mAb-treated (magenta) groups shown with SEM. Unpaired t test used to

determine significance. �P<0.05. (D) Schematic depicting experimental design for proposed allogeneic mixed leukocyte reaction (MLR) using 2.43

mAb treatment.

https://doi.org/10.1371/journal.pone.0273075.g002
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Fig 3. 2.43 mAb-treated DCs induce less proliferation, altered PD-1 expression, and depressed induction of cell death of alloreactive T-cells.

BALB/c mice were dosed with 200 μg of 2.43 mAb antibody intraperitoneally on day -3 and day -1. On day 0, splenic DCs were isolated and plated in an

allogeneic MLR. Allogeneic T-cell proliferation was assessed on day 3 and day 4 of co-culture. Data is representative of two independent experiments.

(n = 4 per group) (A-B) ModFit Software analysis of CellTrace dye dilutions. (A) Representative histograms depicting proliferation of H2Kb+ T-cells

following stimulation with naïve DCs (top) or 2.43 mAb DCs (bottom) on days 3 and 4. Proliferation Index (PI) for representative histograms is boxed.

(B) Mean PI for naïve or 2.43 mAb DCs shown with SEM. (C-G) Flow analysis of the proliferative fraction of T-cells was determined by first gating on

H2Kb+CellTracelow T-cells. (C) Mean percent of proliferated T-cells that are CD4+ (left) and CD8+ (right) on day 3 shown with SEM. (D) Mean

percent of proliferated CD4+ (left) and CD8+ (right) T-cells expressing PD-1 on day 3 shown with SEM. (E) Mean percent of proliferated T-cells that

are CD4+ (left) and CD8+ (right) on day 4 shown with SEM. (F) Mean percent of proliferated CD4+ (left) and CD8+ (right) T-cells expressing PD-1 on

day 4 shown with SEM. (G) Mean percent of proliferated T-cells (left) and CD4+ T-cells (right) that are Propidium Iodide+ shown with SEM. Unpaired

t tests were used to determine significance between groups. �P<0.05.

https://doi.org/10.1371/journal.pone.0273075.g003
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3B), though by day 4 this was no longer significant. We also characterized the proliferative

fraction of T-cells via flow cytometry by first gating on H2Kb+CellTracelow T-cells. On day 3 of

the assay, we observed more CD4+ T-cell proliferation compared to CD8+ T-cell proliferation

in both naïve and 2.43 mAb-treated conditions (Fig 3C). We further evaluated their expression

of various surface markers of T-cell activation, exhaustion, and anergy. We found that on day

3, 2.43 mAb-treated DCs induced significantly greater expression of PD-1 on CD4+ T-cells

and trended toward less expression on CD8+ T-cells, compared to untreated DCs (Fig 3D).

Analysis of the proliferative fraction of T-cells was performed on day 4 of the assay and found

that 2.43 mAb-treated DCs resulted in greater representation of CD8+ T-cells within the pro-

liferative fraction (Fig 3E). We additionally found that among proliferated CD8+ T-cells, sig-

nificantly fewer of them expressed PD-1 (Fig 3F). On day 4 we assessed induction of

alloreactive T-cell death, a reported function of CD8α+ cDC1s, and found that 2.43 mAb-

treated DCs induced significantly less alloreactive T-cell death compared to untreated DCs,

and this was primarily driven by reduced induction of CD4+ T-cell death (Fig 3G) [18, 29].

2.43 mAb-treated DCs retain a lower frequency of CD8α+ cDC1s in ex vivo
cultures

We next wanted to know how long CD8α+ cDC1 depletion persisted ex vivo since pre-cDC1s

may mature into CD8α+ cDC1s upon entering the spleen and receiving tissue-specific signals.

We therefore analyzed DCs in untreated versus 2.43 mAb-treated conditions on day 2 of ex
vivo co-culture with allogeneic T-cells, gating on H2Kd+CD11c+ cells to distinguish them (Fig

4A) and found a significantly lower frequency of H2Kd+CD11c+ DCs present in cultures on

day 2 under 2.43 mAb-treated conditions (Fig 4B). We further assessed the composition of

cDC1s as a percent of H2Kd+CD11c+ DCs (Fig 4C) and confirmed persistence of a signifi-

cantly lower proportion of CD8α+ cDC1s in the 2.43 mAb-treated group compared to

untreated (Fig 4D). These confounding factors of overall fewer DCs in culture and reduced

proportion of CD8α+ cDC1s may contribute to the differential effects on T-cell proliferation,

PD-1 expression, and induced cell death.

Depletion of CD8α+ cDC1s results in improved tumor-killing

We additionally sought to evaluate the ability of 2.43 mAb-treated DCs to induce anti-tumor

responses. We plated naïve and 2.43 mAb DCs with allogeneic T-cells on day 0, added A20

mouse lymphoma cells transduced to express luciferase (A20-Luc) on day 3 of co-culture, and

then measured bioluminescence (BLI) of A20-Luc tumor cells on day 4 (Fig 5A) [24]. A repre-

sentative plate image depicts the BLI readout (Fig 5B). Tumor cytotoxicity was calculated as a

percent of the tumor alone BLI for each tumor concentration. Our results demonstrate that

2.43 mAb-treated DCs resulted in induction of significantly higher killing of A20-Luc tumor

cells compared to untreated DCs at tumor concentrations of 1x105 (Fig 5C) and 2x105 (Fig

5D). These data indicate that the depletion of CD8α+ cDC1s with 2.43 mAb can enhance DC-

induced anti-leukemic cytotoxic activity despite having less alloreactive T-cell proliferation.

Pre-cDC1 and CD8α+ cDC1 exhibit distinct transcriptional programs

We finally wanted to determine whether murine pre-cDC1s and CD8α+ cDC1s differ tran-

scriptionally. Bulk RNA sequencing of cell-sorted pre-cDC1s and CD8α+ cDC1s was per-

formed with the help of the University of Arizona Genomics Core (UAGC). These data

revealed significant differences in the expression of various transcripts, exemplified in a vol-

cano plot (Fig 6A). Among the most significantly downregulated genes in pre-cDC1s com-

pared to mature CD8α+ cDC1s are Tnfrsf4 (OX40), IL-12p40, and Cxcl11. OX40 expression
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on pDCs has been shown to promote anti-tumor immunity, however, to our knowledge,

expression of OX40 on CD8α+ cDC1s has not been previously reported [30]. IL-12p40 and

Cxcl11 are pro-inflammatory and support the recruitment of lymphocytes, so their downregu-

lation may suggest that pre-cDC1 are less pro-inflammatory. Among the most significantly

upregulated genes in pre-cDC1 are Dram1, Dstn, and several Ig variable transcripts thought to

be involved in antigen binding. Dram1 (DNA-damage-regulated autophagy modulator) regu-

lates autophagy in part through effects on lysosomes and plays an important role in inducing

selective autophagy in response to recognition of intracellular pathogens [31–33]. Dstn (Des-

trin) is a depolymerizing factor that enhances the turnover rate of actin, which plays a signifi-

cant role in the capture and presentation of antigen [34].

Additionally, we find that pre-cDC1s differentially regulate several genes that are involved

in Ag processing and presentation pathways. Igkv7-33, Ighv1-12, and Igkv1-99 were all

Fig 4. 2.43 mAb-treated DCs retain a lower frequency of CD8α+ cDC1s. BALB/c mice were dosed with 200 μg of 2.43 mAb antibody

intraperitoneally on day -3 and day -1. On day 0, splenic DCs were isolated and plated in an allogeneic MLR. DC composition was determined by flow

cytometry on day 2 of co-culture. Data is representative of two independent experiments. (n = 4 per group) (A) Representative flow plots depicting

percent of H2Kd+CD11c+ DCs in naïve DCs (left) and 2.43 mAb DCs (right) on day 2 of co-culture. (B) Mean percent of H2Kd+CD11c+ DCs for naïve

(black) or 2.43 mAb DCs (magenta) shown with SEM. Unpaired t test was used to determine significance between groups. ��P<0.01. (C)

Representative flow plots depicting percent CD8α+ cDC1s and pre-cDC1s in naïve (left) and 2.43 mAb DCs (right). (D) Mean percent CD8α+ cDC1s

(black bars) and pre-cDC1s (teal bars) in naïve and 2.43 mAb DCs shown with SEM. 2way ANOVA and Šidák’s multiple comparison used to determine

statistical significance. ��P<0.01.

https://doi.org/10.1371/journal.pone.0273075.g004
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Fig 5. Depletion of CD8α+ cDC1s results in improved tumor-killing. BALB/c mice were dosed with 200 μg of 2.43

mAb antibody intraperitoneally on day -3 and day -1. On day 0, splenic DCs were isolated and plated with allogeneic

T-cells. On day 3 of co-culture A20-Luc tumor cells were added to wells at the indicated concentrations. On day 4,

luciferin was added to wells and plates were imaged. BLI was measured for each independent well and averaged among

technical replicates. BLI values were used to quantify specific killing as a percent of tumor alone control. Data is pooled

from two independent experiments. (n = 6 per group) (A) Schematic depicting the experimental timeline. (B)

Representative bioluminescence image depicting plate layout and showing BLI intensity on a scale from low (green) to

high (red) indicative tumor burden. (C-D) Mean percent specific killing is shown with SEM for A20-Luc
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significantly upregulated in pre-cDC1s and have vague roles in antigen binding and innate

immune responses. Dstn (Destrin), an actin depolymerizing factor, was upregulated and con-

tributes to the efficient capture and presentation of Ag [34]. Dram1 was upregulated and is

associated with selective induction of autophagy [31]. Based on IPA results, mTOR signaling is

predicted to be inhibited in pre-cDC1s compared to CD8α+ cDC1s, which has been linked to

cytoprotective induction of autophagy [35]. Altogether, the RNAseq results suggest significant

differences in how Ag processing and presentation, particularly with respect to autophagy, is

regulated in pre-cDC1s compared to CD8α+ cDC1s at steady state.

Ingenuity pathway analysis (IPA) revealed a number of pathways predicted to be inhibited

in pre-cDC1 compared to CD8α+ cDC1 including ICOS-ICOSL signaling, DC Maturation,

and CD40 signaling (Fig 6B). These findings are in line with the activation state expected of

immature, precursors to DCs [36]. Interestingly, we find that Flt3 signaling is also inhibited in

pre-cDC1s compared to CD8α+ cDC1s, though it has been recently reported that Flt3L is dis-

pensable for the final maturation step of cDC1s [37]. Pathways that were revealed to be acti-

vated in pre-cDC1s included several pathways regulating cell cycle control, oxidative

phosphorylation, and the PD-1/PD-L1 cancer immunotherapy pathway (Fig 6C). Differen-

tially activated cell cycle control may reflect the difference in lifespan of cDC1s compared to

CD8α+ cDC1s [10]. A metabolic program favoring oxidative phosphorylation has been associ-

ated with tolerogenic DCs [38]. Predicted activation of the PD-1/PD-L1 pathway is interesting

because we found that a smaller percentage of pre-cDC1s express PD-L1 compared to CD8α
+ cDC1, but those pre-cDC1s that do positively express PD-L1 appear to express higher levels

of it (Fig 1C). A heat map was generated for the PD-1/PD-L1 pathway and displays very clear

differences in gene expression levels between pre-cDC1s and CD8α+ cDC1s (Fig 6D).

Discussion

The function of pre-cDC1s has not been extensively studied, in part because they have only

recently been identified as the committed precursor to CD8α+ cDC1s [1, 4]. The few mecha-

nistic reports that have directly compared the two DC subsets have determined that pre-

cDC1s exhibit a significantly enhanced lifespan and induce greater expansion of Ag-specific

memory CD8+ T-cells and control of viral load [5, 10]. There are still many gaps in our knowl-

edge of how pre-cDC1s function as compared to CD8α+ cDC1s, as well as what factors trigger

their immigration from the bone marrow to the spleen and maturation into CD8α+ cDC1s.

Given the crucial role of CD8α+ cDC1s in suppressing GvHD while promoting GvL responses,

the role of pre-cDC1s in induction of alloreactive T-cell responses and anti-tumor responses is

of great clinical significance for HCT.

Our findings indicate that pre-cDC1s express significantly different levels of various co-sig-

naling molecules compared to CD8α+ cDC1s. We observed that a significantly higher percent-

age of pre-cDC1s express PIR-B, which has been shown to regulate cytotoxic T-cell responses

and prevent lethal GvHD, which would be advantageous in the HCT setting [27, 38, 39]. We

also found that a lower percentage express PD-L1, which provides inhibitory signals to T-cells

that can help mitigate GvHD [40–42]. Notably, CD8α+ cDC1s appear to have both PD-L1high

and PD-L1dim populations, whereas positively expressing pre-cDC1s primarily fall into the

PD-L1high population. We additionally documented a significantly lower percentage of pre-

cDC1s expressing CD70 compared to CD8α+ cDC1s. CD70 activates CD27 on T-cells which

plays a nonredundant role in regulating T-cell, B-cell, and NK cell activity [43]. Studies have

concentrations of (C) 1x105 and (D) 2x105 A20-Luc tumor cells. Unpaired t test used to determine significance

between groups. �P<0.05, ��P<0.01.

https://doi.org/10.1371/journal.pone.0273075.g005
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Fig 6. Pre-cDC1 and CD8α+ cDC1 exhibit distinct transcriptional programs. Splenic DCs were isolated from naïve BALB/c

mice and pre-cDC1s and CD8α+ cDC1s were cell sorted for RNA sequencing. (A) Enhanced volcano plot identifying genes that

are up or down-regulated in pre-cDC1s compared to CD8α+ cDC1s. (B-C) Pathway results using Qiagen’s IPA software. P = 0.05

corresponds to a 1.3 -log p-value, and anything above this value is considered statistically significant. (B) Pathways predicted to

be significantly inhibited (z-score< -2) in pre-cDC1s compared to CD8α+ cDC1s. (C) Pathways predicted to be significantly

activated (z-score< 2) in pre-cDC1s compared to CD8α+ cDC1s. (D) Heat map showing relative gene expression levels for the

PD-1/PD-L1 cancer immunotherapy pathway. Full documentation, methodology, and raw data for this data set is available

online at: https://doi.org/10.25422/azu.data.14241902.

https://doi.org/10.1371/journal.pone.0273075.g006
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indicated that CD70 may prevent the induction of T-cell tolerance by steady state DCs, sug-

gesting that lower expression by pre-cDC1s may be advantageous in HCT by promoting toler-

ance [44]. We also report that a significantly greater percentage of pre-cDC1s express ICOSL,

which contributes to activation of T-cells and would therefore exacerbate GvHD [45]. This

finding contradicts our RNAseq results which indicate that the ICOS-ICOSL signaling in T

helper cells pathway is significantly inhibited in pre-cDC1s compared to CD8α+ cDC1s. Over-

all, these findings make it difficult to clearly ascertain the net effect of pre-cDC1s in inducing

or protecting from GvHD when compared to CD8α+ cDC1s. A future line of work employing

ICOS and ICOSL blockades would be helpful in delineating the role of this co-signaling mole-

cule in the overall function of pre-cDC1s.

No mouse models currently exist that would allow us to adequately investigate the respec-

tive roles of pre-cDC1s and CD8α+ cDC1s without resulting in significant changes to other

immune cell subsets. The extreme rarity of these DC subsets further complicates their investi-

gation in vivo. We therefore examined the function of splenic pan-DCs ex vivo following in
vivo treatment with an anti-CD8α monoclonal antibody to deplete CD8α+ cDC1s, thereby

indirectly assessing the role of CD8α+ cDC1s compared to pre-cDC1s. This imperfect

approach for distinguishing the relative functions of pre-cDC1s and CD8α+ cDC1s has several

caveats worth mentioning. First, in using a CD8α-depleting antibody, we are depleting CD8

+ T-cells in addition to CD8α+ cDC1s, which may have contributing effects on spleen cells

and DCs specifically. Secondly, as others have shown, we find that depletion of CD8α+ cDC1s

results in an increase in the percent and absolute number of pre-cDC1s in the spleen [5]. This

was expected as we know that pre-cDC1s seed peripheral tissues from the BM in order to

replenish mature CD8α+ cDC1s, however it may have unknown effects on splenic DC func-

tion. Newly seeded pre-cDC1s may behave differently compared to pre-cDC1s that have

resided in the spleen longer. For instance, it has been demonstrated that pre-cDCs in the BM

express very high levels of Ag processing enzymes and downregulate their expression upon

migrating into peripheral tissues [17].

Allogeneic MLR results demonstrated that 2.43 mAb-treated DCs induce significantly less

alloreactive T-cell proliferation ex vivo with a slight preference for proliferation of CD8+ T-

cells over CD4+ T-cells. Moreover, 2.43 mAb-treated DCs resulted in greater expression of

PD-1 on CD4+ T-cells, lower expression of PD-1 on CD8+ T-cells, as well as reduced cell

death of CD4+ T-cells. Interpretation of these results is limited by the fact that 2.43 mAb

depletion resulted in a lower percentage of H2Kd+CD11c+ cells on day 2 of culture in the

MLR assays. The reason for this is unclear but suggests that 2.43 mAb-treated DCs did not

persist as well ex vivo compared to untreated DCs, which would contribute to their observed

decrease in inducing allogeneic T-cell proliferation. It is also possible that 2.43 mAb-treated

DCs may be downregulating H2Kd or CD11c expression compared to untreated DCs. Never-

theless, evaluation of cDC composition of H2Kd+CD11c+ cells on day 2 of ex vivo culture

demonstrated that 2.43 mAb-treated DCs maintained a predominant pre-cDC1 proportion

over CD8α+ cDC1. Thus, we are confident that the differential T-cell responses observed are

indicative of the relative abundance of pre-cDC1s and CD8α+ cDC1s.

Tumor killing assays revealed enhanced cytotoxicity against A20 B-cell lymphoblastic leu-

kemia cell line induced by 2.43 mAb-treated DCs compared to untreated DCs, despite also

having decreased stimulatory capacity of allogeneic T-cells. These findings suggest that 2.43

mAb-treated DCs may be skewed toward favoring GvL over GvHD. One would expect less

alloreactive T-cell proliferation to translate to less tumor killing, though we cannot confirm

from these studies whether or not tumor killing is T-cell-mediated. We also cannot rule out

the possibility that 2.43 mAb-treated DCs are themselves cytotoxic. Reviewed by Larmonier et.
al. and Hanke et. al., DCs have been found to function as direct cytotoxic effectors against
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tumor cells [46, 47]. This less conventional function of DCs has been found to be highly depen-

dent upon NO synthase expression, peroxynitrites, and iNOS expression [48, 49]. Cytotoxic

DC function has also been shown to be differentially regulated by PIAS-1 and STAT3 [50].

Furthermore, human DCs have also been shown to have cytotoxic function, also dependent

upon peroxynitrites and restricted to immature DCs [51]. Future work is needed to investigate

these mechanisms of cytotoxic function specifically in pre-cDC1s to determine whether they

truly function as killer DCs.

RNAseq results comparing cell sorted pre-cDC1s and CD8α+ cDC1s reveal significant

differences in the transcriptional programs of these DC subsets that have otherwise been

thought of as having similar, if not identical, functions. Among the pathways predicted to

be inhibited in pre-cDC1s include DC maturation, CD40 signaling, NFkB activation, LPS-

stimulated MAPK signaling, and the role of PRRs in recognition of bacteria and viruses.

Overall, inhibition of these pathways is indicative an immature DC phenotype, which is

unsurprising for a precursor DC but may also indicate a proclivity to induce tolerogenic

responses. Additionally, the vitamin D VDR/RXR activation and oxidative phosphorylation

pathways are predicted to be activated in pre-cDC1s and have both been linked to tolero-

genic DC responses [38, 52]. The PD-1/PD-L1 is also predicted to be activated in pre-cDC1s

compared to CD8α+ cDC1s, which would be highly beneficial for induction of tolerance in

the HCT setting. Interestingly, while PD-1 signaling is critical to induction and maintenance

of peripheral tolerance in transplantation, the induction of programmed cell death of allor-

eactive T-cells has been specifically linked to PD-L1, and its ligand is not believed to be PD-1

[53–57].

Given the more recent identification of pre-cDC1s, this DC subset has not been extensively

studied in the contexts of alloreactivity and anti-tumor responses and genetically modified

mouse models for investigating this rare cell type have not yet been developed. Limitations in

our overall methodology make it difficult to make conclusions regarding the ability of pre-

cDC1s to control allogeneic T-cell responses in vivo. Though, it is worth nothing that previous

work from our laboratory has found a strong association between host pre-cDC1 abundance

and improved survival from lethal GvHD in a major-mismatched bone marrow transplanta-

tion model [22]. Nevertheless, tumor-killing assays suggest that pre-cDC1s may support a vig-

orous cytotoxic response against leukemic cells ex vivo, particularly in the presence of limited

Ag. Although a human equivalent of pre-cDC1s has not yet been identified, our understanding

of human DC biology is changing very rapidly with sequencing technology [58–60]. Obtained

RNA sequencing results suggest that these two DC populations are transcriptionally distinct.

Given the highly conserved features of cDC1s between mice and humans, and the recent dis-

covery of new DC subsets found in both species, it is plausible that humans express a “pre-

cDC1” population as well [59, 61, 62].

In summary, pre-cDC1s exhibit significantly different expression patterns of various co-

stimulatory molecules compared to CD8α+ cDC1s, suggesting that pre-cDC1s may induce dif-

ferent T effector responses than CD8α+ cDC1s when given the same antigenic stimulus. Our

results also indicate that, in the absence of CD8α+ cDC1s, pre-cDC1s induce a more potent

anti-tumor response in the presence of limited Ag. However, we may only speculate as to how

pre-cDC1s function in vivo, and a better system is needed to more confidently and extensively

investigate the role of pre-cDC1s in alloreactivity and anti-tumor responses. RNAseq results

suggest an immature, tolerogenic function of pre-cDC1s and differential regulation of Ag pro-

cessing and cross-presentation machinery. Altogether, these findings indicate a unique func-

tion of pre-cDC1s that warrants further investigation and consideration in future studies of

anti-cancer responses and HCT using murine models.
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