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Gastric cancer (GC) remains one of the leading causes of cancer-related death worldwide.
Cancer stem cells (CSCs) might be responsible for tumor initiation, relapse, metastasis
and treatment resistance of GC. The tumor microenvironment (TME) comprises tumor
cells, immune cells, stromal cells and other extracellular components, which plays a
pivotal role in tumor progression and therapy resistance. The properties of CSCs are
regulated by cells and extracellular matrix components of the TME in some unique
manners. This review will summarize current literature regarding the effects of CSCs and
TME on the progression and therapy resistance of GC, while emphasizing the potential for
developing successful anti-tumor therapy based on targeting the TME and CSCs.

Keywords: gastric cancer, cancer stem cells (CSC), tumor microenvironment, mesenchymal stem cells, cancer
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INTRODUCTION

Gastric cancer (GC) is the fifth most commonly diagnosed cancer and the fourth leading cause of
cancer-associated mortality with an estimated more than one million new cases and 769,000 deaths
worldwide in 2020 (1). Despite advancements in clinical treatment and technologies, the prognosis
of GC remains poor, mainly due to relapse, metastasis and therapy resistance, and the median
survival of patients with advanced GC is less than one year (2). Cancer stem cells (CSCs) are a minor
subpopulation of uniquely tumorigenic cells exhibiting the capacity for self-renewal, unlimited
proliferating and maintenance of a relatively dormant state. Since the first identification of CSCs in
acute myeloid leukemia (3), increasing evidence suggests that CSCs may be responsible for tumor
(including GC) progression, relapse, metastasis and therapy resistance (4–6).
Abbreviations: Ad5/35-DKK1, Adenovirus-mediated Dickkopf-1; ALDH, Aldehyde dehydrogenase; ALOX15, Arachidonate
lipoxygenase 15; anti-PD-1, Anti-programmed cell death 1; anti-PD-L1, Anti-PD-1 ligand; ASIC1a, Acid-sensitive ion channel
1a; BM-MSCs, Bone marrow-derived MSCs; CAFs, Cancer associated fibroblasts; CagA, Cytotoxin-associated gene A; CaM-
Ks, Calcium/calmodulin-dependent protein kinases; CSCs, Cancer stem cells; CTL, Cytotoxic T cells; DGCs, Diffuse-type
gastric cancers; ECM, Extracellular matrix; EMT, Epithelial-mesenchymal transformation; EpCAM, Epithelial cellular
adhesion molecule; FAK, Focal adhesion kinase; FAO, Fatty acid oxidation; FAP, Fibroblast activating protein; FDA, Food
and Drug Administration; FGF, Fibroblast growth factor; GC, Gastric cancer; GCAFs, Gastric CAFs; GC-MSCs, GC-derived
MSCs; GCSCs, Gastric CSCs; GEO, Gene Expression Omnibus; GNF, Gastric normal fibroblast; HH, Hedgehog; HIF,
Hypoxia-inducible factor; HP, Helicobacter pylori; IL, Interleukin; MCP-1, Monocyte chemoattractant protein-1; MDR,
Multi-drug resistance; MSCs, Mesenchymal stem cells; NK, Natural killer; PD-1, Programmed cell death 1; PDGF, Platelet-
derived growth factor; PD-L1, PD-1 ligand; RHBDF2, Rhomboid 5 Homolog 2; ROS, Reactive oxygen species; SCID, Severe
combined immunodeficiency; SP, Side population; TAMs, Tumor-associated macrophages; TCGA, The Cancer Genome Atlas;
TGF, Transforming growth factor; Th, Helper T cells; TILs, Tumor-infiltrating lymphocytes; TME, The tumor
microenvironment; TNF, Tumor necrosis factor; Treg, Regulatory T cells; VCAM1, Vascular adhesion molecule 1; VEGF,
Vascular endothelial growth factor.
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The cellular environment in which tumor cells reside is called
the tumor microenvironment (TME), which consists of cellular
and non-cellular components. It includes many types of stromal
cells (fibroblasts, lymphocytes, macrophages, and endothelial
cells), immune cells (such as T and B lymphocytes), and
extracellular components (for instance: cytokines, growth
factors, hormones and extracellular matrix), which surround
tumor cells and are nourished by blood vessels around the
tumor (Figure 1). The TME provides a suitable living
environment for cancer cells to develop, escape from host
immune surveillance and resist to anticancer drugs (7–10).
With the continuous progress in the study of CSCs and TME,
the microenvironment of CSC has gradually entered the vision of
researchers. CSCs microenvironment (CSCs niche) is a special
microenvironment for the survival of CSCs, which can regulate
the characteristics of CSCs via cell-to-cell contact and secreted
Frontiers in Oncology | www.frontiersin.org 2
factors (11). Therefore, a precise and meticulous understanding
of CSCs, TME and the relationship between them in GC will
have a profound impact on the treatment of GC in the future.
This review summarized current findings regarding the role of
CSCs and TME in the progression of GC, which may facilitate
the understanding of CSCs and TME of GC, as well as provide a
potential therapeutic strategy based on targeting TME and CSCs
for GC.
IDENTIFICATION AND ISOLATION OF
CSCs

The study of CSCs may play a critical role in eradicating tumors
and solving clinical problems such as tumor recurrence and
FIGURE 1 | The major constituents of the tumor microenvironment in gastric cancer.
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distant metastasis. However, the number of CSCs in cancer cells
is extremely small (typically <1% in solid tumors) (12).
Therefore, the main difficulty in studying CSCs is how to
identify and isolate them from a large number of tumor cells.
At present, the most efficacious and commonly used method to
isolate CSCs from a large number of tumor cells is by using
specific cell surface markers of CSCs.

CSCs can be isolated and identified by combining specific cell
surface markers of CSCs with corresponding monoclonal
antibodies or fluorescein markers, and then applying some
isolation techniques such as flow cytometry and magnetic-
activated cell sorting. Therefore, finding specific and effective
cell surface markers of CSCs is critical for isolating and
identifying CSCs. An increasing number of evidence has
confirmed the existence of some specific cell surface markers
in gastric CSCs (GCSCs). CD44 was the first confirmed potential
GCSCs-specific cell surface marker. Takaishi et al. (13) found a
considerable number of CD44 (+) cells in GC cell lines (MKN-
45, MKN-74, and NCI-N87), and these CD44 (+) cells showed
spheroid colony formation in serum-free media in vitro. And
when these cells were injected into the stomach and skin (around
30,000 cells per site) of severe combined immunodeficiency
(SCID) mice, the significant tumorigenic ability in vivo was
showed. However, only about 5% of the CD44 (+) cells were
ultimately identified as true CSCs. In addition, CD44 is also
widely expressed by nonmalignant tumors. Hence, it seems
unlikely that a single cell surface marker of CD44 could detect
all cells with the characteristics of GCSCs. Lau et al. (14)
identified CD44v8-10 (the predominant CD44variant
expressed in GC cells) as another potential cell surface marker
of GCSCs. The results showed that the expression of CD44v8-10
was significantly upregulated in gastric tumor sites and that
exogenous expression of CD44v8-10 contributed to tumor
initiation in immunocompromised mice, possibly by
improving oxidative stress defense. As a family of intracellular
enzymes, aldehyde dehydrogenase (ALDH) enzymes are
responsible for cell differentiation, detoxification and drug
resistance through the oxidation of cellular aldehydes. Katsuno
et al. (15) demonstrated that ALDH1(+) cells possess the
characteristics of CSCs, accounting for about 5-8% of the
human diffuse-type gastric carcinoma cells and displaying a
higher tumorigenicity than ALDH1(-) cells. These findings
indicate that ALDH1 is a potential specific cell surface marker
for GCSCs. Numerous other molecules or proteins have also
Frontiers in Oncology | www.frontiersin.org 3
been suggested as potential cell surface markers for GCSCs. For
instance, Jiang et al. (16). found that CD90(+) cells possessed an
increased capacity of tumorigenicity in vivo compared with
CD90(-) cells, and the expression level of CD90(+) cells was
positively correlated with the tumorigenicity of GC cells in vivo.
In addition, a combination therapy of trastuzumab with
conventional chemotherapy is able to suppress tumor growth
by reducing the proportion of CD90 (+) cells. These findings
suggest that CD90 may be a potential cell surface marker for
GCSCs. Ohkuma et al. (17) have investigated the role of CSCs in
gastric adenocarcinoma using MKN-1 cells, which showed that
CD71 (−) cells were more tumorigenic than CD71 (+) cells in the
gastric adenosquamous carcinoma model and that most CD71
(−) cells were dormant (G1/G0 cell cycle phase) and resistant to
5-FU. These characteristics of CD71 (−) cells were highly
consistent with the characteristics of CSCs. Wenqi et al. (18)
demonstrated that the epithelial cellular adhesion molecule
(EpCAM) was overexpressed by gastric cancer cells and down-
regulation of EpCAM was able to inhibit tumor formation,
reduce cell proliferation, and reduce the proportion of cells in
a relatively dormant state. However, there are still some
limitations and controversies about the use of these molecules
as separate markers. Combining several molecular as cell surface
markers to improve the ability of specifically identifying and
isolating GCSCs has also been confirmed by some studies. For
instance, CD44 was combined with other molecules as a specific
cell surface marker for GCSCs, including CD24 (19), CD54 (20)
and EpCAM (21). Table 1 summarizes the current specific cell
surface markers for GCSCs.

In addition to the isolation of CSCs by cell surface markers,
some characteristics of CSCs also have been applied to isolate
and identify CSCs. In serum-free medium supplemented with
growth factors, most non-CSCs cannot survive, while CSCs can
survive and maintain their self-renewal characteristics.
Therefore, serum-free medium containing growth factors can
enrich and isolate CSCs, and Li et al. (23) used serum-free
medium to enrich and isolate potential GCSCs. Side
population (SP) cell isolation also can be applied to sort and
enrich GCSCs by taking advantage of efflux characteristics of
CSCs for Hoechst33342(a nucleic acid dye) (24, 25). Traditional
two-dimensional (2D) cell cultures do not mimic TME in vivo
due to the lack of cell-extracellular matrix interactions. Animal
models may also not adequately mimic the characteristics of
human cancers. Therefore, the 3-dimensional (3D) culture
TABLE 1 | Cell surface markers of gastric cancer stem cells (GCSCs).

GCSCs surface marker Characteristic of stem cell Reference

CD44(+) Tumorigenicity, self-renewal, multipotent differentiation, chemoresistance, colony-forming ability (13)
CD44v8-10 Tumorigenicity, (14)
ALDH Chemoresistance, self-renewal, colony-forming ability, generate heterogeneity (15, 22)
CD90 Tumorigenicity, self-renewal (16)
CD71 (−) Tumorigenicity, self-renewal, relatively dormant state (17)
EpCAM Tumorigenicity, relatively dormant state (18)
CD44(+)/CD24(+) Tumorigenicity, self-renewal, multipotent differentiation (19)
CD44(+)/CD54(+) Tumorigenicity, self-renewal (20)
EpCAM(+)/CD44(+) Tumorigenicity, chemoresistance (21)
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system, which can better simulate in vivo cancer environment,
has been widely used in cancer research. In addition, 3D culture
systems can simulate the TME of CSCs by controlling the
mechanical properties of materials and then effectively isolate
CSCs. Recently, increasing studies have also used 3D culture
systems to isolate and culture GCSCs (26–30).

With the continual development of single cell technologies, it
is possible to identify CSCs from cancer cells. CSCs are usually
difficult to isolate owing to their low abundance and similarity to
other stem cells. Single-cell sequencing technologies are able to
detect extremely trace amounts of nucleic acid sequences, which
may assist in the identification and study of CSCs (31). For
instance, Velten et al. (32) successfully identified leukemic stem
cells from acute myeloid leukemia by clonal tracking from single-
cell transcriptomics. Yang et al. (33) performed single-cell RNA
sequencing of 59 cells from three bladder cancer samples, and
finally found six key modifier genes (ETS1, GPRC5A, MKL1,
PAWR, PITX2, and RGS9BP) in bladder CSCs that have never
been reported. However, with the wide application of single-cell
sequencing in the study of tumors, a large quantities of single-cell
genomics data also makes it tricky to study. Therefore, Song et al.
(34, 35) developed two research models of single-cell genomics
data (single-cell Latent-variable Mode and Single-Cell Graph
Convolutional Network) for better mining and understanding
these data, which will aid in the understanding the complex
mechanisms of cancer and CSCs. However, the high price of
single-cell sequencing and the complexity of sample handling
and operational procedures limit its application, and current
studies identifying GCSCs by single-cell sequencing have not
been reported.
THE TME IN GC

The TME favors the survival of tumor cells and provides an
excellent shelter for them to escape host immune surveillance
and resist anti-tumor drugs. Meanwhile, cancer cells in the TME
can also affect and change their surrounding cells in an autocrine
and a paracrine manner to maintain the TME required for the
survival of cancer cells. This section will summarize the effects of
the main components of TME on GC and the features of
gastric TME.

Cancer Associated Fibroblasts
Cancer associated fibroblasts (CAFs) are the most abundant
stromal cells in the TME, accounting for about 50% of the
total number of tumor tissue cells (36). CAFs can promote
tumor development, proliferation, drug resistance, invasion
and metastasis through direct contact or secretion of a variety
of cytokines and metabolites in a paracrine manner, thereby
affecting the prognosis of tumors. There are several controversies
about the origins of CAFs, but an increasing number of evidence
shows that CAFs originate from a variety of cells, such as bone
marrow-derived cells, CSCs, epithelial cells through epithelial-
mesenchymal transformation (EMT) and normal fibroblasts.
The diversity of origins of CAFs also contributes to the
Frontiers in Oncology | www.frontiersin.org 4
heterogeneity of CAFs (37–40) (Figure 2). CAFs not only
provide physical support for epithelial cells in TME, but also
are key factors for EMT of GC cells (41). EMT is a pathological
process closely related to tumor invasion and metastasis. The
main changes were that the cells changed from closely arranged
epithelial cells to loosely structured interstitial cells, which
weakened the adhesion between cells and increased the
invasion and metastasis of the tumor. Angiogenesis is
considered to be critical for tumor proliferation and metastasis,
and vascular endothelial growth factor (VEGF) plays a crucial
role in promoting angiogenesis. In GC cells, CAFS has been
shown to promote angiogenesis by secreting FGF, IL-6, PDGF
and VEGF and promote EMT by secreting transforming growth
factor beta (TGF-b), FGF, TNF-a, and IL-1b, in turn leading
to proliferation, invasion and metastasis of GC (39, 42–
49)(Figure 2).

CSCs have been shown to be capable of converting
mesenchymal stem cells (MSCs) into CAFs in GC via
exosome-mediated TGF- transfer and activation of TGF-/Smad
pathways (50). In turn, CAFs are also able to maintain the stem-
like properties of GC, promote the progression of GC and predict
the prognosis of GC patients using the characteristics of CAFs.
Hasegawa et al. (42) showed that CAFs may be able to maintain
the stemness of sclerosing GC cells through TGF-b signaling.
And Spondin-2 secreted by CAFs in GC is positively correlated
with peritoneal dissemination, tumor size and poor prognosis of
GC (51). Ishimoto et al. (52) isolated CAFs and adjacent non-
cancer fibroblasts from resected specimens of 110 patients with
diffuse-type GCs (DGCs) to investigated the characteristics and
functions of CAFs in DGCs by analyzing the features of their
genome and gene expression patterns. They found that DGCs
cells cultured with CAFs were also more aggressive and invasive
in vitro than those not cultured with CAFs. Further work using
quantitative reverse PCR revealed that the expression of the
Rhomboid 5 Homolog 2 (RHBDF2) gene associated with TGF-
b1 activity was increased in DGC cells, and increased expression
of RHBDF2 gene was observed after incubation of non-cancer
fibroblasts with interleukin 1 alpha (IL-1a), IL-b or TNF,
secreted by DGCs. In view of the above findings, it was
concluded that CAFs were able to activate TGF-b1 signaling
by increasing the expression of RHBDF2. And the activation of
TGF-b1 was demonstrated to increase the motility and
invasiveness of GC cells. Fibroblast activating protein (FAP) is
a member of the TME, Wen et al. (53) found that overexpression
of FAP was negatively correlated with the survival rate of GC
patients, and FAP combined with CAFs could promote the
proliferation and invasiveness of GC cells and induce the
development of chemoresistance of GC cells in vitro. In a
xenograft model of GC, combined targeted inhibition of FAP
and CAFs enhanced the antitumor immunity of immune
checkpoint inhibitors. In addition, the characteristics of CAFs
can also be used to predict the prognosis of GC patients and
estimate the response of GC patients to clinical immunotherapy.
Zheng et al. (54) constructed a 4-gene (COL8A1, SPOCK1,
AEBP1, and TIMP2) prognostic CAFs model by analyzing
mRNA expression and clinical information of GC samples
January 2022 | Volume 11 | Article 803974

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Cancer Stem Cells and Microenvironment
from GEO (Gene Expression Omnibus) and TCGA (Cancer
Genome Atlas) databases. The results showed a positive
correlation between CAFs risk score and stromal and CAFs
infiltrations in GC, and patients in the high-CAF-risk group
were less likely to respond to immunotherapy.

Tumor-Associated Macrophages
The most abundant immune cells in the TME are composed of
macrophages or monocytes, which are called tumor-associated
macrophages (TAMs). TAMs promote tumor progression by
secreting a variety of factors, including growth factors,
chemokines, cytokines, proteases and so on. Monocytes or
macrophages are usually polarized into two main types: M1
and M2 (55). M1 macrophages enhance the function of T cells by
releasing proinflammatory cytokines, such as TNF-a, IL-1 and
IL-12 and participate in type I helper T cell (Th) responses,
which are crucial components involved in inflammatory
responses and anti-tumor immunity (56). TAMs frequently
Frontiers in Oncology | www.frontiersin.org 5
exhibit an M2-like phenotype in the microenvironment of
cancer, including GC, and express anti-inflammatory cytokines
such as IL-10, TGF-b and arginase (57). These anti-
inflammatory cytokines inhibit T cell-mediated anti-tumor
immunity and provide tumors with an immunosuppressive
microenvironment, allowing tumors to evade host immune
surveillance and promote tumor growth and metastasis (58). In
addition, Oishi et al. (59) demonstrated that intraperitoneal
presentation of M2-polarized macrophages was able to inhibit
T cell proliferation in vitro. In a mouse model of GC, TAMs were
demonstrated to be able to secrete the proinflammatory factor
TNF-a, which contributes to the formation and development of
GC by activating the Wnt signaling pathway (60, 61). Yamanaka
et al. (62) showed that IL-1b secreted by TAMs of GC could
increase the invasiveness of GC cells by activating NF-kB and
expressing MMP-9. In addition, TAMs can also promote tumor
angiogenesis and provides nutrition for tumor growth. Some
studies have shown that the level of TAMs is closely associated
FIGURE 2 | Section (A) (green background) indicates the origins of cancer-associated fibroblasts (CAFs) including bone marrow derived mesenchymal stem cells,
cancer stem cells, endothelial cells (through endothelial mesenchymal transition: EMT), normal fibroblasts; Section (B) (blue background) indicates the effect of CAFs
on gastric cancer stem cells (GCSCs) including angiogenesis and EMT; Section (C) (grey background) indicates the effect of (GCSCs) on gastric cancer cells including
proliferation, invasion and metastasis.
January 2022 | Volume 11 | Article 803974
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with the number of blood vessels surrounding the GC cells.
Ohta et al. (63) found that expression level of monocyte
chemoattractant protein-1 (MCP-1) was significantly increased
compared with negative tumors in human GC cell lines, and its
expression level was closely related to the secretion of VEGF.
And the counts of TAMs are positively correlated with the counts
of vessel. They concluded that MCP-1 induced by human GC
cells may promote angiogenesis of GC cells by recruiting and
activating TAMs. Then, Kuroda et al. (64) further confirmed
that MCP-1 also has a similar effect and mechanism (by
activating and recruiting TAMs) in a mouse xenograft model
of GC. In addition to promoting angiogenesis in GC through
MCP-1, TAMs may also directly promote angiogenesis and
lymphangiogenesis of GC possibly by enhancing the expression
of VEGF and VEGF-C (65).

Mesenchymal Stem Cells
As an important part of the TME, MSCs play a key role in
the process of tumor development, including tumor
neovascularization, metastasis, maintenance of the stemness of
CSCs and the formation of an immunosuppressive TME by
activating signaling pathway and secreting a variety of regulatory
factors (66). During the growth of GC, MSCs are recruited into
the TME of GC, and they are able to alter the TME and promote
tumor growth by secreting a variety of factors. GC-derived
MSCs (GC-MSCs) were reported to enhance the proliferation,
migration, and promotion of angiogenesis of GC cells by secreting
considerable the proinflammatory cytokine interleukin-8 (IL-8)
(67). IL-15 secreted by GC-MSCs enhances the stem-like
properties of GC cells, induces EMT of GC cells which in turn
promotes migration and metastasis of GC cells by upregulating
Tregs (Regulatory T cells) ratio and programmed cell death
protein-1 expression in CD4 + T Cell (68). Huang et al. (69)
found that PDGF-DD secreted by GC-MSCs was capable of
promoting the migration and proliferation of GC cells in vitro
and in vivo by phosphorylating PDGF-b. Wang et al. (70) found
that GC-MSCs were able to significantly promote the growth and
migration of HGC-27 and increase microRNA-221 expression
through paracrine secretion. In addition, inhibiting the expression
of IL-8, PDGF-DD and microRNA-221 were all able to block its
tumor-supporting role on GC cells. Recent studies have
demonstrated that MSCs are crucial in the progression of GC.
GC-MSCs can promote the growth of GC cells and the
polarization of macrophages in the GC microenvironment to
the M2 type by considerable secretion of IL-6 and IL-8, and M2
type macrophages can promote GC metastasis by promoting the
EMT of GC cells (71). The role of GC-MSCs in promoting GC
metastasis and EMT of GC cells was also confirmed in another
study (72). In TME, bone marrow-derived MSCs (BM-MSCs)
were able to produce CXCL16 through Ror2-mediated signaling.
While CXCL16 could induce expression of Ror1 in MKN45 cells,
thereby promoting the progression of GC by activating the
CXCR6-STAT3 signaling pathway (73). In addition, Wnt5a-
Ror2 signaling in BM-MSCs has been shown to promote the
proliferation of GC cells (74).
Frontiers in Oncology | www.frontiersin.org 6
Tumor-Infiltrating Lymphocytes
Recently, the effect of tumor-infiltrating lymphocytes (TILs) on
GC has also been reported. TILs refer to lymphocytes that leave
the blood and enter the tumor, which are a major component of
the TME, including CD8 + T cells, CD4 + T cells, B lymphocytes
and natural killer (NK) cells (75). CD8 + T cells, also known as
cytotoxic T cells (CTL), are recognized as the main anti-tumor
immune effector cells. The subsets of CD4 + T cells are
represented by Th1, Th2 and Treg. Th1 cells, which secrete
IL-2 and interferon, play a crucial role in activating and promoting
the proliferation of CD8 + T cell and NK cell. Th2 enhances
humoral immunity by secreting cytokines such as IL-4 and IL-6,
which promote maturation and clonal proliferation of B cells.
Treg cells can suppress the immune response in the host,
including inhibiting the activation of NK cells and the
cytotoxic function of CD8 + T cells (76). Kono et al. (77)
confirmed that as a kind of Treg, the high expression of
CD4 (+) CD25 high T cells was closely related to the worse
prognosis of gastric and esophageal cancer. Interestingly, the level
of CD4 (+) CD25 high T cells decreased significantly after patients
with GC undergoing radical resection. Zhuang et al. (78) revealed
that the overexpression of IL-22(+) CD4(+) T cells and Th22 cells
were associated with tumor progression and predicted reduced
overall survival. In addition, CD8 (+) T cells that produce IL-7 can
promote the progression of GC cells by promoting chemotaxis of
myeloid-derived suppressor cells (79).

Features of Gastric TME
Helicobacter pylori (HP) was confirmed to be associated with
approximately 75% of GC events worldwide as a group 1
carcinogen (80, 81). HP infection is able to significantly affect
and change the microenvironment of the stomach by inducing
chronic inflammation of the stomach, while the inflammatory
response will promote EMT of GC through a variety of
mechanisms. Alternatively, HP cytotoxin-associated gene A
(CagA) can change many signaling pathways of the host cell
by inducing DNA damage and changing DNA methylation, and
then induce the production of GC EMT. In addition, it also
induces the generation of GC EMT by down-regulating the
expression of E-cadherin and up-regulating the expression of
vimentin and twist (82–84). CagA is also able to activated NFkB
and STAT3 signals and increased the expression of SNAIL1
protein, which is closely related to CAFs activation and EMT in
GC cells (85). Zhang et al. (86) found that HP infected gastric
epithelial cells could activate and recruit MSCs and promote the
conversion of MSCs into CAFs, which may promote the EMT of
gastric epithelial cells. Krzysiek-Maczka et al. (87) found that HP
strains are not only able to induce EMT of normal rat gastric
epithelium cells, but also induce differentiation of rat normal
gastric fibroblasts into CAFs.

An acidic microenvironment is a basic characteristic of the
metabolic environment of tumor tissue. Tumor cells utilize
glycolysis to create an acidic microenvironment conducive to
invasion and metastasis (88–90). Current studies suggest that
both glycolysis and oxidative phosphorylation may be the
January 2022 | Volume 11 | Article 803974
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metabolic pathways of CSCs (91, 92), but it is undeniable that the
acidic microenvironment favors the progression of malignant
tumors and the emergence of CSCs (93). For most normal cells,
living in an acidic microenvironment is harmful, while tumor
cells can survive in the acidic environment and rely on the acidic
microenvironment to maintain their ability to grow and
proliferate rapidly (94). An acidic microenvironment and acid-
sensitive ion channel 1a (ASIC1a) were confirmed to promote
the proliferation and migration of GC cells. Chen et al. (95)
found that the expression of ASIC1a was significantly increased
in GC tissues with postoperative metastasis compared with GC
tissues without postoperative metastasis and non-tumor tissues.
In addition, down-regulation of ASIC1a expression by silencing
ASIC1a via shRNA was able to reduce the migration and
invasion of GC cells. However, the regulatory mechanism of
the acid-base microenvironment on tumor cell growth and
metastasis is still unclear, and regulating the pH value of the
Frontiers in Oncology | www.frontiersin.org 7
GC microenvironment may be an effective measurement to kill
GC cells.
INTERACTION BETWEEN CSCs AND TME

With the continuous deepening of research in cancer, it has been
slowly discovered that there is a complex dialogue between CSCs
and the TME during tumor development. TME can not only affect
the self-renewal ability of CSCs, but it may also induce the
transformation of its surrounding non-tumor stem cells into
CSCs (96). The TME surrounding CSCs can secrete cytokines
such as hypoxia-inducible factor (HIF) and IL-1b, activate related
signaling pathways, and participate in CSCs invasion andmetastasis
by inducing angiogenesis, induction of EMT and protecting CSCs
from being attacked by the host’s immune system. CSCs may also
rely on their surrounding microenvironment to maintain their stem
FIGURE 3 | Regulatory role of TME in gastric cancer stem cells (GCSCs): The effects of members of the TME on GCSCs are shown by black arrows; the role of TME
in maintaining the stemness of GCSCs is shown by red arrows.
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cell characteristics, such as self-renewal, dormancy and multi-
lineage differentiation potential (Figure 3) (6, 97–101).
Furthermore, the CSCs can also affect and modify the nature of
the microenvironment. There is increasing evidence that CSCs are
able to recruit and activate special types of cells such as MSCs to
form amicroenvironment suitable for the survival of CSCs, which is
commonly known as the CSCs niche. The CSCs niche consists of
stromal cells, immune cells, extracellular matrix (ECM), a vascular
network and soluble factors (102). At present, there is little literature
on exploring the interaction between CSCs and the TME in GC, and
this paper only summarizes the existing literatures.

Recent studies have shown that CSCs reside in a vascular
microenvironment that provides a suitable environment for the
long-term growth of CSCs and maintenance of their stem-like
properties. And vascular endothelial cells also play a crucial role
in maintaining the stemness and self-renewal of CSCs. Some
studies have shown that anti-vascular therapy (such as targeting
VEGF) is effective in reducing the counts of CSCs and inhibiting
tumor growth (11, 103). These studies demonstrate the critical
role of perivascular microenvironment and vascular endothelial
cells for the maintenance of the stemness of CSCs. Bevacizumab
is a humanized monoclonal antibody that effectively prevents
VEGF from binding to VEGFR-1, VEGFR-2, thereby inhibiting
vascular endothelial cell proliferation and angiogenesis (104).
Several studies have also demonstrated that targeted inhibition of
the vascular microenvironment in GC can effectively inhibit the
progression of GC. To explore the efficacy of bevacizumab in GC,
a study in vitro suggested that the use of bevacizumab before
chemotherapy can effectively improve the tumor control rate and
reduce the tumor volume (105). In addition, it has been found
that the combination of bevacizumab, docetaxel/oxaliplatin/5-
FU can increase the R0 resection rate of initially unresectable GC,
indicating that bevacizumab is effective in the treatment of
advanced gastric cancer (106). In addition, treatment with
trastuzumab in combination with VEGF-Trap can effectively
inhibit the development of HER2-overexpressing GC (107).

Although the perivascular microenvironment of CSCs is
increasingly studied, recent studies have found that many
CSCs also reside inside tumors that are far from blood vessels
and in a hypoxic state, which is known as the hypoxic
microenvironment of CSCs. It has been reported that hypoxia
can maintain the stemness of CSCs and induce tumor cells to
become biologically more aggressive such as invasion, metastasis
and therapeutic resistance. These effects are mainly attributed to
HIF (108, 109). However, the hypoxic microenvironment and
perivascular microenvironment of CSCs are not hostile, and the
hypoxic microenvironment is also able to promote angiogenesis.
In addition, both endothelial cells and CSCs can produce VEGF
to stimulate angiogenesis under a hypoxic environment. Hypoxia
can protect CSCs from DNA-damaging agents including
chemotherapy and radiation therapy, and also promote the
survival and EMT of CSCs through reactive oxygen species
(ROS)-activated stress pathway and TGF-b signaling pathway.
And hypoxia possess the ability of maintaining the self-renewal,
tumorigenicity and the undifferentiated state of CSCs (110, 111).
GCSCs microenvironment can also affect the characteristics of
Frontiers in Oncology | www.frontiersin.org 8
stem cells by regulating the expression of some transcription
factors and tumor-related genes, and then affect the biological
characteristics of tumor cells. For instance, Hasegawa et al. (42)
confirmed that TGF-b could blocks the effects of CAFs on
GCSCs, reducing the number of SP cells in GCSCs and the
level of surface marker expression of GCSCs. Maeda et al. (112)
found that Wnt5a gene involved in stem cell niche may promote
the invasive properties of GCSCs. It was reported that hypoxia is
able to confer a stem cell-like phenotype on GC, enhancing drug
resistance, radiation resistance, and EMT of GC cells (113–115).
However, the specific mechanism of hypoxia affecting the
characteristics of CSCs is still unclear and needs further research.
ANTI-CANCER THERAPY TARGETING GC
MICROENVIRONMENT AND GCSCs

Strategies for Targeting GC
Microenvironment
Most of the existing clinical drugs for GC treatment are aimed at
the characteristics of rapid proliferation of tumor cells, such as
cytotoxic chemotherapeutic drugs. Recently, with the in-depth
understanding of the role and mechanism of TME in tumor
progression, great progress has also been made in the study
of targeted TME therapy for tumors including GC. Here,
we will show some strategies based on targeting the GC
microenvironment for the treatment of GC.

Immune checkpoints are pathways that inhibit the immune
system through interactions between ligand and receptor and
can regulate the immune system to avoid damage to normal cells
and tissues. Cancer cells, on the other hand, evade the
surveillance and killing of the immune system by using
immune checkpoints, leading to the continuous progression of
cancer. Recently, anti-programmed cell death 1 (anti-PD-1) and
anti-PD-1 ligand (anti-PD-L1) antibodies with good anti-tumor
effect have gradually attracted much attention (116). Briefly, PD-1
is a transmembrane protein on the surface of T cells, and T cells
will not kill cancer cells when PD-1 binds to PD-L1 expressed on
the surface of cancer cells. Anti-PD-1 antibody can bind to PD-1
expressed on T cells, while anti-PD-L1 antibody can bind to
PD-L1 expressed on cancer cells, thus preventing PD-1 expressed
on T cells from binding to PD-L1 expressed on tumor cells, allowing
T cells to kill cancer cells (117). For instance, pembrolizumab
(anti-PD-1 antibody) has been shown a significant survival
benefit in the treatment of GC in many studies and has been
approved by the Food and Drug Administration (FDA) as a
third-line treatment for PD-L1-positive GC patients as well as
patients with unresectable or metastatic, highly microsatellite
instability or mismatch repair-deficient (118).

CAFs have already been recognized to play a key role in
promoting GC progression. Therefore, drugs that inhibit the
function of CAFs may potentially prevent the progression of GC.
Wang et al. (119) cultured gastric CAFs (GCAFs) and gastric
normal fibroblast (GNF) with BGC-823 human GC cells,
respectively. The results of this study showed that GCAFs
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could significantly promote the proliferation, migration and
invasion of BGC-823 cells by down-regulating microRNA-214
and up-regulating microRNA-301a compared with GNFs. And
astragaloside IV, a main component of nontoxic Chinese herb,
can inhibit the proliferation and invasion of GC by inhibiting the
pathological function of CAFs through regulation of microRNA
expression. Ferroptosis is a form of regulatory cell necrosis
induced by lipid peroxidation (lipid-ROS), iron and reactive
oxygen species. Zhang et al. (120) demonstrated that exosomal
microRNA-522 secreted by CAFs was able to inhibit ferroptosis
in GC cells by inhibiting arachidonate lipoxygenase 15 and
reducing lipid-ROS production. In addition, cisplatin and
paclitaxel were also demonstrated to be able to increase the
secretion of microRNA-522 from CAFs by activating the USP7/
hnRNPA1axis, resulting in decreased chemosensitivity of GC
cells. And in another study, Uchihara et al. (121) showed
Annexin A6 in extracellular vesicles (EV) from CAFs induced
drug resistance of GC by activation of b1 integrin-focal adhesion
kinase (FAK)-YAP. They also revealed that inhibition of FAK or
YAP was able to effectively attenuate drug resistance of GC in a
mouse model of peritoneal metastasis. Shen et al. (122) showed
HP infection can increase expression of vascular adhesion
molecule 1 (VCAM1) in CAFs of GC by activating the JAK/
STAT1 signaling pathway, and the expression level of VCAM1 is
positively correlated with the progression of GC and the poor
prognosis of patients with GC. In addition, the interaction
between CAFs-derived VCAM1 and integrin avb1/5 can
promote the invasiveness of GC in vivo and in vitro. These
findings facilitate us to further understand the mechanism of
how CAFs promote GC progression and drug resistance, and
provide potential targeted therapeutic strategies for GC
treatment and overcoming GC drug resistance.

As an essential component of TME, TAMs are considered to
be closely associated with the progression, metastasis and drug
resistance of GC. Among TAMs, those of the M2 type are
responsible for inhibiting T cell function and promoting tumor
growth. Therefore, several potential therapeutic strategies have
been proposed to work on eradicating M2 TAMs or converting
M2 TAMs into M1 TAMs. Miao et al. (123) performed an
immunohistochemical analysis of STING expression in 200 pairs
of GC cells and its surrounding normal tissues and detected the
effects of STING on cancer cell apoptosis and T cell
differentiation by flowcytometry. They also verified the results
in a spontaneous GC model of p53+/- mice and cell line-based
xenografts. The results of this study suggest that down-regulation
of STING expression is able to promote TAMs polarizing into
the M1 as well as induce apoptosis in GC cells through the IL6R-
JAK-IL24 pathway. Zheng et al. (124) found that M2-type TAMs
were able to promote cisplatin resistance in CG cells. Further
analysis using the microRNA profiles assay confirmed that
exosomal microRNA-21 derived from M2-type TAMs
conferred cisplatin resistance in GC cells. Wang et al. (125)
confirmed in vitro that the expression levels of Legumain in
TAMs were positively correlated with the proliferation and
angiogenesis of GC. Further experiments in vivo also
confirmed that GC cells injected with Legumain-knockdown
TAMs showed slower growth and less angiogenesis compared
Frontiers in Oncology | www.frontiersin.org 9
with GC cells injected with TAMs. These studies showed that
targeting exosomes associated with TAMs may be a promising
new therapeutic strategy for the therapy of GC and overcoming
drug resistance of GC.

Another important component in TME, MSCs plays a key
role in the progression of GC and may be a promising
therapeutic target for GC. Accumulating evidence indicates
that MSCs contribute to progression and chemotherapy
resistance of GC by secreting soluble molecules and regulating
various signaling pathways. GC-MSCs have been confirmed to
promote immune escape by secreting IL-8 and can induce the
expression of PD-L1 in GC cells. Sun et al. (126) further
confirmed that GC-MSCs were able to enhance the stemness
and self-renewal of GC cells through PD-L1, leading to
chemoresistance of GC. It has also been confirmed that MSCs
can promote the stemness and chemoresistance of GC cells both
in vivo and in vitro through fatty acid oxidation (FAO). And
FAO inhibitors have been demonstrated to reduce MSCs
induced resistance to FOLFOX chemotherapy regimens in GC
cells. These results of this study suggested that FAO was a key
factor in MSC-induced stemness and chemoresistance of GC cell
and inhibitors targeting FAO combined with conventional
chemotherapy regimens may be a promising therapeutic
strategy to overcome GC chemoresistance (127). In addition,
exosomes secreted by MSC are responsible for 5-FU resistance in
GC cells both in vivo and in vitro. Ji et al. (128) revealed that
MSC-derived exosomes can prevent 5-FU -induced apoptosis of
GC cells and increase the expression of multi-drug resistance
(MDR)-associated proteins, such as MDR by activating the
calcium/calmodulin-dependent protein kinases (CaM-Ks) and
Raf/MEK/ERK signaling pathway. And inhibition of CaM-Ks/
Raf/MEK/ERK signaling pathway is also able to inhibit GC
chemoresistance induced by MSC-exosomes. These findings
suggest that targeting MSCs-related soluble molecules and
signaling pathways combined with conventional chemotherapy
may provide a promising new strategy to overcome the resistance
of GC cells to conventional chemotherapy.

At present, surgical resection and chemoradiotherapy are the
main therapeutic strategies for the treatment of GC, and
molecular targeted drugs are an emerging therapeutic strategy
for the treatment of GC. Increasing studies have shown that
targeting key signaling pathways and molecules of the TME in
GC may be a new promising therapeutic strategy for the
treatment of GC. While knowledge is emerging regarding
preclinical studies of the GC microenvironment, data from
clinical studies on targeting the GC microenvironment in the
therapy of GC is still limited. Thus, there is still a long way to go
before the therapy of targeting the GC microenvironment can be
applied in the treatment of GC. The underlying specific
mechanisms involved in TME affecting the progression,
recurrence, metastasis and drug resistance of GC remain
poorly understood and further studies are still warranted.

Strategies for Targeting GCSCs
GCSCs are considered to be responsible for the development,
recurrence, metastasis and drug resistance of GC. Therefore,
therapeutic strategies for the targeted elimination of CSCs are
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considered to be one of the promising approaches for the
treatment of GC. However, there are methodological dilemmas
in the current therapeutic strategy for targeting CSCs, including
the lack of detection methods to specifically identify and isolate
CSCs from tumor cells. This paper summarizes the current
promising strategies for targeting GCSCs.

There are some specific surface markers in the surface of GCSCs.
Targeting these specific surface markers is an important way to kill
GCSCs and improve the prognosis of GC. Many investigators have
searched for specific surface markers of GCSCs for a long time, and
CD44 has been confirmed in some studies as a specific surface
marker of GCSCs. Yao et al. (129) developed a gastric CSCs-
specifically targeting drug delivery system (SAL-SWNT-CHI-HA
complexes) that can inhibit the self-renewal ability of CD44 (+) cells
in serum-free medium, which in turn reduces the formation of
GCSCs. Through the eradication of GCSCs, it can effectively
eradicate GC cells and block the migration and invasion of GC
cells. Liang et al. (130) developed a nanoprobe against CD44v6 (a
surface marker of GCSCs), which specifically targets GCSCs. In
orthotopic and subcutaneous xenograft models of GC, this
nanoprobe actively targets the vascular system of GC and
significantly inhibits the growth of GC at 4 hours post-injection.
In addition, aberrant activation of signaling pathways is present in
GCSCs, and a therapeutic strategy for targeting key signaling
pathways in GCSCs appears theoretically feasible in reducing
GCSCs and improving GC patient prognosis. GSI, a g-secretase
inhibitor IX, was reported to be capable of inhibiting the
proliferation, migration, invasion, and tumor sphere formation of
CD44 (+) GCSCs by inhibiting the Notch signaling pathway (131).
Feng et al. (132) found that in a GCSCs model, pantoprazole was
able to increase the therapeutic sensitivity of GC to 5-fluorouracil,
decrease the capacity of generating tumor spheres and the
expression levels of GCSCs markers such as CD44, CD24, and
Lgr5 by inhibiting the EMT/b−catenin pathways. In a study (133),
CD44 (+) GC cells were shown to be resistant to 5-FU and cisplatin
chemotherapy. In this study, Hedgehog (HH) signaling played an
important role in maintaining the stem-like properties of CD44 (+)
GC cells, and inhibition of HH could increase the sensitivity of
CD44 (+) GC cells to chemotherapy. Mao et al. (134) found that
activation of Wnt signaling can promote the self-renewal and
proliferation of GCSCs, and salinomycin can inhibit the growth
of GC by inhibiting Wnt signaling in GCSCs. The chimeric 5/35
adenovirus-mediated Dickkopf-1(Ad5/35-DKK1) that could
effectively attenuate Wnt signaling of GCSCs was developed by
Wang et al. (135). And in preclinical experiments, Ad5/35-DKK1
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was demonstrated to be able to inhibit the invasion of CD44 (+) GC
cells. Although research on targeting GCSCs is accumulating, more
studies, especially clinically relevant studies, are needed to
demonstrate the clinical significance of therapeutic strategy for
targeting CSCs.
CONCLUSION AND FUTURE
PERSPECTIVES

The TME is a complex biological system composed of a variety of
cells, extracellular matrix and biological molecules. It is closely
related to tumorigenesis, invasion, metastasis, and immune evasion
of GC cells by secreting a variety of factors and regulating signaling
pathways. CSCs are a small population of tumor cells with stem-
like characteristics, which also play a crucial role in the progression,
metastasis and drug resistance of GC. On the one hand, TME and
CSCs may synergistically contribute the progression of GC. On the
other hand, TME and CSCs may mutually promote each other.
And future studies to investigate the relationship among them will
provide a new idea for the cancer progression and novel
therapeutic targets in GC. Because various current targeted
therapeutic strategies for GC are mainly to kill non-CSCs, and
the residual CSCs of GC after current therapy are implicated in
tumor recurrence and metastasis. Consequently, the development
of therapy targeting CSCs is warranted for the effective treatment of
GC. In addition, studies focusing on targeting TME in the
progression and drug resistance of GC have also confirmed that
TME may provide new targets for the treatment of GC. In the
future, further study on the microenvironment of CSCs in GC
should be carried out to clarify the different components and
functions of the microenvironment of CSCs in GC. Which will be
helpful to understand the mechanism underlying the pathogenesis
of GC, develop new therapy to kill CSCs in GC and change GC
microenvironment, leading to promote the clinical treatment
of GC.
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66. Jiménez G, Hackenberg M, Catalina P, Boulaiz H, Griñán-Lisón C, Garcıá
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