Supplementary information

for

CACNA1A loss-of-function affects neurogenesis in human iPSC-derived neural models

Ilaria Musante¹, Davide Cangelosi², Lorenzo Muzzi³, Fanny Jaudon⁴, Marco Di Duca¹, Sara Guerrisi¹, Francesca Antonini⁵, Yeraldin Chiquinquira Castillo De Spelorzi⁶, Lorenzo A. Cingolani⁴, Federico Zara^{1,3,*}, Paolo Scudieri^{1,3,*}

¹ Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy

- ² Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- ³ Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- ⁴ Department of Life Sciences, University of Trieste, Trieste, Italy
- ⁵ Core facilities for Omics Science, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- ⁶Genomics Facility, Italian Institute of Technology (IIT), Genoa, Italy

* Correspondence: paolo.scudieri@unige.it, federico.zara@unige.it

Resources table				
REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Antibodies				
OCT4 Recombinant Rabbit Monoclonal	Thermo Fisher Scientific	Cat# 703927,		
Antibody (3H8L1.12)		RRID:AB_2827381		
SSEA4 Monoclonal Antibody (MC-813-	Thermo Fisher Scientific	Cat# MA1-021,		
70) TPA 1.60 Monoclonal Antibody (TPA 1	Thormo Fisher Scientific	Cot# MA1 023		
60)	Thermo Fisher Scientific	RRID:AB 2536699		
SOX2 Monoclonal Antibody (Btjce),	Thermo Fisher Scientific	Cat# 14-9811-82,		
eBioscience		RRID:AB_11219471		
SOX2 Polyclonal Antibody	Thermo Fisher Scientific	Cat# PA1-094X,		
		RRID:AB_2539863		
SOX1 Recombinant Rabbit Monoclonal	Thermo Fisher Scientific	Cat# MA5-32447,		
Antibody (JJ20-40) PAX6 Monoclonal Antibody (13B10	Thermo Fisher Scientific	Cat# MA1 109		
1A10)	Thermo Tisher Scientific	RRID:AB 2536820		
Nestin Monoclonal Antibody (2C1.3A11)	Thermo Fisher Scientific	Cat# MA1-5840,		
		RRID:AB_1077111		
Anti-beta3-tubulin	Synaptic Systems	Cat# 302 304,		
		RRID:AB_10805138		
Anti-NeuN	Sigma Aldrich	Cat# MAB377,		
Anti MAP 2	Synantic Systems	Cat# 188.004		
Anu-MAT 2	Synaptic Systems	RRID:AB 2138181		
Purified anti-Neurofilament Marker	BioLegend	Cat# 837904,		
		RRID:AB_2566782		
Anti-GFAP	Synaptic Systems	Cat# 173 011,		
		RRID:AB_2232308		
Anti-Ki6/ antibody	Abcam	Cat# ab15580, PPID: $AP = 442200$		
BrdU antibody [BU1/75 (ICB1)]	Abcam	Cat# ab6326		
	riocum	RRID:AB 305426		
Anti-β-Tubulin III	Sigma Aldrich	Cat# T2200		
		RRID: AB_262133		
anti-Caspase-3	R&D System	Cat# AF835		
Cost anti Mayoa IaCl Cross Adaarhad	Thomas Eisbon Scientific	RRID: AB_2243952		
Secondary Antibody Alexa Fluor TM 555	Thermo Fisher Scientific	RRID:AB 2535769		
Goat anti-Rabbit IgG (H+L) Cross-	Thermo Fisher Scientific	Cat# A-11008,		
Adsorbed Secondary Antibody, Alexa		RRID:AB_143165		
Fluor TM 488				
Goat anti-Rabbit IgG (H+L) Highly Cross-	Thermo Fisher Scientific	Cat# A32732,		
Adsorbed Secondary Antibody, Alexa		RRID:AB_2633281		
Fluor International Plus 555	Thermo Fisher Scientific	Cat# A-11029		
Adsorbed Secondary Antibody, Alexa	Thermo Tisher Scientific	RRID:AB 2534088		
Fluor TM 488				
Goat anti-Mouse IgM (Heavy chain) Cross-	Thermo Fisher Scientific	Cat# A-21426,		
Adsorbed Secondary Antibody, Alexa		RRID:AB_2535847		
Fluor ^{1M} 555	The second Distance Calendicia	C-+# A 21209		
Adsorbed Secondary Antibody Alexa	I nermo Fisher Scientific	Cat# A-21208, PRID: AB 2535794		
Fluor TM 488		KKID.AD_2333794		
Goat anti-Guinea Pig IgG (H+L) Highly	Thermo Fisher Scientific	Cat# A-11073,		
Cross-Adsorbed Secondary Antibody,		RRID:AB_2534117		
Alexa Fluor TM 488				
Goat anti-Rabbit IgG (H+L) Secondary	Thermo Fisher Scientific	Cat# 31460		
Anubody, HKP	4	KKID:AB_228341		
Cnemicais, pepudes, and recombinant proteins				

EZ-Link Sulfo-NHS-LC-Biotin	Thermo Fisher Scientific	A39257
EDTA-free protease inhibitors	Roche	1187358001
serine/threonine phosphatase inhibitors	Sigma Aldrich	P0044
tyrosine phosphatase inhibitors	Sigma Aldrich	P5726
BrdU (5-bromo-2'-deoxyuridine),	Abcam	ab142567
Thymidine analog		
Dulbecco's PBS w/o Calcium, w/o	Euroclone	ECB4004L
Magnesium		
Versene Solution	Thermo Fisher Scientific	15040066
Vitronectin (VTN-N) Recombinant Human	Thermo Fisher Scientific	A14700
Protein, Truncated		
RevitaCell TM Supplement (100X)	Thermo Fisher Scientific	A2644501
Essential 8 TM Flex Medium Kit	Thermo Fisher Scientific	A2858501
Geltrex [™] LDEV-Free, hESC-Qualified,	Thermo Fisher Scientific	A1413302
Reduced Growth Factor Basement		
Membrane Matrix	Sigma Aldrich	D2655 100MC
		P3055-100MG
	Sigma Aldrich	L2020
DMEM/F-12, HEPES	Thermo Fisher Scientific	11330057
StemPro TM Accutase TM Cell Dissociation	Thermo Fisher Scientific	A1110501
STEMdiffTM SMADi Noural Induction Kit	STEMCELL Technologies	00501
STEM LIGTM Neural Descention Malieur	STEMCELL Technologies	05922
STEMdiff ^{1M} Neural Progenitor Medium	STEMCELL Technologies	05833
Anti-Adherence Rinsing Solution	STEMCELL Technologies	0/010
STEMdiff TM Neural Rosette Selection	STEMCELL Technologies	05832
Reagent NeuropeoolTM Medium	Thomas Fisher Scientific	21102040
Neurobasal TM Medium	Thermo Fisher Scientific	21105049
Neurobasar ¹¹⁴⁴ Plus Medium	Thermo Fisher Scientific	A3382901
B-27 TM Supplement (50X), serum free	Thermo Fisher Scientific	17504044
B-27 TM Plus Supplement (50X)	Thermo Fisher Scientific	A3582801
		113202001
CultureOne TM Supplement (100X)	Thermo Fisher Scientific	A3320201
Human Recombinant BDNF	STEMCELL Technologies	78005
Human Recombinant GDNF	STEMCELL Technologies	78058
Retinoic acid	Sigma-Aldrich	R2625
L-Ascorbic acid 2-phosphate	Sigma-Aldrich	A8960
sesquimagnesium salt hydrate		110,00
(-)-Bicuculline methochloride	abcam	ab120110
CNOX disodium salt	abcam	ab120044
D-AP5. NMDA glutamate site antagonist	abcam	ab120003
4x Laemmli Sample Buffer	Biorad	1610747
ProSieve TM OuadColor TM Protein Marker	Lonza	00193837
Neutral buffered formalin	Bio-Optica	05-010050
Critical commercial assays	Dio Opticu	05 01005Q
ECL Drive Western Distring Contemp	CE Harlthann	DDNO106
ECL Prime Western Blotting System	GE Healthcare	KPIN2106
1Script TM cDNA Synthesis Kit	Biorad	1/08891
SsoFast [™] EvaGreen® Supermix	Biorad	1725201
RNeasy Mini Kit	Qiagen	74104
Chromium Next GEM Single Cell 3' Kit 4	10 Genomics	10X1000269
reaz		
Chromium [™] Next GEM Chip G Single cell	10 Genomics	10X1000127
kit 16 reaz		
NovaSeq 6000 S1 Reagent Kit v1.5	Illumina	20028319
Annexin V FITC Apoptosis Kit	Thermo Fisher Scientific	BMS500F1-100

Deposited data				
Single-cell RNA-seq data	This paper	GEO: GSE276494		
Experimental models: Cell lines				
Control Human Induced Pluripotent Stem cells	Applied StemCell	ASE-9211		
Oligonucleotides (5'-3')				
SgRNA C1983A-g1	AAAGTAGACGACGTAGAAAA			
SgRNA C1983A-g2	AGAAAATGGACATCTCCATG			
C1983A ssODN g1&g2	CAAAGATATTGACAAAGAAGAAG GGGAACACCACAAAGTAGACGAC GTAGGAAATCGACATCTCCATGC GATACCCGGGGCTGGGGCCCTGG TTCTCAAAGGTGGCGTCCACCGA ATGCTT			
SgRNA C1983B-g1	CAGCGGTCGGATTCATTATA			
SgRNA C1983B-g2	TTTCTTCTCCTTTCAGCGGT			
C1983B ssODN g1&g2	GGACATTTCTTGCCTAAGCCGAG AGGGGGAGATATTACTCGTAATA AACTCTACATATCCTTATA GTGAATTCGACCGCTGAAAGGAG AAGAAAGGGGGGTTAGTGCAGGCA ATGGGTTCACACGGGC			
Primers for Sanger Sequencing (5'-3')				
hCav2.1 C1983A F	CCTGGGTGTTGTGTGTGTGTTT			
hCav2.1 C1983A R	CTGTCTCTCTCCTTCCTGCC			
hCav2.1 C1983B F	TCCATGGATGCTAGCAGGTT			
hCav2.1 C1983B R	CATCATGACCTCGCTGTGTG			
Primers for Real Time PCR (5'-3')	7	T		
hCav2.1Total F	TGAATCTCTTTGTCGCCGTC			
hCav2.1Total R	ACACGCACGTACTCATCCA			
hCav2.1 EFa F	GTCCTCATAGGGTTGCTTGC			
hCav2.1 EFb F	CCTGGGTCTGGGGGAAGAAGT			
hCav2.1 EFa/b R	GGCAGGTCCATCCGCAG			

Fig. S1. The F1491S mutation reduces surface expression of Ca_v2.1. (A) Representative western blots of total (left, input), extracellular (middle, biotinylated) and intracellular (right) fractions from HEK293 cells expressing wild-type (WT) or F1491S Ca_v2.1 and the β 2a and α 2 δ 1auxiliary subunits. β -tubulin is used as a loading control. (B) Quantification of relative amount of WT and F1491S Ca_v2.1. Data are shown as mean ± SEM (bars) and single replicates (dots); *p<0.05, F1491S versus WT with the Student's t test (n=4).

Fig. S2. Analysis of apoptosis in control and mutant cultures. (A) Apoptosis evaluation by Annexin-V and Propidium Iodide (PI) staining followed by flow cytometry analysis in control and mutated NPCs and neurons. (A) Graph showing the quantification of Annexin-V-positive / PI-negative cells. Data are shown as mean \pm SEM (bars) and single replicates (dots); **p<0.01, F1491S versus WT with the Student's t test (n=3). (B) Apoptosis evaluation by immunofluorescence detection and quantification of cleaved-caspase-3 protein in control and mutated neurons. Data are shown as mean \pm SEM (bars) and single replicates (dots); *p<0.05, F1491S versus WT with the Student's t test (n=3). (C) Representative immunofluorescence images of control and mutated neurons (10 DIV). Cells were labeled with antibodies directed against PAX6 and cleaved-caspase-3. Cells were also counterstained with DAPI to label cell nuclei. Scale bar: 20 µm.

Fig. S3. *CACNA1A* loss-of-function caused by the F1491S mutation alters the migratory capacity of NPCs. Analysis of NPCs migration by wound healing assay in isogenic control and two independent clones carrying F1491S mutation (F1491S_1 and F1491S_2). Representative images (A) and analysis (B) of wounded areas of confluent neural progenitors at the indicated post-wounding time points. Wound edges, detected by image segmentation analysis with Image J, are outlined in green. Data are shown as mean \pm SEM (n=3). * p<0.05 vs control (1-way ANOVA with Tukey's post hoc test).

Fig. S4. *CACNA1A* loss-of-function caused by F1491S mutation impairs neuronal generation. Representative immunofluorescence images of control and mutated (two independent clones, F1491S_1 and F1491S_2) iPSC-derived neurons at 7 and 21 DIV. Cells were labeled with antibodies directed against MAP2 and GFAP as markers of neurons and glia, respectively. Cells were also counterstained with DAPI to label cell nuclei. Scale bar: 50 μ m. (B) Graphs showing the quantification of neurite outgrowth. Data are shown as mean \pm SEM (bars) and single replicates (dots), n=3. *, p<0.05; **, p<0.01 vs control (1-way ANOVA with Tukey's post hoc test).

Fig. S5. Heterogenous gene expression in iPSC-derived NPCs. Heatmap showing the expression of marker genes for the indicated clusters obtained from scRNA-seq data of control and F1491S (F1491S_1) neural progenitors. The top 10 differentially expressed genes were selected and ranked based on cluster ID. Genes are shown in the left, cluster identifiers are shown on top; colored legend ranging from low (violet) to high

expression (yellow) is shown in the bottom. (B) Bar graphs reporting the differences in expression between pct.1 and pct.2 (top) (where pct.1 is the percentage of cells where the gene is detected in the specific cluster and pct.2 is the percentage of cells where the gene is detected on average in the other clusters) and the average fold changes (bottom) for the markers of clusters annotated as cancer cells (clusters 3 and 7). (C) Circle packing chart showing hierarchical data within clusters 3 and 7. The outer (grey) circles are relative to clusters, while the inner circles correspond to ScType cell types taken into consideration for cluster assignment. Circles size depends on the ScType scores. The biggest circle inside the grey circle corresponds to the cell type assigned to the entire cluster.

Fig. S6. NPCs carrying F1491S-CACNA1A show an altered transcriptional state. (A) Heatmap showing the regulon activity by sample. Regulon name is reported on the right. Sample names are reported on the top. (B) Dot plot showing regulons exceeding 0.01 of rss by samples. RSS value determines dot size while z value depicts dot color. (C) Binary activity matrix for regulons inferred by SCENIC: regulons were determined to be active ("ON", black) if they exceeded an automatically determined AUC regulon-specific threshold or inactive under this threshold ("OFF", white). After hierarchical clustering, clusters of regulons can be observed specifically for each cell population but also shared between the different cell populations.

Fig. S7. iPSC-derived neurons carrying Y1854X-CACNA1A show an altered transcriptional state. (A) Heatmap showing the regulon activity by sample. Regulon name is reported on the right. Sample names are reported on the top. (B) Dot plot showing regulons exceeding 0.01 of rss by samples. RSS value determines dot size while z value depicts dot color. (C) Binary activity matrix for regulons inferred by SCENIC: regulons were determined to be active ("ON", black) if they exceeded an automatically determined AUC regulon-specific threshold or inactive under this threshold ("OFF", white).

Fig. S8. Heterogenous gene expression in iPSC-derived neuronal cultures. Heatmap showing the expression of marker genes for the indicated clusters obtained from scRNA-seq data of control and Y1854X neurons at 49 DIV. The top 10 differentially expressed genes were selected and ranked based on cluster ID. Genes are shown in the left, cluster identifiers are shown on top; colored legend ranging from low (violet) to high expression (yellow) is shown in the bottom. (B) Bar graphs reporting the differences in expression between pct.1 and pct.2 (top) (where pct.1 is the percentage of cells where the gene is detected in the specific cluster and pct.2 is the percentage of cells where the gene is detected on average in the other clusters) and the average fold changes (bottom) for the markers of clusters annotated as unknown (clusters 1, 2, 3, and 5).

Fig. S9. *CACNA1A* **loss-of-function caused by the Y1854X mutation alters excitatory-inhibitory balance of neural networks**. (A, B) Global representation of gene expression through UMAP plot as also reported in Fig. 7. Each dot represents a single cell, whose position in the map reports the transcriptional similarity with respect to the neighbor cell. The different colors indicate the samples in (A), and the annotated ScType clusters in (B). (C) Feature plots showing the distribution and expression of the GABAergic markers *GAD1*, *GAD2*, *SLC32A1*, and *GABBR1*. Data are colored according to expression level. (D) Feature plots showing the distribution and expression level. (D) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression level. (E) Feature plots showing the distribution and expression of the glutamatergic markers *GLS*, *SLC17A6*, *GRIA4*, and *GRIN2B*. Data are colored according to expression level.