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Abstract
This study aimed to investigate the antimicrobial, antibiofilm, and cytotoxic effects of biosurfactant lipopeptides synthe-
sized by Bacillus subtilis TR47II. For this purpose, the lipopeptides were partially purified using a three-step process and 
characterized. In the first step, the crude extract obtained from acid precipitation exhibited strong antibacterial activity 
against the Gram-negative opportunistic pathogens Alcaligenes faecalis ATCC 8750, Achromobacter xylosoxidans ATCC 
13138, Pseudomonas alcaligenes ATCC 14909, and Pseudomonas putida ATCC 15175. Moreover, partial inhibition was 
observed against Klebsiella aerogenes ATCC 13048 (42%), Escherichia coli ATCC 25922 (16%), and Pseudomonas aer-
uginosa ATCC 27853 (47%). The lipopeptides in the crude extract were extracted with methanol and fractioned on a silica 
gel chromatography column, rendering four TLC-pooled chromatographic fractions, named F1, F2, F3, and F4. The chro-
matographic fraction F4 was the most bioactive, with MIC values between 300 and 600 µg mL−1. Besides, F4 at sub-MIC 
doses dislodged the biofilms of A. faecalis, A. xylosoxidans, and P. alcaligenes by about 100, 85, and 81%, respectively. 
No cytotoxic effect was observed in mammalian cells at MIC. MALDI-TOF-MS analysis revealed that F4 contained cyclic 
lipopeptides belonging to two families: iturins (m/z 1004 to 1087) and fengycins (m/z 1424 to 1545). The dual effect of F4 
on planktonic and sessile growth could suggest that the synergistic application of these biosurfactants could be efficient in 
the control of these opportunistic pathogens.
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Introduction

Antibiotic resistance is one of the biggest threats to global 
health and food security. Infections caused by multi-drug-
resistant microorganisms (MDR) result in increased mortal-
ity indices, and have been associated with a heavy economic 
burden due to hospital stays and higher medical costs (World 
Health Organization 2018). Antimicrobial resistance (AMR) 
already causes 700,000 deaths/year and it is estimated that 

10 million deaths due to AMR will occur every year after 
2050, with an associated economic loss of $100 trillion for 
the global economy (O’Neill 2014; Tran et al. 2015; World 
Health Organization 2016; Tagliabue and Rappuoli 2018). 
Therefore, it is of primary importance to discover new natu-
ral antimicrobial agents to overcome AMR.

Among the diverse array of available antimicrobial 
biomolecules, the lipopeptides have received consider-
able attention for drug-lead prospection (Loiseau et al. 
2015). In the last decades, some molecules from this 
class, such as daptomycin and polymyxin B, have been 
approved by the Food and Drug Administration Agency 
(FDA) for the treatment of multi-drug resistant pathogen 
infections. Polymyxin B is now being used as the last 
therapeutic option for infections caused by multi-drug-
resistant (MDR) ‘superbugs’ as Pseudomonas aeruginosa, 
Acinetobacter baumannii, and Klebsiella pneumoniae 
(Cochrane and Vederas 2016). Most recently, a personal 
care product with anticoronaviruses activity, including 
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the SARS-CoV-2, that is based on the lipopeptide surfac-
tin (Green Butterfly-Galatec; https ://www.galav on.com/) 
was developed. The patent PCT/CN2020/085779 will be 
published soon. Other commercially available antibiotic 
lipopeptides include caspofungin, micafungin, and anidu-
lafungin (Mandal et al. 2013).

The genus Bacillus is known to produce various lipo-
peptides (e.g., surfactins, iturins, and fengycins). Several 
isoforms and analogs exist for these naturally produced 
lipopeptides, exhibiting significant structural heterogene-
ity. Also, this group of molecules has been extensively 
studied for more than 2 decades in terms of biosynthesis, 
isolation and purification, structure elucidation, biological 
activities, and mechanisms of biological activities, as well 
as the potential applications.

Due to the surface-active properties, lipopeptides are 
biotechnologically valuable in the stabilization of emul-
sions, dispersions, and foams, as wetting agents and in 
sorption or desorption processes (Moryl et  al. 2015). 
Moreover, they show great potential in various biophar-
maceutical applications due to their antimicrobial proper-
ties. These result mostly from the lipopeptides’ capability 
to disturb the structure and functions of biological mem-
branes, leading to the increased membrane permeability. 
Additionally, these amphipathic molecules modify bac-
terial surface hydrophobicity, stimulating the process of 
biofilm dispersion (Daas et al. 2018).

The strain Bacillus subtilis TR47II isolated from 
Trindade Island, Brazil (da Silva et al. 2015) has been 
characterized to co-produce surfactin, iturin, and fengy-
cin. In this work, we investigate the antimicrobial effect 
of these biosurfactant lipopeptides on planktonic growth 
of pathogens causing nosocomial infections and biofilm 
eradication.

Materials and methods

Microorganisms

The biosurfactant producing bacteria Bacillus subtilis 
TR47II was isolated from soil samples collected from Trin-
dade Island, Brazil (da Silva et al. 2015). The reference 
strains of bacteria used in the antimicrobial and antibiofilm 
assays were Alcaligenes faecalis ATCC 8750, Achromo-
bacter xylosoxidans ATCC 13138, Escherichia coli ATCC 
25922, Klebsiella aerogenes ATCC 13048, Klebsiella oxy-
toca CCT 0182, Pseudomonas aeruginosa ATCC 27853, 
Pseudomonas alcaligenes ATCC 14909, and Pseudomonas 
putida ATCC 15175. The bacterial strains were maintained 
at - 80 °C in Tryptic Soy Broth (TSB) containing glycerol 
at 40% (v/v).

Production and partial purification of antimicrobial 
biosurfactant from TR47II

An inoculum of the glycerol stock of TR47II was streaked 
onto a Tryptic Soy Agar (TSA) plate and incubated for 
18 h at 30 °C. A single colony was cultured at 30 °C and 
200 rpm for 18 h in 25 mL sterile mineral salt medium 
(MSM) to prepare seed cultures. The MSM used for bio-
surfactant production was composed of (g  L−1):  K2HPO4 
(13.9),  KH2PO4 (2.7), yeast extract (0.05),  NH4NO3 (1.0), 
and glucose (20). Trace-element composition was (g  L−1): 
EDTA (0.025),  MgSO4.7H2O (0.15),  MnSO4.H2O (0.025), 
NaCl (0.5),  CaCl2.2H2O (0.005),  CoCl2.6H2O (0.005), 
 ZnSO4.7H2O (0.005),  FeSO4.7H2O (0.005),  CuSO4.5H2O 
(0.0005),  Na2MoO4.2H2O (0.0005),  Na2O4Se (0.0005), 
 Na2WO4.2H2O (0.0005), and  NiCl2.6H2O (0.001). The 
pH of the medium was adjusted to 7.0. After seed cul-
ture preparation, an aliquot of 5 mL was inoculated into 
1000 mL Erlenmeyer flasks containing 500 mL of MSM 
and cultured at 30 °C and 200 rpm for 120 h.

Partial purification of the biosurfactants

The cell-free supernatant was obtained by centrifuging the 
culture at 10,400 × g for 15 min. To precipitate the biosur-
factants, the cell-free supernatant was acidified to a pH of 
approximately 2 using HCl 6 N and incubated overnight 
at 4 °C. The biosurfactant crude extract was recovered by 
centrifugation (15,000 × g for 20 min at 4 °C), solubilized 
in deionized water by adjusting pH to 7.0 with NaOH 6 N, 
and lyophilized. The lyophilized powder was extracted with 
methanol by exhaustive extraction in Soxhlet for 12 h, with 
3–4 cycles per hour, at 60 °C. The methanolic extract was 
concentrated using a rotary evaporator under reduced pres-
sure. The compounds in the methanolic extract were frac-
tioned on silica gel 60 (70–230 mesh, Sigma-Aldrich) chro-
matography column (26 × 5.0 cm), eluting with chloroform/
methanol/water 65:25:4 and 80:25:3.5. The TLC profiling 
of each fraction collected from the column (individual vol-
ume = 8 mL) was verified by TCL chromatography using 
 UV254 nm and  H2SO4 15% (v/v in ethanol) as visualizing 
agents. Commercial standards of the lipopeptides surfactin, 
iturin A, and fengycin A (1 mg mL−1, Sigma-Aldrich) were 
used as the reference. The samples were pooled in four frac-
tions (F1, F2, F3, and F4) according to the retention factor 
 (Rf) profiling. To confirm the presence of biosurfactants in 
the chromatographic fractions, the solvents were evapo-
rated using a rotary evaporator under reduced pressure and 
the solids resuspended in water to a final concentration of 
1 mg mL−1. The presence of surface-active compounds was 
detected by the oil spreading test (Morikawa et al. 2000).

https://www.galavon.com/
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Antibacterial screening and minimum inhibitory 
concentration (MIC)

The inhibitory spectra of crude extract, methanolic extract, 
and chromatographic fractions (F1 to F4) at 1 mg mL−1 
were determined using 96-well microtiter plates. Briefly, 
twofold dilutions of the compounds were prepared in Muel-
ler-Hinton broth, and then, bacterial reference cultures 
at log phase were added to each well at a final density of 
5 × 105 CFU mL−1. The plates were incubated at 37 °C for 
24 h. Bacterial growth inhibition was determined by spectro-
photometric optical density (OD) at 600 nm in a microtiter 
plate reader PowerWave XS (Bio-Tek Inc.). The percentage 
of inhibition was calculated by the equation: where  A0 is the 
OD of control wells (growth in absence of biosurfactants) 
and  Ac is the OD of the culture grown in the presence of 
biosurfactants:

The non-inoculated wells (with and without biosur-
factant) were used as negative controls.

Minimum Inhib i to r y  Concent ra t ion  (MIC) 
(100 to 1000 µg mL−1) of the most active semi-purified 
fraction was determined through the standard microdilution 
method in Mueller-Hinton broth using 96-well microtiter 
plates, according to the Clinical and Laboratory Standards 
Institute (CLSI). Briefly, 50 µL of twofold stock solutions of 
the biosurfactants prepared in Mueller-Hinton were mixed 
with 50 µL of bacterial reference cultures to attain a final 
density of 5 × 105 CFU mL−1. The plates were incubated 
at 37 °C for 24 h and the OD at 600 nm of each well was 
determined using a microtiter plate reader PowerWave XS 
(Bio-Tek Inc.). MIC was defined as the lowest concentration 
resulting in complete growth inhibition of the target bacteria.

Biofilm removal assay

The effect of biosurfactants on biofilm removal was evalu-
ated according to Rautela et al. (2014). For biofilm forma-
tion, 100 µL of bacterial cells suspension in Mueller-Hinton 
broth  (106 CFU mL−1) were dispensed in 96-well microtiter 
plates, following incubation at 37 °C for 48 h. After bio-
film formation, the supernatant was gently aspirated and the 
non-adhering cells were washed with PBS (NaCl 137 mM, 
KCl 2.7 mM,  Na2HPO4 8 mM, and  KH2PO4 2 mM, and pH 
7.4). Biosurfactants’ solutions prepared in Mueller-Hinton 
Broth (100 to 1000 µg mL−1) were added to the wells and 
the plates were incubated for 24 h at 37 °C. The supernatant 
was gently aspirated and the wells were washed with PBS. 
Adherent cells were fixed with 100 µL of methanol 99% 
(v/v) for 15 min. The biofilms were stained with 100 µL of 

Growth inhabition (%) = (A
0
− A

c
)∕A

0
× 100.

crystal violet solution 1.0% (w/v) and washed three times 
with sterile distilled water. The stain adhering to the bio-
films was solubilized with 100 µL of acetic acid 33% (v/v). 
An aliquot of 100 µL of the de-staining solution was trans-
ferred to a new well and the amount of the crystal violet 
was measured with a microtiter plate reader PowerWave XS 
(Bio-Tek Inc.) at 595 nm. Wells treated with PBS were used 
as blank to minimize background interference. The percent-
age of biofilm removal by the biosurfactants was calculated 
by the equation: where  Ac represents the absorbance of the 
wells treated with biosurfactant and  A0 the absorbance of 
the negative control wells:

For each concentration of biosurfactants tested, a nega-
tive control was prepared by adding only the biosurfactants’ 
solutions prepared in Mueller-Hinton to empty wells.

Cytotoxic effect of biosurfactants to mammalian 
cells

The cytotoxic effect of antimicrobial biosurfactant was 
determined against mammalian cell lines. The MAC-T and 
Vero cells were grown in flat-bottom 96-well culture plates 
containing 100 µL Dulbecco’s Modified Eagle Medium and 
Modified Eagle Medium, respectively, supplemented with 
10% (w/v) fetal bovine serum, penicillin (100 µg mL−1), and 
streptomycin (100 µg mL−1). The plates were incubated at 
37 °C at 5%  CO2 and 95%  O2 for 24 h. Cell growth was visu-
alized and monitored with an inverted microscope until they 
reached confluency (approximately 3 × 105 cells per well). 
The medium was aspirated, and the cells were washed with 
PBS. Biosurfactant solutions prepared in fresh media were 
added to the wells at the final concentrations of 1, 2, 4, 8, 
and 16 × MIC (considering MIC = 300 µg mL−1), and the 
plates were incubated for 24 h. Cells not exposed to the bio-
surfactants served as positive growth control. Cytotoxicity 
was assessed using an MTT [(3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide] assay. Briefly, 10 µL of 
MTT (5 mg mL−1 in PBS, pH 7.6) were added to 100 µL of 
media per well and incubated for 4 h. The supernatant was 
discarded, and 200 µL of DMSO was added to each well to 
dissolve the crystals. The plate was gently stirred. Absorb-
ance was read with a spectrophotometer Titertek  multiskan® 
Plus-MKII (Flow Laboratories, Inc.) at 550 nm. Cells not 
exposed to the compound served as control.

MALDI‑TOF mass spectrometry analysis

The chromatographic fraction containing the bioactive bio-
surfactants produced by TR47II (F4) was solubilized in etha-
nol (2.5 mg mL−1) and characterized by MALDI-TOF-MS. 

Biofilm removal (%) = (A
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The matrix used was α-cyano-4-hydroxycinnamic acid 
(Bruker Daltonics), solubilized in acetonitrile 50% (v/v), and 
acidified with trifluoroacetic acid 0.1% (v/v), to a final con-
centration of 10 mg mL−1. Then, 1 μl of the sample and 1 μl 
of the matrix were applied and homogenized at each spot of 
the steel plate. For calibration of the MS analysis method, 
standard peptides (Peptide Calibration Standard II) (Bruker 
Daltonics) were used. The MS spectra were acquired in an 
MALDI-TOF Ultraflex III (Bruker Daltonics) spectrometer 
employing the reflective and positive mode, with an average 
detection range of 500–3400 Da. All data were managed by 
Flexcontrol software, version 3.3 (Bruker Daltonics), and 
the spectra resulting from the MS were processed using the 
FlexAnalysis application, version 3.3 (Bruker Daltonics). 
Commercial standards of surfactin, iturin A, and fengycin A 
lipopeptides (Sigma-Aldrich) were used in a concentration 
of 1 mg mL−1 in ethanol. The spectra were analyzed based 
on the similarity with the spectra of commercial lipopep-
tide standards and based on literature (Romero et al. 2007; 
Pathak and Keharia 2014; Yang et al. 2015).

Statistical analysis

Data were collected from three independent experiments and 
the results were expressed as the mean ± standard deviation. 
Statistical analyses were performed using one-way analysis 
of variance followed by Tukey’s test at a significance level 
of 5% (p < 0.05).

Results and discussion

Biosurfactant purification

The fractionation of the biosurfactants produced by TR47II 
resulted in four chromatographic fractions, F1, F2, F3, and 
F4. TLC profiling of the fractions has detected the presence 
of lipopeptides according to the  Rf comparison with those 
from commercial standards of surfactin  (Rf = 0.7), iturin A 
 (Rf = 0.3), and fengycin A  (Rf = 0.09). The chromatographic 
fractions were investigated to oil spreading activity. Table 1 
summarizes the oil spreading activities and the  Rf of F1–F4, 
demonstrating that F2, F3, and F4 retain the surface-active 
properties.

Antibacterial screening

The crude extract containing biosurfactants produced by 
TR47II was assessed for its antibacterial activity against 
reference bacterial species involved in nosocomial infec-
tions. Figure 1 summarizes the antibacterial spectra of 
TR47II crude extract. The crude extract shows an inhibi-
tory effect against A. xylosoxidans ATCC 13138, A. 

faecalis ATCC 8750, P. alcaligenes ATCC 14909, and P. 
putida ATCC 15175. These bacterial species are frequently 
related to nosocomial infections that are difficult to treat 
due to antibiotic resistance (Treviño et al. 2010; Barragán 
et al. 2018; Hasan et al. 2019). Moreover, partial inhibition 
was observed against K. aerogenes ATCC 13048 (42%), E. 
coli ATCC 25922 (16%), and P. aeruginosa ATCC 27853 
(47%). Only the susceptible microorganisms were tested 
against the methanolic extract and chromatographic frac-
tions. Methanolic extract and chromatographic fraction F4 
at 1000 µg mL−1 were effective against all reference strains 
tested (Fig. 2). Fractions F1, F2, and F3 exhibited only par-
tial inhibition.

Chemical characterization of chromatographic 
fraction F4 by MALDI‑TOF mass spectrometry

The most active chromatographic fraction, F4, was chemi-
cally characterized by MALDI-TOF mass spectrometry. The 
MALDI-TOF mass spectrum of F4 revealed the presence 
of two separate clusters of peaks (Fig. 3a). One cluster of 
peaks is in the range of 1004–1087 m/z ratio, while the other 
cluster of peaks in the range of 1424 to 1545 m/z ratio. The 
peaks of the first range (1004 to 1087) are attributed to iturin 
isoforms (Romero et al. 2007; Pathak and Keharia 2014; 
Yang et al. 2015) and those of the second (1424 to 1545) 
are attributed to fengycin isoforms (Pathak and Keharia 
2014; Yang et al. 2015), indicating the presence of these 
two classes of lipopeptides in F4.

The most intense peaks in the f irst  range 
(1004 to 1087 m/z ratio) were m/z 1043.5, m/z 1057.5, and 
m/z 1071.5 (Fig. 3b). The molecules at m/z 1043.5, 1057.5, 
and 1071.5 differed in their masses by 14 or multiples of 
14 Da (-CH2) suggesting them to be members of the same 
family (Pathak and Keharia 2014). The 14 Da difference 
observed suggested that the metabolites with m/z 1043.5 
and 1057.5 and 1071.5 differed only in carbon length of 
β-amino acid (βAA), and are assigned as iturin A homologs 

Table 1  Oil spreading halo (cm) of aqueous solutions (1 mg mL−1) of 
the chromatographic fractions (F1–F4) obtained from the partial puri-
fication of biosurfactants produced by Bacillus subtilis TR47II

The retention factors  (Rf) of the spots observed in TLC for each frac-
tion were compared with those from commercial standards of surfac-
tin (0.7), iturin A (0.3), and fengycin A (0.09)

Chromatographic fraction Rf Oil spread-
ing halo 
(cm)

F1 0.86 0.20 ± 0.06
F2 0.72 9.02 ± 1.23
F3 0.72/0.60 8.33 ± 0.61
F4 0.3/0.09 2.02 ± 0.40
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with 14- and 15- and 16-carbon β AA, respectively (Romero 
et al. 2007; Pathak and Keharia 2014; Yang et al. 2015). In 
the second range (1424 to 1545 m/z ratio), the most intense 
peaks were m/z 1463.8, m/z 1477.8, m/z 1485.8, m/z 1491.8, 
m/z 1503.8, and m/z 1517.8 (Fig. 3c). The m/z 1463.8 and 
1477 peaks are assigned to fengycin (Ala-6) [M + H]+ ions 
containing C16 and C17 fatty acid chains, respectively. The 

m/z 1495.8 peak is assigned to fengycin [M + H]+ ions con-
taining the C17 fatty acid chain, while the m/z 1503.8 peak 
is assigned to fengycin (Val-6) [M + Na]+ (Rautela et al. 
2014; Yang et al. 2015). The size of the fatty acid chain is 
an important factor determining the antimicrobial spectra of 
lipopeptides and has been explored to improve the efficacy 
of these compounds and their derivatives (Nasompag et al. 

Fig. 1  Effect of Bacillus subtilis 
TR47II biosurfactant crude 
extract (1000 µg mL−1) on 
planktonic growth of reference 
bacteria cultured on Mueller-
Hinton broth. The results are 
expressed as a percentage of 
growth inhibition relative to 
growth positive control. Data 
was presented as mean ± stand-
ard deviation of values obtained 
from three repetitions
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Fig. 2  Effect of Bacillus subtilis 
TR47II methanolic extract (ME) 
and chromatographic fractions 
(F1 to F4) at 1000 µg mL−1 on 
planktonic growth of a Achro-
mobacter xylosoxidans ATCC 
13138, b Alcaligenes faecalis 
ATCC 8750, c Pseudomonas 
alcaligenes ATCC 14909, and 
d Pseudomonas putida ATCC 
15175 cultured on Mueller-
Hinton broth. The results are 
expressed as a percentage of 
growth inhibition relative to 
growth positive control. Data 
was presented as mean ± stand-
ard deviation of values obtained 
from three repetitions. Means 
followed by the same letter 
do not differ statistically by 
Tukey’s test at 5% probability
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2015). Table 2 shows the detailed assignment of dominant 
mass peaks of the antimicrobial lipopeptides produced by 
B. subtilis TR47II.

Minimum inhibitory concentration (MIC)

Distinct lipopeptide families co-produced by a single strain 
can exert synergic antimicrobial effect and mutually enhance 
their respective activities (Xu et al. 2018). Moreover, the 
microbial strains utilized for lipopeptide production influ-
ence the composition of the compounds synthesized, which 

in turn can affect their antimicrobial activity (Ndlovu et al. 
2017).

The minimum inhibitory concentration (MIC) of the iso-
lated compounds in F4 against A. faecalis ATCC 8750, A. 
xylosoxidans ATCC 13138, P. alcaligenes ATCC 14909, and 
P. putida ATCC 15175 was determined using the microtiter 
plate method. MIC values ranged from 300 to 600 µg mL−1 
(Table 3).

Three mechanisms are proposed to describe how lipo-
peptides act against Gram-negative bacteria: (i) by remov-
ing  Ca2+ and  Mg2+ from lipopolysaccharides (LPS), leading 
to destabilization of the outer membrane; (ii) pore-forming 

Fig. 3  MALDI-TOF mass 
spectra of the chromatographic 
fraction F4 containing bioac-
tive biosurfactants produced 
by Bacillus subtilis TR47II. 
a Lipopeptide mass profile 
found in F4; b mass profile in 
the range of 1004 to 1087 m/z 
ratio, attributed to iturins; 
c mass profile in the range 
of 1424 to 1545 m/z ratio, 
attributed to fengycins. The 
m/z values of peaks typical of 
these lipopeptides families are 
highlighting in bold
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Table 2  Assignments of iturin and fengycin mass peaks obtained by MALDI-TOF mass spectrometry of chromatographic fraction F4 obtained 
from the partial purification of biosurfactants produced by Bacillus subtilis TR47II

Mass peak (m/z) Assignments References

1043.5 (C14) Iturin A2 [M + H]+ Romero et al. (2007), Pathak and Keharia (2014), Yang et al. (2015)
1057.5 (C15) Iturin A3/A4/A5 [M + H]+ Romero et al. (2007), Pathak and Keharia (2014), Yang et al. (2015)
1071.5 (C16) Iturin A6/A7 [M + H]+ Romero et al. (2007), Pathak and Keharia (2014)
1463.8 (C16) Fengycin [M + H]+, Ala-6 Yang et al. (2015)
1477.8 (C17) Fengycin [M + H]+, Ala-6 Yang et al. (2015)
1495.8 (C17) Fengycin [M + H]+ Yang et al. (2015)
1503.8 (C17) Fengycin [M + Na]+, Val-6 Rautela et al. (2014)
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(cationic channels) effect on the cell membrane, and (iii) 
detergency effect. Each mechanism depends on the peptide 
moiety, as well as on some properties of the lipidic side 
chain (i.e., phase, elasticity, hydrophobic chain length, and 
hydration) (Le Maire et al. 2000).

Fengycins are a class of cyclic lipopeptides that includes 
fengycin and plipastatins. These lipopeptides are broad-
spectrum antifungal agents, particularly effective against 
filamentous fungi, and possess antiproliferative activity 
(Cochrane and Vederas 2016). No studies have demonstrated 
that fengycins act as antibacterials by the mechanisms afore-
mentioned (Patel et al. 2011; Wei et al. 2015); however, 
the study conducted by Piewngam et al. (2018) shows that 
the fengycins produced by B. subtilis ZK3814 (genotype 
NCIB3610) mediated Staphylococcus aureus exclusion 
effect in the human population by inhibiting S. aureus quo-
rum sensing, a process through which bacteria respond to 
their population density by altering gene regulation.

Iturins are a class of lipopeptides produced by B. subtilis 
and B. amyloliquefasciens that are widely studied for their 
antiproliferative and antimicrobial properties. However, 
studies on antimicrobial activity of iturins are restricted to 
the biological control of phytopathogens, including phy-
topathogenic fungi and bacteria (Etchegaray et al. 2008; 
Arrebola et al. 2010; Zeriouh et al. 2011; Gong et al. 2015; 
Mora et al. 2015; Yamamoto et al. 2015; Cheng et al. 2016). 
To date, the number of studies that explore the therapeutic 
application of iturins is very low (Patel et al. 2015). In this 
way, this report is innovative in exploring the use of iturins 
and fengycins to control microbial pathogens involved in 
nosocomial infections.

Biofilm dislodging assay

Bacterial biofilms represent a concern in the hospital envi-
ronment due to the resilience of chemical control. Besides, 
these structures are frequently involved in pathogen dissem-
ination and hospital-acquired infections. As evident from 
Fig. 4, challenging the biofilms of A. xylosoxidans ATCC 
13138, A. faecalis ATCC 8750, and P. alcaligenes ATCC 
14909 with F4 lipopeptides dislodged the mature biofilms, 
and the extent of biofilm disruption was found to be con-
centration-dependent. Upon treatment at sub-MIC doses, 
biofilms of A. faecalis, A. xylosoxidans, and P. alcaligenes 
were dislodged by about 100, 85, and 81%, respectively. 
Generally, the concentration of antimicrobial compounds 
necessary to damage sessile cells present in biofilms is much 
higher than the concentration required to be effective against 
planktonic cells. Overall, these results indicate that different 
factors may be responsible for the antimicrobial and antibi-
ofilm activities of biosurfactants produced by strain TR47II.

Table 3  Minimum inhibitory concentration (MIC) of the chroma-
tographic fraction F4 (iturin and fengycin) obtained from the partial 
purification of biosurfactants produced by Bacillus subtilis TR47II 
against susceptible reference strains

The values were estimated according to Clinical and Laboratory 
Standards Institute (CLSI) standards

Microorganism Minimum inhibitory 
concentration (µg 
 mL−1)

Achromobacter xylosoxidans ATCC 13138 600
Alcaligenes faecalis ATCC 8750 300
Pseudomonas alcaligenes ATCC 14,909 600
Pseudomonas putida ATCC 15175 600

a b c

Fig. 4  Biofilm dislodging activity of chromatographic fraction 
F4 (100  to  600  µg  mL−1) on biofilms of a Achromobacter xylosox-
idans ATCC 13138, b Alcaligenes faecalis ATCC 8750, and c Pseu-
domonas alcaligenes ATCC 14909 on Mueller-Hinton broth. The 

results are expressed as a percentage of biofilm removal relative to 
the non-treated control. Data was presented as mean ± standard devia-
tion of values obtained from three repetitions. Means followed by 
asterisks do not differ statistically by Tukey’s test at 5% probability
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Biosurfactants are promising molecules for the inhibi-
tion of formation or removal of biofilms (Kiran et al. 2010), 
since many have antiadhesive and biofilm dislodging proper-
ties (Banat et al. 2014). Rautela et al. (2014) demonstrated 
that the extract containing fengycin and iturin produced by 
Bacillus amyloliquefaciens AR2 was able to remove biofilms 
of Candida albicans. Tabbene et al. (2015) demonstrated 
that bacillomycin D can remove biofilms of C. albicans in a 
concentration-dependent manner, with 90% of removal at a 
dose of 25 μg mL−1. Rivardo et al. (2009) demonstrated that 
fengycins produced by Bacillus sp. inhibit biofilm formation 
by E. coli CFT073 and S. aureus ATCC 29213 (97 and 90%, 
respectively). Thus, the application of iturins and fengycins 
produced by B. subtilis TR47 II to abiotic surfaces can rep-
resent an effective strategy for reducing bacterial adhesion 
after biofilm formation.

The cytotoxic effect on mammalian cells

Regardless of the antimicrobial activity, toxicity tests con-
stitute a crucial step to verify the safety use of B. subtilis 
TR47II for lipopeptide production and proposing these com-
pounds as therapeutic agents. The results from the cytotoxic 
effect of F4 against mammalian cells is shown in Fig. 5. 
The chromatographic fraction F4 is non-cytotoxic at MIC 
(assumed value of 300 µg mL−1). There was no effect on 
the growth of MAC-T cells in a concentration equal to or 
less than 4 × MIC. Upon this concentration, the growth was 
retained in approximately 37% relative to the control. Expo-
sure of Vero cells to fraction F4 in a concentration equal 
to MIC reduced growth by 22% over control. However, 
the reduction of cell growth with increasing F4 concentra-
tion was less abrupt than that observed for MAC-T cells, 
maintaining approximately 57% growth in a concentration 
equal to 16 × MIC (equivalent to 4800 μg mL−1) (Fig. 5). 
As follows, the lipopeptides in F4 appear to be selective for 
bacterial membranes. Microbial biosurfactants are generally 

considered to be low toxicity or nontoxic compared to syn-
thetic surfactants. They are, therefore, suitable for use in the 
pharmaceutical, cosmetic, and food industries (Nitschke and 
Costa 2007).

Conclusion

The lipopeptides from B. subtilis TR47II exhibit antibac-
terial and antibiofilm activity against the opportunists’ 
pathogens. This activity was attributed to the fengycins and 
iturins, two lipopeptide categories that are underexplored 
as drug-leads compounds. Additionally, these molecules 
are non-cytotoxic to mammalians cells. Under the ability to 
inhibit planktonic growth and promote biofilm removal, two 
important traits involved in establishing nosocomial infec-
tions, the lipopeptides from strain TR47II may represent a 
potential candidate for developing drugs.
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