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A B S T R A C T   

The unexpected appearance and global spread of COVID-19 create significant difficulties for healthcare systems 
and present an unusual challenge for the fast discovery of medicines to combat this fatal disease. Screening 
metallodrugs libraries from the medicinal inorganic chemistry society may expand the studied ‘chemical space’ 
and improve the probability of discovering effective anti-COVID drugs, including polyoxometalates. POMs are an 
oxygen-rich family of inorganic cluster systems that have previously been tested for antiviral action against 
different types of viruses. Human angiotensin-converting enzyme 2 (ACE2), human transmembrane protease 
serine 2 (TMPRSS2), and the SARS-CoV-2 spike glycoprotein are required for host cell-mediated viral entrance. 
Targeting these proteins demonstrates potential possibilities for preventing infections and transmissions in the 
initial stage. As a result, POMs with known antiviral effects were investigated for this purpose using molecular 
docking and dynamic simulations. This research shows that POMs can prevent SARS CoV-2 from entering cells by 
blocking TMPRSS2, which SARS-CoV-2 uses for spike glycoprotein priming. They may also engage with ACE2 
and the spike glycoprotein and disrupt their binding by blocking the active sites. We think that a thorough 
investigation of POMs as possible anti-COVID-19 drugs will provide significant opportunities.   

1. Introduction 

A novel coronavirus, named as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is the latest pandemic in the series of other 
infectious diseases that poses an unprecedented challenge for the rapid 
explore of drugs against this deadly virus. Iran, which reported two fa-
talities due COVID-19 50 days following China on Feb 18, 2020, is 
among the nations dealing with the highest number of instances of 
COVID-19 infections and consequent deaths [1]. Even with the prom-
ising results of vaccines developed in the world, it is well recognized that 
the need for additional modalities is essential, due to the sheer enormity 
of the problem [2]. Therefore, both experimental and computational 
approaches are employed to investigate appropriate drugs from the li-
brary of FDA-approved drugs against this deadly virus. SARS-CoV-2 is an 
RNA virus that encapsulated inside a membrane envelope which has 
proteins like spikes that sticking out from its surface. These proteins are 
surface exposed and are involved in virus entry into the host cells [3]. 
The spike glycoprotein of SARS-CoV-2 contains two subunits: S1 subunit 

that contains the receptor binding domain (RBD) [4], and the S2 subunit 
(carryout the union of viral and host cell membrane). These subunits are 
responsible for binding to the host cell angiotensin-converting enzyme 2 
peptidase domain (PD) and ensuring membrane fusion with the host 
cell, respectively [5]. ACE2 is an enzyme that is found on the outer 
membranes of the intestines, lung cells, kidneys, arteries and heart and is 
a primary target for CoVs. Interaction of surface spike glycoproteins of 
CoVs with this enzyme facilitates the virus entry into the host cell [6]. At 
first, the spike glycoprotein of SARS-CoV-2 is cleaved by host cell 
transmembrane protease serine 2 (TMPRSS2) [7,8], then ACE2 is 
hijacked by cleaved spike glycoprotein as an entry point to host cell [9]. 
This process provides the entry of the viral RNA genome into the host 
cell and increases the SARS-CoV-2 chance of human to human trans-
mission [10]. Alternative therapeutic options must be investigated when 
a novel severe disease emerges for which there are no viable medical 
therapies, such as COVID-19. Metals and metallic compounds have long 
fascinated physicians for their intriguing, almost ‘magic’ characteristics 
and have therefore played a key role in the pioneering days of advanced 
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pharmacology beginning in the late 19th to early 20th century. Notably, 
over the last 40 years, attention in metal-based drugs has grown 
significantly, due mainly to the enormous successful treatment of 
cisplatin, which the FDA first approved in 1978, and has greatly 
contributed to a fairly large and active scientific community working in 
the field of inorganic medicinal chemistry. The distinct chemical and 
biological characteristics of different metal centers, in certain instances, 
non-physiological metals, can be used for medicinal purposes [11,12]. 
POMs are inorganic metal-oxide assemblies presenting great interest 
properties in medicine including, a wide range of possible structures, 
metal-combination and size, as well as large redox chemistry and high 
solubility in water and the low toxicity toward the human body. 
Therefore, POMs were examined to produce inorganic-drugs against 
bacteria, tumor cells, and viruses. Computational chemistry is a helpful 
way to illuminate POM complex chemistry and its structure [13]. Mo-
lecular docking and molecular dynamics simulation are two major 
computational methods that provide great applicability in pharmaceu-
tical research industries in search of novel drugs in a short duration time 
and assist experimental studies [14]. POMs were reported to have 
anti-tumor, -bacterial and - viral activities. In the antibacterial and 
antiviral actions, suppression of translation/transcription processes and 
inhibition of viral binding to the host cell and/or penetration have been 
observed. There is no organized study on the inhibition of the corona-
virus by POMs to the best of our knowledge. The primary aim of this 
research is to investigate the ability of POMs to engage with and block 
the cleavage function of TMPRSS2, which may prevent COVs from 
binding and fusion to cells, thus preventing cell infection as well as viral 
multiplication. We examined POMs further using in silico calculations to 
see how effective they were in inhibiting spike glycoprotein binding to 
the ACE2 receptor and, as a result, inhibiting COVID-19 progression in 
an infected host. Our group thinks that extensive investigation of POMs 
as possible anti-COVID-19 drugs will provide significant possibilities; 
grounds for this belief are provided below. 

2. Methods 

2.1. Molecular docking studies 

2.1.1. Receptors and ligand preparation 
In this section, we selected an α-Keggin structure of POMs 

[SiW12O40]− 4 to perform molecular docking simulations and evaluate 
the binding affinity and interaction of the POMs to TMPRSS2 and SARS- 
CoV-2 chimeric receptor-binding domains complexed with ACE2 (ACE2- 
RBD). Such computational study helps us to assess the potential of POMs 
in preventing SARS-CoV-2 cell entry. AutoDock Vina [15] with MGL 
tools 1.5.4 was used to perform blind docking calculations. AutoDock 
Vina runs faster than AutoDock software and makes more precise 
docking calculations [16]. The TMPRSS2 (PDB ID: 2OQ5) and 
ACE2-RBD (PDB ID: 6LZG) were obtained from the Protein Data Bank, 
and inhibitors were selected and removed. AutoDock Tools (v.1.5.4) was 
used to prepare the receptors. MGL Tools (v.1.5.4) combined non-polar 
hydrogen atoms and added Kollman charged atoms to protein crystal 
structures. TMPRSS2and ACE2-RBD coordinate files were then saved in 
PDBQT format. The 2OQ5 was surrounded in a 52 × 46 × 44 Å box 
direction with a grid spacing of 1.00 Å and grid set centers of − 1.87, 
18.03, 17.47 Å, while the 6LZG was surrounded in a 64 × 74 × 110 box 
direction with a grid spacing of 1.00 Å and grid set centers of − 25.41, 
18.43, and − 6.37. The structures of POM (PDB ID: 6Y7O) were obtained 
from protein data bank. MGL Tools (v.1.5.4) was then used to save the 
POM in PDBQT format, and docked results were visualized through the 
BIOVIA Discovery Studio software. The following are the methods for 
achieving rigid docking of POM. Initially, during the simulation process, 
the rigid form of POM is accurately preserved [17]. Secondly, to improve 
electrostatic interaction, MULLIKEN charges are allocated to each atom 
within POM [17]. Lastly, for tungsten and silicon, efficient “dummy” 
atoms are employed. In this study, iodine is used in place of tungsten, 

and carbon is used in place of silicon. The atomic replacement method’s 
concept is described in Hill and colleagues’ paper [18]. Optimization of 
the POM was performed using Gaussian 09 software package at the 
semi-empirical PM6 method [19,20]. We hypothesized that POMs with 
antiviral properties may disrupt the cell entry of CoVs and consequently 
prevent viral replication, transmissibility, and pathogenicity. Hence, we 
examined the virtual interaction of the POMs to the TMPRSS2 and ACE2 
-RBD. 

2.2. Molecular dynamics (MD) simulations 

The molecular dynamic simulations of POM were investigated by 
using GROMACS software in the presence of TMPRSS2 and spike re-
ceptor domain complexed with ACE2 proteins. Classical MD simulations 
[21,22] were conducted using the CHARMM27 force field [23,24]. 
TIP3P water [25] was used to solve the free protein and protein-ligand 
complexes in the cubic box with periodic boundary conditions in three 
directions. The solutes were positioned in the box’s center, with a 
minimum distance of 1.0 nm between the solutes’ surface and the box. 
Na+ ions were added to the system to neutralize the charge. The systems 
were balanced at 300 K and 1.0 bar after energy minimization through 
the steepest descent method. The Parrinello-Rahman barostat was used 
to maintain a pressure of 1.0 bar, and a temperature of 300 K was 
maintained using a modified Berendsen thermostat. The LINCS algo-
rithm enabled the computation of bond lengths, while the particle-mesh 
Ewald scheme (PME) was used to compute long-range electrostatic 
forces (grid spacing 0.16 nm) [26]. The short-range nonbonded in-
teractions were computed using cutoff ratios of 1.0 nm for van der Waals 
and Coulomb potentials. Finally, a 50 ns MD simulation with a time step 
of 2 fs was performed with random generation of velocities through a 
Maxwell distribution. 

2.3. Interaction analysis by MM-PBSA binding energy 

Using the Molecular Mechanics Poisson Boltzmann Surface Area 
(MM-PBSA) technique, the binding free energy of protein-ligand systems 
was calculated. This in silico method was a combined energy system 
described by the binding free energy, composed of electrostatic, SASA, 
van der Waals, and polar solvation energies. The MM-PBSA binding free 
energies were calculated using the GROMACS script g_mmpbsa [27]. 
Using the MM-PBSA method, the following equation was employed to 
determine the binding free energy of the interacting proteins:  

ΔGbinding = Gcomplex - (Greceptor + Gligand)                                                 

ΔG binding denotes the total binding energy of the protein-ligand 
complexes; Greceptor and Gligand denote the binding energy of the free 
receptor and unbounded ligand, respectively. 

3. Results 

3.1. Molecular docking simulation 

While significant efforts are being made to develop drugs and vac-
cines against COVID-19, only a few available therapeutic agents are 
currently available. In this regard, molecular knowledge of the virus 
increases quickly, and potential druggable targets are being discovered 
and profiled [28]. Several inorganic medicines are still used in medical 
care today for a few particular applications in which they serve impor-
tant and irreplaceable functions, combining exceptional effectiveness 
with tolerable toxicity [29,30]. The most notable example is the wide-
spread utilization of cisplatin as well as its analogs in chemotherapy; 
despite their significant systemic toxicity, platinum medications are 
believed to be included in approximately 50% of present chemothera-
peutic regimens for treatment for cancer [30]. Because of the high 
severity of cancer, their pertinent toxicity could be tolerated on the 
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foundation of a cost/benefit balance. In light of these reasons, we 
strongly urge the worldwide scientific community to investigate the 
potential of metallic compounds in pharmaceutical industries for 
COVID-19 treatments in a systematic and timely manner. It is critical to 
address toxicity concerns since metal-based medicines are usually 
recognized to cause significant adverse effects. The various metal cen-
ters have distinct chemical characteristics which could be successfully 
taken advantage of against specific pharmacological targets and dis-
eases; thereby, some inorganic drugs are already in medical usage with 
significant functions due to the emergence of particular pharmacolog-
ical effects that may not be achieved with conventional organic drugs. 
As a result, we may anticipate that POMs will make a major contribution 
to the combat against COVID-19. However, the safety statement should 
contain at least two types of toxicity evaluation, acute and systemic 
toxicity, in which a broad range of models and methods, in vivo, in vitro, 
or even in silico, must be used. Polyoxometalates (POMs) are oxygen 
rich class of inorganic cluster systems that the antiviral activity of them 
has previously been examined against various types of viruses. These 
negatively charged clusters with three-dimensional structures perform 
remarkable biological activities, with low toxicity and high efficacy. 
POMs were reported to have in vitro antiviral activities against different 
virus types. many polyoxotungstates, in particular, K7[PTi2W10O40]⋅ 
6H2O (PM-19), [PriNH3]6H[PTi2W10O38(O2)2]⋅H2O (PM-523), 
K9H5[(GeTi3W9O37)2O3]⋅16H2O (PM-504), [Me3NH]8- [(SiNb3-

W9O37)2O3] (JM2820), K13[Ce(SiW11O39)2]⋅26H2O (JM1590), K6[BGa 
(H2O)W11O39]⋅15H2O (JM2766), K7[P2W17(NbO2)O61], K10[Fe4(H2O)2- 
(PW9O34)2].xH2O (HS-058), and K7[P2W17NbO62], demonstrated in 
vitro activity against HIV and other RNA viruses [31]. It has been found 
that, POM93 Cs2K4Na [SiW9Nb3O40] demonstrated antiviral activity 
against influenza virus, HSV-1, HSV-2, HIV-1, and HBV. This kind of 
POM localizes on the cell surface, and nonspecifically masked cellular 
receptors for viral entry [32]. The mechanism of action of POM-4960 is 
inhibition of virus attachment and subsequently penetration [33]. POM 
with Keggin-type structures was shown to have activity against human 
immuno-deficiency virus types 1 and 2 [31,34–38], herpes simplex vi-
ruses [39], thymidine kinase deficient herpes simplex virus [38], toga-
viruses [31], measles virus [40], HCMV [38], parainfluenza virus [40], 
rhabdovirus [31], RSV [38,40,41] influenza viruses [40,41] arenavi-
ruses [31] and other retroviruses [31]. The surface of the cell membrane 
is surrounded by negatively charged polymers. The virus is electrostat-
ically attracted to the cellular membranes and uses the HA molecule to 
bind to a particular receptor [42]. Negatively charged POMs are 
believed to be disrupting the mechanism and binding the virions to their 
receptors non-specifically [33,43]. POMs with vanadium or titanium 
were shown to inhibit several RNA viruses, including Paramyxoviridae 
(respiratory syncytial virus), Flaviviridae (Dengue virus), Lentiviridae 
(human immunodeficiency virus type 1) and Orthomyxoviridae (influ-
enza virus type A) [44]. The suppression of virus-cell interaction and 
syncytium formation between HIV-infected cells has been ascribed to 
the process of anti-HIV suppression for most POM compounds [31,37, 
45]. Similar chemicals blocked the binding of an HIV-specific gp120 
monoclonal antibody to the gp120 protein [31], and the anti-HIV action 
was ascribed to POM binding of gp120, which prevented virus-mediated 
fusion and cell-to-cell transmission. Envelope glycoprotein GP120 is a 
glycoprotein exposed on the surface of the HIV envelope and is required 
for viral attachment to particular cell surface receptors and virus entry 
into cells. PM-1001 was shown to significantly inhibit the binding of 
viral gp-120 antibodies [46]. The enveloped virus such as Ebola, HIV-1, 
Influenza and the SARS-CoV-2 enter to the cells through their spike-like 
glycoprotein [47]. One effective approach to fight SARS-CoV-2 in-
fections is to prevent the virus from entering host cells by inhibiting the 
molecular machinery involved in this key phase [48–51]. Pradhan et al. 
[52] investigated the 2019-nCoV spike glycoprotein and discovered 
many intriguing results. This group discovered four separate inserts in 
the 2019-nCoV spike glycoprotein, which have not been found in any 
other COVID-19 case reported to date, and all four inserts in the 

2019-nCoV mapped to short segments of amino acids in the HIV-1 gp120 
and Gag proteins, across all annotated virus proteins in the NCBI data-
base. These proteins are required for viruses to detect and attach to host 
cells, as well as for viral assembly [53]. Because surface proteins are 
important for host tropism, alterations in these proteins indicate an 
alteration in the virus’s host specificity. Based on these results, we can 
conclude that POMs may inhibit the attachment of SARS-CoV-2 to 
angiotensin converting enzyme-2 receptors by a conformational change 
in the structural spike protein of SARS-CoV-2. In other words, the 
anti-covid-19 activity may be attributed to POM binding of spike pro-
tein, and blocking virus-mediated fusion and cell to cell spread of the 
virus. It is very important to investigate the inhibition potency of POMs 
to SARS-CoV-2. 1- Whether POMs interact with SARS-CoV-2; 2- What 
the interaction mechanism should be; 3- It is of great important to 
evaluate molecular mechanisms when studying problems related to 
POMs. Hu et al. [54], evaluated the α-Keggin type POM isomers 
including [α − 1,2- PTi2W10O40] 7-, [α − 1,4-PTi2W10O40] 7-, [α − 1, 
5-PTi2W10O40] 7-, [α − 1,6-PTi2W10O40]7-, [α − 1,11-PTi2W10O40] 7- 

against main protease of SARS-CoV by molecular modeling. The results 
of this study indicated that, POMs bind with the main protease of 
SARS-CoV in the active site region with high affinity. Employing POMs 
at high doses might be toxic to fight against SARS-CoV-2, an issue that 
there is a major concern about it. Therefore, low toxicity POMs are 
highly desirable to achieve an equivalent antiviral capability. Several 
additional factors should be taken into account throughout the POMs 
anti-Covid-19 clinical trials: (1) verifying the known safety profile of 
POMs and determining the minimal dosage and frequency of adminis-
tration needed to achieve optimum anti-Covid-19 effectiveness (2) 
Identifying individuals who should not receive POMs and outlining 
contraindications for co-administered medications. (3) Identification of 
any short-term and long-term negative effects that may occur as a result 
of POM treatment. Considering this fact that POMs can be used as an 
antiviral agent and have shown to have good biocompatibility, they can 
be promising candidates against COVID-19. However, there are still very 
few anti-viral experiments using POMs against COVID-19. More studies 
are needed to confirm the role of POMs in COVID-19 patients. We hope 
that POMs can play a key role in combating against COVID-19 and for 
infection prevention and control in the near future. However a major 
challenge is their safety profile in vivo and large-scale manufacture. 

Tables 1 and 2 represent the obtained results from docking analysis 
of the interaction of POM with TMPRSS2, and ACE2-RBD. The obtained 
binding free energy for [SiW12O40]− 4 was − 9.4, and − 11.4 kcal/mol 
toward the TMPRSS2, and ACE2-RBD, respectively. These negative 

Table 1 
Predicted bonds between interacting atoms of POM and TMPRSS2.  

S. 
No. 

Amino 
acid 

Amino acid 
atom 

POM atom Distance Nature of 
interaction 

1 ARG41 H-Donor O(H- 
Acceptor) 

2.23 Hydrogen 
Bond 

2 ARG41 H-Donor O(H- 
Acceptor) 

2.48 Hydrogen 
Bond 

3 ARG41 H-Donor O(H- 
Acceptor) 

2.21 Hydrogen 
Bond 

4 HIS57 H-Donor O(H- 
Acceptor) 

2.43 Hydrogen 
Bond 

5 THR62 H-Donor O(H- 
Acceptor) 

2.09 Hydrogen 
Bond 

6 HIS96 H-Donor O(H- 
Acceptor) 

3.07 Hydrogen 
Bond 

7 SER195 H-Donor O(H- 
Acceptor) 

2.23 Hydrogen 
Bond 

8 HIS57 H-Donor O(H- 
Acceptor) 

2.93 Hydrogen 
Bond 

9 THR61 H-Donor O(H- 
Acceptor) 

3.12 Hydrogen 
Bond 

10 HIS57 Pi-Orbitals O(H-Donor) 3.94 Hydrogen 
Bond  
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values of binding free energy authenticate the strong interaction of 
[SiW12O40]− 4 with TMPRSS2, and ACE2-RBD. In other words, 
[SiW12O40]− 4 interacts efficiently with TMPRSS2, and ACE2-RBD and it 
makes a stable complex with them. The nature of interactions, atoms 
involved in bonding with POM and bond lengths are shown in Tables 1 
and 2. The amino acid residues of TMPRSS2 and ACE2-RBD that inter-
acted with POM are demonstrated in Figs. 1 and 2. The POM + ACE2- 
RBD forms hydrogen bonds with twelve amino acids, which are Asp30, 
Ala387, Asn33, His34, Arg393, and Pro389, from ACE2 and Glu406, 
Arg403, Arg408, Gln409, Lys417 and Gly416 of the spike glycoprotein 
(RBD). Also, for the POM + ACE2-RBD system, there are electrostatic 
interactions between Asp30 from ACE2 and Asp30, Asp405, and Glu416 
of the spike glycoprotein (RBD) and the POM. Six amino acids Arg41, 
His57, Thr62, His96, Ser195, and Thr61 are involved in the formation of 
hydrogen bonding between the POM and TMPRSS2. As can be seen, 
[SiW12O40]− 4 has stronger interactions and makes a more stable com-
plex with ACE2-RBD compared to TMPRSS2as revealed by its lower 
value of binding free energy. The crucial step for the fusion of SARS- 
CoV-2 and host cell membranes is the activation and cleavage of spike 
glycoprotein of SARS-CoV-2 by host protease TMPRSS2 [55,56]. 
Therefore, as reported already, we can inhibit cell entry of SARS-CoV by 
blocking the activity of TMPRSS2 [57]. The association of POMs with 

TMPRSS2 may restrict the functionality of the S1/S2 site in the spike 
glycoprotein [58], limiting the fusion of viral and human cellular 
membrane, and suggests that POMs may serve as SARS-CoV-2 cell entry 
inhibitors. Lung with the massive surface area and the vast distribution 
of ACE2 in human alveolar epithelial cells is the vulnerable target organ 
for SARS-CoV. Thus, the investigation of compounds that interact with 
ACE2, and hinder viral entry into the cells by blocking this receptor and 
halting transmissibility and pathogenicity is an important field for 
research. The docking method showed that the POM might prevent 
SARS-CoV-2/ACE-2 interaction and viral entry because it had a high 
binding affinity at the ACE-2–RBD complex interface. Overall, compu-
tational studies indicate that POMs may limit CoV cell entry by 
decreasing the TMPRSS2 used by SARS-CoV-2 for spike glycoprotein 
priming and interrupting the interaction of SARS-CoV-2 spike protein 
with the human ACE-2 receptor. However, their systemic effects should 
be further examined in suitable ex vivo human organ culture or orga-
noids, animal models, or clinical trials. 

3.2. Molecular dynamics simulations 

3.2.1. Radius of gyration (Rg) 
The radius of gyration (Rg) of both TMPRSS2-POM and ACE2-RBD- 

POM complexes quantifies the molecule’s overall extension during a 
50ns MD run (Figs. 3 and 4). A low Rg value demonstrates better 
structural entirety and folding treatment [59]. Throughout the 50ns MD 
simulation, two complexes maintain a stable mean Rg of 1.65 nm for 
2OQ5-POM and 3.12 nm for 6LZG-POM. Likewise, the obtained Rg value 
for the unbound 2OQ5 and 6LZG was 1.66 and 3.13 nm. This further 
shows that the proteins gained more stability upon the binding of the 
ligand. During simulation, a slight enhancement in the Rg value of the 
6LZG-POM complex was observed, indicating its structural integrity. 
The MD simulation results entirely support that POM forms stable 
complexes with 2OQ5 and 6LZG, indicating its inhibitory properties for 
the TMPRSS2 and ACE2-RBD receptor, respectively [60]. 

3.2.2. RMSD 
RMSD analysis revealed insights and structural changes in the pro-

tein that confirm the protein’s stability and equilibrium during simula-
tion. The RMSD plot of the backbone atoms for the 2OQ5, 2OQ5-POM 
and 6LZG, 6LZG-POM is shown in Figs. 5A and 6A, respectively. RMSD 
was calculated for the unbound proteins and proteins-POM structures 
that converged during the 50ns MD simulation. The average RMSD of 
2OQ5-POM was found to be 0.37 Å, and for the unbound 2OQ5 was 
0.39 Å. Likewise, the obtained average RMSD for 6LZG-POM and 6LZG 
was 0.36 Å, and 0.37, respectively. If the RMSD value is less than 1.5 Å, 
it is considered to be good and acceptable. But, with the value of more 
than 3 Å for RMSD, it is clearly rejected. RMSD values are used to find 
the stability of the receptors with and without ligands and also to study 
the conformational changes of the receptors [61]. The low RMSD values 
indicated that POM was stable in MD simulations with proteins [62]. 

3.2.3. RMSF 
RMSF analysis was used to determine the flexibility of the total 

protein concerning its average structure. Low RMSF values demon-
strated narrowed movements, whereas high RMSF values demonstrated 
increased flexibility [63]. Ligand binding poses energy, and interaction 
has a direct correlation with residual fluctuation (RMSF) values. The 
RMSF plots for 2OQ5, 2OQ5-POM and 6LZG, 6LZG-POM are shown in 
Figs. 5B and 6B, respectively. The RMSF values for the 2OQ5-POM and 
6LZG-POM complexes were extremely low; as a result, they exhibited 
minimal movement, indicating that both complexes were stable. RMSF 
values were 0.30 and 0.29 Å on average for 2OQ5 and 2OQ5-POM 
during a 50 ns simulation. Likewise, the RMSF values for 6LZG and 
6LZG-POM were 0.29 and 0.29 Å. During the simulation, it was observed 
that Lys187 in the loop region of 2OQ5 was more fluctuated than those 
in the alpha-helix and beta-sheet regions. This indicated that the protein 

Table 2 
Predicted bonds between interacting atoms of POM and ACE2-RBD.  

S. 
No. 

Amino 
acid 

Amino acid 
atom 

POM atom Distance Nature of 
interaction 

1 A:ASP30 Negative W(Positive) 4.31 Electrostatic 
2 B: 

ASP405 
Negative W(Positive) 5.59 Electrostatic 

3 A:ASP30 Negative W(Positive) 5.02 Electrostatic 
4 B: 

GLU406 
Negative W(Positive) 4.44 Electrostatic 

5 B: 
GLU406 

Negative W(Positive) 5.52 Electrostatic 

6 B: 
GLU406 

H-Acceptor O(H- 
Donor) 

3.24 Hydrogen Bond 

7 A:ASP30 H-Acceptor O(H- 
Donor) 

3.22 Hydrogen Bond 

8 A: 
ALA387 

H-Acceptor O(H- 
Donor) 

3.01 Hydrogen Bond 

9 A:ASN33 H-Donor O(H- 
Acceptor) 

3.07 Hydrogen Bond 

10 A:HIS34 H-Donor O(H- 
Acceptor) 

2.67 Hydrogen Bond 

11 A:HIS34 H-Donor O(H- 
Acceptor) 

2.49 Hydrogen Bond 

12 A: 
ARG393 

H-Donor O(H- 
Acceptor) 

2.62 Hydrogen Bond 

13 B: 
ARG403 

H-Donor O(H- 
Acceptor) 

2.53 Hydrogen Bond 

14 B: 
ARG403 

H-Donor O(H- 
Acceptor) 

2.45 Hydrogen Bond 

15 B: 
ARG403 

H-Donor O(H- 
Acceptor) 

2.36 Hydrogen Bond 

16 B: 
ARG408 

H-Donor O(H- 
Acceptor) 

2.10 Hydrogen Bond 

17 B: 
ARG408 

H-Donor O(H- 
Acceptor) 

2.56 Hydrogen Bond 

18 B: 
ARG408 

H-Donor O(H- 
Acceptor) 

2.58 Hydrogen Bond 

19 B: 
ARG408 

H-Donor O(H- 
Acceptor) 

1.89 Hydrogen Bond 

20 B: 
GLN409 

H-Donor O(H- 
Acceptor) 

2.15 Hydrogen Bond 

21 B: 
GLN409 

H-Donor O(H- 
Acceptor) 

3.09 Hydrogen Bond 

22 B: 
LYS417 

H-Donor O(H- 
Acceptor) 

2.86 Hydrogen Bond 

23 A: 
PRO389 

H-Donor O(H- 
Acceptor) 

3.45 Hydrogen Bond 

24 B: 
GLY416 

H-Donor O(H- 
Acceptor) 

3.30 Hydrogen Bond  
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remained stable throughout the 50ns simulation period [64]. Except for 
the loop region, the residues 102 and 562 in the alpha-helix region of 
6LZG exhibited significant variation up to 0.40 Å and 0.45 Å, respec-
tively. Overall, the RMSF values for both proteins indicated that the 
complexes 2OQ5-POM and 6LZG-POM were stable [65]. 

3.2.4. Hydrogen bond interactions 
Hydrogen bond formation plays an important role in the stabilization 

of protein-ligand complex structure by minimizing the energy of the 
system. The hydrogen bond interactions of the complexes were calcu-
lated to validate the affinity of the POM to inhibit the proteins. Protein- 
ligand hydrogen bonding pattern were studied in bound POM with 
TMPRSS2 and ACE2-RBD. Figs. 7 and 8 show the number of hydrogen 

Fig. 1. Molecular docking perspective of POM-TMPRSS2.  

Fig. 2. Molecular docking perspective of POM-(ACE2-RBD).  
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bonds versus time during the simulation. The average H-bonding in 
2OQ5-POM and 6LZG-POM was 9.05 and 17.41 during the 50 ns 
simulation. Overall, the H-bonding patterns in 2OQ5-POM and 6LZG- 
POM interactions showed an energetically favorable and stable com-
plex formation [66]. 

3.3. MM-PBSA binding free energy 

The average free binding energy of the 2OQ5-POM and 6LZG-POM 
was computed by a python script MmPbSaStat.py (Table 3). We 
computed the average free binding energy and its standard deviation/ 
error of the files, which were obtained from g_mmpbsa. The binding free 
energy can acceptably illustrate the durability of the linking ligand re-
ceptor, which is an essential parameter of evaluation in drug discovery. 
The lesser the binding energy, the better is the binding of the ligand and 
protein [67]. Except for the polar solvation energy, the favorable 

Fig. 3. Radius of gyration (Rg) for TMPRSS2 and POM-TMPRSS2 during 50 ns 
MD simulation. 

Fig. 4. Radius of gyration (Rg) for ACE2-RBD and POM-(ACE2-RBD) during 50 
ns MD simulation. 

Fig. 5. (A) RMSD plots for TMPRSS2 and POM-TMPRSS2, (B) RMSF plots for 
TMPRSS2 and POM-TMPRSS2 during 50 ns MD simulation. 

Fig. 6. (A) RMSD plots for ACE2-RBD and POM-(ACE2-RBD), (B) RMSF plots 
for ACE2-RBD and POM-(ACE2-RBD) during 50 ns MD simulation. 

Fig. 7. Number of hydrogen bonds for POM-TMPRSS2 during 50 ns 
MD simulation. 
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contribution of van der Waals, SASA, and electrostatic energies were 
devoted to the binding of POM with TMPRSS2 and ACE2-RBD. Van der 
Waals energy’s augmentation to the overall binding free energy was 
higher upon the electrostatic contribution energy. The binding free en-
ergy value of 2OQ5-POM and 6LZG-POM were found to be − 103.65 ±
0.16 and − 151.94 ± 2.19 kJ/mol, respectively, indicating the studied 
POM has unique interactions within the 2OQ5 and 6LZG proteins. Fig. 9 
delineates the plot of the binding energy against time graphs for 
2OQ5-POM and 6LZG-POM. The above findings suggest that POM is a 
potential candidate in inhibiting the TMPRSS2 and ACE2-RBD receptors. 

4. Conclusions 

This study found that POMs may prevent COVs from entering the 
cells by blocking the host cell serine protease TMPRSS2, which SARS- 
CoV-2 uses for spike glycoprotein priming. They may also engage with 
the S protein and ACE2 and disrupt their binding by blocking the active 
sites. The GROMACS software was used to simulate the interaction of 
POM with TMPRSS2 and ACE2-RBD. Furthermore, the radius of gyration 
of TMPRSS2-POM and ACE2-RBD-POM has values that indicate the 
systems’ stability. Moreover, low RMSF and RMSD values indicate that 
POM is stable in the presence of proteins during MD simulation. The 
average H-bonding in 2OQ5-POM and 6LZG-POM was 9.05 and 17.41 
during the 50 ns simulation. The binding free energy values of 2OQ5- 
POM and 6LZG-POM were found to be − 103.65 ± 0.16 and − 151.94 
± 2.19 kJ/mol, respectively, indicating the studied POM has unique 
interactions within the mentioned proteins. Finally, the POMs may be 
tested in vivo as a potent and promising anti-COVID-19 candidate. 
Because of the wide range of antiviral action, and based on our 
computational results, it is evident to consider POMs as a great source of 
new medicinally helpful drugs; consequently, we highly suggest that 
POMs be included as much as possible in new drug discovery screening 
programs. This may be especially important in the pursuit of new 
medications for treating COVID-19 illness, a severe and quickly 
spreading disease for which no medical treatments are currently avail-
able and are desperately required. 
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