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Abstract: Potato is an important crop due to its nutritional value and high yield potential. Improving
the quality and quantity of tubers remains one of the most important breeding objectives. Genetic
mapping helps to identify suitable markers for use in the molecular breeding, and combined with
transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant
breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have
been successfully used to improve the yield and nutritional value of potatoes in an increasing world
population scenario. The emerging methods like genome editing tools can avoid incorporating
transgene to keep the food more secure. Multiple success cases have been documented in genome
editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber
quality and quantity have been summarized in this review.

Keywords: QTL mapping; genome selection; RNAi; CRISPR; plant breeding tools

1. Introduction

Potato (Solanum tuberosum L.) is the most important non-grain food crop concerning
its global consumption [1]. It was firstly domesticated in Perú around 10,000 years ago.
The potato will become an important crop consumed as staple food in the future due
to increasing food security issues, since the global population will rise to 9.7 billion by
2050 [2–4].

Potato has high nutritional values due to the presence of several essential phytochemi-
cals with significant health benefits [5]. Various phytonutrients (carotenoids, anthocyanins,
phenolics, and flavonoids), mineral elements (potassium, sodium, magnesium, copper,
iron, and zinc), and vitamins (vitamin B1, B6, B9, C, E) are the major components of
potatoes [6,7]. Due to their antioxidant properties, these phytonutrients are essential for
maintaining human health [5,8].

The main motive for improving this crop is to improve the processing tuber quality
with a higher yield. Yield of potatoes is determined by proper genotypes and growing
environments, and is significantly correlated with the number of sprouts, plant height,
shoot diameter, and leaves length [9]. The market values of table potatoes depend on
the visual features of cultivars, i.e., depth of eyes, flesh color, tuber shape, and cooking
suitability. The chemical composition of the tuber impacts the eating and appearance
quality of the potato products, for example, starch contents impact cooked product texture,
and sugar content directly affects fried product color [10].

Research on the genome sequencing of cultivars and their wild relatives have revealed
more significant genetic variations and signs of selection of theinteresting traits via genes.
Potato shows higher heterozygosity, tetrasomic polyploidity owing to its four homolog
chromosomes, rendering challenges to alter its genome [11]. Scrutinizing genes with
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functional and molecular genetics approaches will also meet key hindrances [12]. Thus,
combining the knowledge of functional genomics and basic plant breeding techniques with
advanced molecular methods is crucial to improve agronomic traits. Though many review
articles on potato breeding and transgenic potato have been written [10–14], there is a lack
of a comprehensive review focusing on a bridge between potato breeding and advanced
molecular techniques for improving the quality and yield of potato tubers. This review
will provide a new direction for potato breeders to use a combined approach of advanced
breeding and molecular techniques.

2. Quantitative Trait Loci (QTL) Mapping

Genetic modification does not rely merely on making crosses of donor species with the
recipient cultivar of potato. Instead, molecular techniques offer an alternative approach, and
reducing the chances of linkage drag associated with conventional methods. These methods
can incorporate entire genes, gene groups, or even whole chromosomes [14]. Genotyping
by next-generation sequencing tools can find the allelic variation in the genomics era
(Figure 1). Various breeding tools such as QTL analysis, whole-genome sequencing, and
marker-trait associations are crucial to understand the genetic differences between breeding
clones, progeny crosses, and wild species (Figure 1). Wild germplasm shows a smaller
genetic distance in self-incompatible germplasm than accessions of similar species in the
germplasm [15].
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Figure 1. A schematic flow diagram of genome-assisted breeding. 1© A core collection of S. tuberosum
germplasm exhibits the trait of interest and wide genetic diversity. 2©/ 3© After genetic resource
selection, a trait-based phenotyping assessment is performed, followed by genotyping of selected
populations. 4© Genotype-phenotype linkage is detected through various techniques. 5© The breeding
program results in the development of improved potato varieties.

2.1. QTL Mapping for Tuber Quality

Indirect manipulation and advances in QTL mapping have eased the way of crop
tuber quantity and quality improvement. This article mainly describes QTL mapping and
advanced molecular techniques based on the genetic improvement of potato tubers. Some
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major QTLs related to the potato tuber quality and quantity and their position regarding
chromosomes are shown in Table 1.

Table 1. QTL for potato tuber quality and quantity traits.

Trait QTL Chromosome Number References

Starch granule size SGS02-8 and SGS03-8 VIII [16]

Starch contents

pPt-535988–pPt-538127, toPt-440651 I

[17]

pPt-539763 II
toPt-437014–pPt-538033 III

toPt-438845 VIII
pPt-533878 X
pPt-471789 XI
pPt-656237 XII

STM1049-1, STWIN12G, STM1049-3 I

[18]

EAAT_MCGA_381 III
EACG_MCAA_191 DS, STM1002-1,

STM1002-2 IV

EACG_MCAT_925, StI022-3, StI022-5 VIII
EATC_MCCG_182 X

EACG_MCAA_191 DS, StI017-2DS XI
EACC_MCGA_114, EACG_MCAA_119 DS XII

PCT_MACT_86, StI022-2 DS,
EACG_MCAA_119 DS Unlinked

Pain1-A 718 (C 552) 2, Pain1- A 1544 and
Pain1-T 741, Pain1-8c III

[19]InvGE-A 85 (A 86), InvGE-G 95 (G 106) IX
InvCD141_T 543 (A 280, T 288, T 339, A 630,

C 1030, G 1031, T 1096), InvCD141-G 765 X

Stp23-8b III [20]

CIS
REC_B_05-1 V

[21]CIS_E_07-1 VII

Tuber shape

Solcap_snp_c2_34875 IV
[22]Solcap_snp_c2_25485, Solcap_snp_c2_25510 X

Solcap_snp_c1_1847 I

[23]
Solcap_snp_c2_54790 IV
Solcap_snp_c2_26012, VII

Solcap_snp_c1_15594, Solcap_snp_c1_11535 X

Tuber skin color

Solcap_snp_c2_31852, Solcap_snp_c2_25759,
Solcap_snp_c2_21178 I

[22]

solcap_snp_c1_12440 V
solcap_snp_c2_4342, solcap_snp_c2_45215 VII

solcap_snp_c2_50702, solcap_snp_c2_53902,
solcap_snp_c2_15803 VIII

solcap_snp_c2_22697 X
solcap_snp_c2_39889 XI

and solcap_snp_c2_5385 XII

Biosynthesis of “leaf starch” or “transient starch” usually occurs during the day-
time [24]. In contrast, the breakdown of sucrose and its conversion to storage starch occur
during the nighttime [24,25]. This conversion involves complexed procedures encoded by
various gene sets located at 123 loci on I-XII chromosomes [26]. They also control tuber
starch contents, sugar contents, and sugar-starch interconversion [26].

Starch granules in potato tubers are always more significant in size than the granules
synthesized in the leaves [27,28]. For the size of starch granules, two QTLs viz. SGS02-8
and SGS03-8 have been documented on chromosome VIII [16]. Also, the structure and com-
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position of storage starch are different from leaf starch [24,29]. Twelve QTLs related to tuber
starch contents have been discovered (Table 1) [17]. Similarly, Li et al. [18] also reported
other loci for starch contents (Table 1). Around 77 genomic loci encoding enzymes have
been found associated with starch metabolism [30]. Various enzyme isoforms involved in
starch metabolism also have been reported: 6 sub-units of ADP-glucose pyrophosphorylase
large subunits; 5 different types of alpha-amylase; 4 different types of alpha-glucan phos-
phorylase; 2 different kinds of ATP-ADP antiporters; 10 different types of Beta-amylases;
4 different kinds of branching enzymes; disproportionating enzymes; glucan water dikinase
(GWD); glucose transporters; glucose-6-phosphate translocators; granule bound starch
synthases and many others [30]. The starch synthesis starts from bioconversion to adeno-
sine diphosphate-glucose from sucrose, the primer substrate of starch biosynthesis, which
are employed to synthesize the amylopectin and amylose. Five chromosomal regions on
chromosome 2, 3, 5, 7, and 10 were linked with amylose content [16].

The distinctiveness of potato starch is that it has high level of starch-bound phosphate,
conferring it new properties such as high peak viscosity and gel-forming capacity. A total
of 17 loci was identified significantly for the phosphorus content in potato starch, 14 of
which are assigned to 8 genomic regions on chromosomes 1, 4, 5, 7, 8, 10, and 11, and most
of the SNPs identified belong to protein coding regions [31].

Allelic variation significantly affects the starch phosphorylation process, and the genes
encoding GWD, starch branching enzymes I and II, and starch synthase III are associated
with this process [32]. These allelic variants can be served as genetic markers for starch
phosphorylation [32].

The important loci related to tuber starch contents were firstly documented by Li
et al. [20]. QTLs related to starch contents were AmyZ (M79328), SssI (Y10416), StpL
(X73684), GbssI (X52417), StpH, located on chromosomes IV, III, V, VIII and IX, respec-
tively [20]. Another genetic mapping study has revealed 12 different loci regarding tuber
starch contents viz. pPt-539763, pPt-535988, toPt-438845, pPt-533878, pPt-471789, pPt-
538127, toPt-437014–pPt-538033, toPt-440651, and pPt-656237, on seven chromosomes: I,
II, III, VIII, X, XI, and XII [17]. Average starch yield and chips quality are associated with
Stp23-8b and Pain1-8c or Pain1prom-d/e [20,33].

Protein content is another importance quality trait of the potato industry. Genetic
mapping analysis revealed potential QTLs on chromosomes 2, 3, 5 and 9, and further
cofactor QTL analysis identified two masked QTLs on chromosomes 1 and 5 [34].

2.2. QTL Mapping for Tubers Storage Duration

Accumulating reducing sugars in cold-stored potatoes, called cold-induced sweetening
(CIS), is a severe problem that causes unacceptable color changes and acrylamide formation
in fried products. CIS has been found to be associated with various enzymes, such as
starch synthases, adenosine diphosphate glucose pyrophosphorylase, branching enzymes,
debranching enzymes, β-amylases, amylase inhibitors, and starch phosphorylases for
degradation of starch contents [35]. The CIS has been related to the putative Kunitz-type
tuber invertase inhibitor (KT-InvInh) position on the StKI locus at chromosome III [36].

The low sugar and fructose contents of tubers play pivotal roles in the processing
quality of the potato. The organization of invertase genes (InvGE and InvGF) at the Inv ap
-b locus has already been documented on chromosome IX [37]. Later, InvGE-A 85 (A 86),
InvCD141-G 765, InvCD141_T 543 (A 280, T 288, T 339, A 630, C 1030, G 1031, T 1096)
InvGE-G 95 (G 106), Pain1- A 718 (C 552) 2, and Pain1- A 1544, Pain1-T 741 on chromosomes
III, X and IX were found to be associated with tuber starch contents and its processing
quality [19]. The QTLs of CIS and reconditioning (REC; a process of reducing sugars into
starch by storing the cold-stored potatoes) were identified on chromosomes V, VI, and
VII of the CIS-susceptible and chromosomes V and XI in the CIS-resistant parents. Two
functional genes, a starch hydrolysis gene GWD, were located with QTL as REC_B_05-1,
and a starch synthesis gene AGPS2 has also been mapped in QTL CIS_E_07-1 [21].



Int. J. Mol. Sci. 2022, 23, 9982 5 of 17

The QTLs for tuber dormancy and sprouting traits were found on chromosomes 2, 3,
and 7, which are good candidates for marker-assisted breeding [38].

2.3. QTL Mapping for Tuber Morphology

Tuber shape and color are very important quality traits regarding its market life
or selling because consumers pay more attention to the shape of potato tubers. For the
tuber shape, two loci, SNP Solcap_snp_c2_25510 (Alpha virus core protein family) and
Solcap_snp_c2_25485 (ribosomal protein S6 kinase) on chromosome X were found signifi-
cantly associated with the trait in 2016 [22], while another locus, SNP Solcap_snp_c2_34875
(serine/threonine-protein kinase) on chromosome number IV was found to be significant
in 2017. For tuber skin color, a total of 12 QTLs, three on chromosome 1; one on chromo-
some 5; two on chromosome 7; three on chromosome 8; one on chromosome 10; one on
chromosome 11, and one on chromosome 12 were detected (Table 1) [22]. Significant QTLs
for tuber shape were detected on chromosomes 4, 7, and 10, with heritability estimates
ranging from 0.09 to 0.36 [23]. For each grain shape trait (eye depth, tuber shape, regularity
of tuber shape, mean tuber weight), four to seven QTLs were determined except for tuber
flesh color, which was controlled by a major QTL on chromosome III, accounting for 76.8%
of trait variance [39]. Moreover, a minor QTL was localized on chromosome II for flesh
color, [39]. In a gynogenic dihaploid (2n = 2x = 24) population, three QTLs for tuber shape
were identified on chromosomes 6, 10, and 11 [40].

Likewise, certain other QTLs linked with tuber morphology and pigmentation have
been documented. For instance, the R2R3-MYB loci for tuber flesh color have been revealed
on chromosome 10. Dihydroflavonol 4-reductase and flavonoid 3′,5′-hydroxylase are associated
with color, whose loci have been reported on chromosomes 2 and 11 [41]. Similarly, the
loci of Anthocyanin 1 associated with pigment flesh intensity was found on chromosomes
9 and 10, and that of β-carotene hydroxylase for yellow flesh was detected on chromosome
3 [41]. These mapping researches provide a better understanding of the genetics of vari-
ous desirable characters and suitable diagnostic DNA markers for indirect marker aided
selection (MAS) of target traits in potato breeding.

3. Genome Selection (GS)

In conventional breeding techniques, for several generations, recurrent phenotypic
selection can be exploited [42]. Decreasing population size and increasing genotypes
number under evaluation are the typical selection challenges in the conventional method.
The breeder selects parents based on phenotypic characters for pair-wise crossing [43].
Generally, several high-yield and stress-resistant parents will be screened over several
clonal generations in several years [44]. The environment significantly influences the
expression of multiple traits in potatoes, such as yield, tuber size, and processing quality.
Almost 40 traits are considered to be important for the cultivar development of potato,
which are divided into yield, tuber quality, and stress tolerance attributes [45]. Knowledge
of the gene × environment interactions will help the identification of superior parents,
screening, and selection methods for superior genotypes [46]. Figure 1 shows a schematic
flow of various steps involved in genome-assisted breeding.

MAS is a great tool for assisting plant breeding, but many agronomic traits are com-
plicated and controlled by several loci. An improved and new breeding approach has
been developed, which is genomic selection (GS). GS helps estimate plants’ genetic success
based upon all molecular markers’ information simultaneously instead of a few ones like
in MAS [47]. Increased accuracy of high-throughput genotyping techniques, decreased
cost of sequencing techniques, and marker selection have reinforced the value of GS [48].
GS can predict the genetic value/breeding value. There are two populations: the training
population that is genotyped and phenotyped, and the testing population that is geno-
typed but not phenotyped. GS is used to predict the phenotype of testing population for
some selection cycles. Various statistical models are used to predict the traits of interest,
such as Kinship GAUSS, PR-BLUP, Bayesian LASSO, Bayes B, and Bayes Cp [49]. For



Int. J. Mol. Sci. 2022, 23, 9982 6 of 17

starch contents, the cross-prediction validation correlation of 0.56 in the training panel
but the correlation was around 0.30 in the test panel derived from the tetraploid mapping
population of a breeding program in Denmark [50]. The prediction accuracy of starch
contents has improved by 8% in tetraploid German breeding clones [51]. Correlations of
cross-prediction validation regarding tuber dry matter or specific gravity were 0.75–0.83
and 0.37–0.71 among different populations in Denmark [52,53]. In contrast, average cross-
validation of the dry matter in European cultivars was 0.65 (ranging from 0.54 to 0.68) [54].
For chipping quality, prediction accuracy ranged from 0.4 to 0.45, as depicted from the
pedigree depth of unselected US populations [52]. When tetraploid mapping populations
were used in the Denmark breeding program, cross-prediction validation correlations
ranged from 0.39 to 0.79, while the correlations declined across the populations, ranging
from 0.28 to 0.48 [53]. The results gave a 0.73 cross-prediction validation correlation for
the training panel, while in the test panel, 0.42 and 0.43 correlation values from mapping
populations of tetraploid potato breeding programs in the rest of Europe [50]. For tuber
yield and yield components, an additive genetic variance of SNPs captured 45% of the
total genetic variance; the prediction accuracy was calculated in the range of 0.06 to 0.63
in tetraploid breeding unselected US F1 population [52]. In cultivated German clones of
breeding potato, about an 8% increase was obtained in the prediction model accuracy using
both additive and dominance effects [51]. Averages of 0.37, 0.32, and 0.17 for total yield,
size, and number were revealed by cross-validation of several models, respectively [54].
Sallam et al. [55] indicated that if only the prediction accuracy exceeds 0.25, GS should
surpass phenotypic selection in gain per unit time. Although the lowest average prediction
correlation in some GS studies was around 0.30, GS still has potential to improve breeding
efficiency in tetraploid potato for less cost per unit time.

Genome design breeding of hybrid potato has been carried out to exploit the heterosis
in diploid potatoes with high homozygosity, enabling the transformation of potato breeding
from a slow, non-accumulative mode into a fast iterative one [56]. The resultant hybrids
showed strong heterosis [56]. For successful hybrid potato breeding, more inbred lines of
high homozygosity are essential. Huang et al. [57] assembled 44 high-quality pan-genomes
from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota,
the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum.
The identification of 561,433 high-confidence structural variants and construction of a map
of large inversions provides critical guidance for improving inbred lines and precluding
potential linkage drag, which will accelerate hybrid potato breeding [57].

4. Transgenic Breeding

When gene identification tools combined with advanced biotechnological tools such
as genome editing, incorporating the genes into the breeding program becomes fast [58–62].
Though there are many approaches to making transgenics, only four main approaches will
be discussed here:

(1) Conventional transgenic approaches of potato breeding include incorporation of a
transgene via Agrobacterium-mediated transformation or any other vector for stable
expression of a gene;

(2) RNA interference (RNAi)-mediated transgenics is made to decrease the expression of
undesirable traits by adding sense and antisense of the target gene with an intronic
sequence. When this cassette is introduced into the plant genome, the target gene
expression is significantly decreased;

(3) Transcription Activator-Like Effector Nucleases (TALENs) mediated genome editing,
which is utilized for generating non-GMO gene modification as well;

(4) Clustered Regularly Interspaced Short Palindromic Nucleases (CRISPR)-associated
(Cas) system-mediated genome-editing in potato plants. For this approach, a double-
strand break is produced in the undesirable gene coding for an undesirable character.
After a successful interruption, mutations are produced as required.
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4.1. Conventional Potato Transgenics
4.1.1. Transgenics to Improve Tuber Quality and Yield

An overview of the development of transgenic potato through agrobacterium-mediated
transformation is given in Figure 2. Few examples in the modification of genes in potatoes
via different transgenic engineering techniques are given in Table 2.
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Figure 2. An overview of agrobacterium-mediated gene transformation in plants. 1© Ti-Plasmid
isolation from parent cell (Agrobacterium tumefaciens). 2© Digestion of the plasmid with specific
endonucleases enzymes. 3© Ligation of foreign DNA into the plasmid. 4© Insertion of recombinant-
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a field.

Table 2. Comparison of three different kinds of transgenics to improve potato tubers’ quality
and quantity.

Transgenics Trait Introduced/Modified Gene Added/Silenced References

Conventional

Starch yield PsGPT [63]

Tuber yield
AtPAP2 [64]

SPS [65]

tms1 [66]

Amino acid (methionine) AmA1 [67]

Amino acid (cysteine) cysE [68]

Astaxanthin Or [69]

Ketocarotenoids crtO [70]

Carotenoids
crtZ, [71]

bkt1 [72]

StLCYb [73]

Ascorbic acid DHAR [74]

Vitamin-E At-HPPD & At-HPT [75]

Vitamin B6 PDXII [76]
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Table 2. Cont.

Transgenics Trait Introduced/Modified Gene Added/Silenced References

CIS
SbRFP1 [77]

NtInvInh2, StInvInh2A and
StInvInh2B [78,79]

LbPFK [80]

RNAi

Starch quality SSIII [81]

GBSS [82]

CIS
VInv, [83–85]

SPP [86]

TALENS

Starch quality GBSS [87]

CIS
StvacINV2 [88]

VInv [89]

CRISPR

Starch quality GBSS [90]

Anti-browning StPPO2 [91]

Reducing steroidal alkaloids St16DOX [92]

Starch yield has been increased by modifying potato source and sink capacities. This
purpose was achieved by increasing source capacity via overexpression of mesophyll-
specific pyrophosphatases or by producing antisense expression of ADP-glucose pyrophos-
phorylase in potato leaves. Re-routing of photoassimilates was carried out to deploy both
approaches, thus making use of sink organs by consuming the leaf starch. Instantaneous
enhancement in sink capacity was carried out by increasing the expression of two plastidic
metabolite translocators, i.e., an adenylate translocator in potato tubers and a glucose 6-
phosphate/phosphate translocator. Using this ‘pull’ approach, an increase in potato starch
contents and starch yield have also been documented when sink strength is increased. In the
recent biotechnological approaches, source and sink capacities were successfully enhanced
by combining the “push” and “pull” approaches using two different attempts. This method
led to two-fold increase in the starch yield in tubers. This successful approach can also be
applied to other crop plants in the future [63]. The foreign sucrose-phosphate synthase gene
has been successfully introduced in potatoes to improve the supply of photosynthate from
leaves (source) down to the tubers (sink), resulting in better quantity and quality of potato
tubers [65]. The agrobacterium auxin biosynthesis gene has also been successfully inserted
in potato lines to enhance indole acetic acid contents in tubers and tuber formation [66].
Insertion of purple acid phosphatase 2 of Arabidopsis (AtPAP2) in potato lines resulted in
increased tuber yield and tuber starch content [64]. Tuber size has also been improved in
potato lines by inserting Arabidopsis jasmonic acid carboxyl methyltransferase gene [93].

Production of amino acids using genetic modified potato crops is particularly impor-
tant for improving human nourishment [67]. Functional genomics studies conducted on the
biosynthesis of amino acids have revealed that sucrose supply directly affects the increase in
amino acids at the cell level and is fully controlled at transcription level, thus mediating the
biosynthesis of amino acids in potatoes [94]. The methionine contents have been enhanced
by increasing the expression of CgS∆90 in transgenic potato lines [95]. Cytidine base editor
(CBE) was used to amino acid alterations, which led to a loss of function locus after substitu-
tions of the KTGGL-encoding locus [96]. Scientists have successfully developed engineered
potatoes inserted with the amaranth seed albumin (AmA1) gene or sunflower albumin
gene increasing total methionine level 5–7 folds in tubers [67]. Different approaches have
also been used to enhance methionine in potato plants by molecular breeders and biotech-
nologists [97–99]. Cysteine biosynthesis is associated with O-acetyl-L-serine produced by
serine acetyltransferase (SAT). The SAT-encoding gene cysE was transformed in the white
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lady cultivar of potato, which significantly enhanced the transcript level of glutathione and
cysteine in tubers to 1.5-fold higher on average than in the control plants [68].

Vitamins are pivotal in maintaining human health by mediating the metabolic system
and bringing the metabolic processes associated with the energy in the tissues of living
organisms obtained from food or other sources [100]. Many studies have been conducted on
developing genetically modified potato tubers with increased vitamins. Vitamin A is func-
tional in developing visual pigments, rod and cone cells inside the eye’s retina, synthesized
from the precursor ß-carotene from potato. In potato, major carotenoids including antherax-
anthin, lutein, xanthophyll, esters, and violaxanthin have been identified [101]. Researchers
have successfully increased carotenoids to several folds in transgenic potatoes [70,102]. Re-
search works have also revealed that the insertion of genes associated with the pathway of
carotenoid biosynthesis along with the cauliflower orange (Or) gene in the potato genome
increased the tuber astaxanthin contents successfully [69,71]. For successful commercial
production of valuable ketocarotenoids in potato, the 3, 3′ β-hydroxylase (crtZ) and the 4,
4′ β-oxygenase (crtW) genes along with a suitable promoter were successfully inserted in
the potato genome, which resulted in increased production of cellular carotenoids to form
a wide array of ketolated and hydroxylated derivatives [103]. The crtB gene was success-
fully engineered in the potato genome using Agrobacterium to increase the carotenoid
contents 4–7 times in Solanum tuberosum [104]. An algal bkt1 gene, encoding a β-ketolase,
has also been successfully transformed into the potato genome to enhance the levels of
ketocarotenoid in potato tubers [71]. Similarly, the potato has been transformed by adding
the crtO gene to successfully produce ketocarotenoids like astaxanthin (3,3′-dihydroxy
4,4′-diketo-β-carotene) [70].

Researchers have significantly enhanced potatoes’ ascorbic acid (AsA, vitamin C) con-
tents by increasing the production of recycling ascorbate by inserting the dehydroascorbate
reductase (DHAR) gene [74].

Vitamin E (α-tocopherol), a potential antioxidant, is biosynthesized by photosynthetic
organisms and is crucial for human health, but it should be consumed at the sub-optimal
level. Scientists have successfully overexpressed vitamin E in potato tuber by inserting
with two vitamin-E biosynthetic genes, homogentisate phytyl transferase (At-HPT) and p-
hydroxyphenylpyruvate dioxygenase (At-HPPD) [75]. Vitamin B6, an essential metabolite, is
mandatory for living organisms because it is a cofactor in various biochemical reactions in
the body. It is documented as a potential antioxidant molecule that regulates the protein
expression involved in the scavenging of cellular reactive oxygen species. The PDXII gene
was successfully inserted in potato lines to enhance the production of vitamin B6 [76].

4.1.2. Transgenics to Improve Tuber Storage Duration

Successful engineering of novel RING finger gene SbRFP1 in potato plants inhibited
invertase and β-amylase activity. The activity of these enzymes decreased the degrada-
tion of sucrose and starch and thus decelerated the accumulation of reducing sugars in
tubers [77].

Since the activity of vacuolar invertase (StvacINV1) is importantly involved in the
CIS process, the invertase inhibitors can play roles in the inhibition of StvacINV1 ac-
tivity. Scientists have successfully decreased the activity of StvacINV1 by adding two
putative inhibitors (StInvInh2A and StInvInh2B) to the potato genome, which resulted
in reduced accumulation of reducing sugars and acrylamide in cold-stored tubers and
thus the CIS [78,79]. Sugar metabolism was significantly modified by inserting bacterial
genes encoding phosphofructokinase to decrease CIS, and this addition did not hinder any
growth process of the plant [80].

4.1.3. Transgenics to Improve Tuber Morphology

Better tuber color and enhanced anthocyanin contents was successfully achieved
by inserting a potato UDP-glucose: flavonoid-3-O-glucosyltransferase (3GT) gene in potato
cultivar Désirée plants via agrobacterium-mediated transformation [105]. Similarly, the
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R2R3 MYB gene was added to the potato genome to increase the accumulation of pigments
in the potato line [106].

4.2. RNAi for Potato Improvement

Since its discovery, RNAi technology has gained popularity in plant science [107].
Gene silencing at the post-transcription level has gained optimal results, which can be
further applied in crop improvement.

4.2.1. RNAi Transgenics to Improve Tuber Quality

The RNAi plant expression vectors including sense and antisense fragments of the sol-
uble starch synthase (SSIII) gene was constructed and transformed into potato cultivars using
Agrobacterium-mediated transformation method [81]. The transgenic potatoes produced
different starch granules. The amylose content of starch was increased by 2.68–29.05%,
while the amylopectin to amylose ratio and the phosphorus contents in the starch was
significantly reduced compared to the control plants. So, it has been established that
RNAi-mediated plants can be used for starch improvement in potato plants [81].

4.2.2. RNAi Transgenics to Improve Tuber Storage Duration

The vacuolar invertase gene (VInv) was downregulated to more than 90%, reducing
the sugars during cold storage by ~93% in the RNAi-mediated transgenic lines. Potato
chips made with these transgenics were light in color because of the significantly low
acrylamide content [84]. RNAi-mediated transgenics with the Désirée cultivar have also
been produced to target the vacuolar invertase (VInv) gene, which converts starch into
reducing sugars. The results were quite promising, like conventional transgenics, thus
RNAi can be successfully used to reduce CIS in engineered potato tubers [83–85].

The activity of sucrose-phosphatase (SPP) was decreased in transgenic potatoes by
RNAi, resulting in the decreased expression of vacuolar invertase upon cold treatment and
thus decreased the CIS [86].

Acid invertases are key drivers among various enzymes, which playing an imper-
ative role in sucrose to reducing sugar conversion. An average of 69.8% reduction in
the expression of acid invertase in RNAi-mediated transgenic lines, decreased the CIS
considerably. Compared to well-inhibited antisense invertase transgenic plants, RNAi medi-
ated downregulation significant changed the invertase activity endogenously, showing its
post-transcriptional gene silencing potential strategy in amelioration of cold sweetening in
potato storage [108].

4.3. Genome Editing Technologies
4.3.1. TALENs Mediated Potato Modifications

TALENs have been tested and proven functional in several studies of potato genome
editing [109]. The acetolactate synthesis (ALS) gene encodes acetohydroxy acid synthase
which catalyzes the first step in the synthesis of branched amino acid and is sensitive to a
number of herbicides such as imazamox [110]. By using the TALEN system, the mutated
ALS gene was coupled for the targeted integration of foreign genes into the host potato [111].
TALENs technology successfully improved tuber potato by vacuolar invertase activity
interruption, which reduced CIS and reduced sugars [89]. Starch alterations were made
by Kusano et al. [87], who designed the “Emerald-Gateway TALEN system”, a unique
delivery system, and targeted granule-bound starch synthase (GBSS) gene in the host for
site-specific mutation. It has its role in starch biosynthesis in granulation, thus modifying
starch quality.

4.3.2. CRISPR-Cas Mediated Potato Modifications

The overview of CRISPR-Cas9 mediated gene editing in an organism is depicted
in Figure 3. The phytoene desaturase (PDS) has an imperative role in the carotenoid
biosynthesis pathway, and caused the depigmentation due to the knockdown of PDS in the
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edited plants. Different sgRNAs have been utilized to decrease the activity of phytoene
desaturase (PDS) by targeting its different sites. However, the unpaired nucleotides of
target DNA can stimulate or decrease the activity of the Cas9-sgRNA complex in vitro
according to the mismatch position [112].
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Figure 3. Overview of CRISPR-Cas9 mediated gene editing. 1© A complex of CRISPR-Cas9 genetic
scissors and artificially constructed single guide RNA (sgRNA) scans DNA and traces code where a
cut has to be made. 2© Formation of non-homologous end-joining (NHEJ) and homology direct repair
(HDR) strands after DNA double-strand break (DSB). 3© Ligation of the DNA DSB by nucleotides
addition on the right and deletion on the left result in gene disruption. 4© Repairing the DSB in HDR
by employing an externally provided homologous DNA template for copying. The donor template’s
DNA sequence is duplicated at the targeted site, which results in a guided repair.

The GBSS gene is considered to have a higher efficiency at the protoplast level. Replac-
ing the Arabidopsis U6 promoter with endogenous potato U6 promoter, resulting in 35%
editing of the allelic genes in the ex-plants. However, a significant reduction in laborious
cell culturing, regeneration of ex-plants, and tedious screening procedures of potatoes can
be avoided with this tool [113]. Potato protoplasts were transfected with Ribonucleoprotein
complexes (RNPs), consisting of sgRNAs and Cas9 nuclease. It resulted in mutations
happened in around 68% of regenerated plants with at least one allele of the target gene.
Successful mutations in the StPPO2 gene resulted in a 69% reduction in the PPO activity in
tubers and a 73% reduction in enzymatic browning compared to the control. Concludingly,
a significant decrease in CIS can be made by CRISPR/Cas9 mediated genome editing [91].

The StGBSS gene was targeted via CRISPR-associated nuclease 9/guide-RNA (Cas9/gRNA),
resulting in 25% mutagenesis in edited plants for GBSS [104]. Consequently, no enzyme activity
related to carotenoids was observed due to the successful silencing of the StGBSS gene [112].
CRISPR-Cas9 has successfully altered the amylose-amylopectin ratio of potato starch. Gene
encoding for GBSS was targeted from different sites, resulting in 67% mutant alleles in
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the edited plants. Full knockout of GBSS resulted in four allele-mutated lines of potato.
Knockout of amylose alleles led to an enhanced amount of amylopectin contents [90].

The steroidal glycoalkaloids (SGAs) add a bitter taste to the potato tubers and have
shown toxicity to various organisms. Fortunately, scientists have successfully decreased
the SGA contents in the potato tubers. Nine candidate guide RNAs (gRNA) were prepared
to target St16DOX in order to manipulate the characteristics of potato tubers according to
the customer preference [92]. The gene StSSR2 was targeted, which decreased the level of
SGAs in edited plants by 44% in leaves and 66% in tubers [114].

4.4. Production of Non-GMOs Using Advanced Biotechnological Techniques

In this modern age of technology, there are several ethical, scientific, and public con-
cerns about releasing genetically modified organisms (GMOs) as cultivars. The organism
genetic components are better undisturbed for food security purpose except the acceptable
genome modifications. TALENs and CRISPR-Cas9 have the potential to realize the objec-
tives that genetically new but transgene-free plants can be obtained in T2 mutant lines after
segregating generations from T0 [115].

5. Conclusions

QTL mapping has provided the molecular markers for marker assisted selection for
potato yield and quality improvement. Genomic selection uses genome wide markers
and facilitates rapid selection of potato breeding lines with superior yield and quality
performance and increase the accuracy of selections. Many improvements in potato yield
and nutrition levels regarding starch contents, protein contents, and vitamins, among
other, have been achieved by conventional transgenic engineering and current genome
editing technologies, e.g., TALENS and CRISPR-Cas9. Future researches can be focused
on production of various vaccines in potatoes, which can easily be used to fight global
pandemics like coronavirus, hepatitis, ebolavirus. Since population rise and arable land
decline have always threatened our world, these new technologies are expected to increase
yield and nutrition in potatoes that provide insights to fighting potential hunger in the
growing world.
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