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Abstract

Processes of molecular innovation require tinkering and shifting in the function of existing

genes. How this occurs in terms of molecular evolution at long evolutionary scales remains

poorly understood. Here, we analyse the natural history of a vast group of membrane-associ-

ated molecular systems in Bacteria and Archaea—the type IV filament (TFF) superfamily—

that diversified in systems involved in flagellar or twitching motility, adhesion, protein secre-

tion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they

may have been present in the last universal common ancestor. From there, two lineages—a

bacterial and an archaeal—diversified by multiple gene duplications, gene fissions and dele-

tions, and accretion of novel components. Surprisingly, we find that the ‘tight adherence’

(Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a sys-

tem resembling the ‘EppA-dependent’ (Epd) pilus and were associated with the acquisition of

a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili

were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion

systems arose several times independently and much later in natural history. The functional

diversification of the TFF superfamily was accompanied by genetic rearrangements with

implications for genetic regulation and horizontal gene transfer: systems encoded in fewer

loci were more frequently exchanged between taxa. This may have contributed to their rapid

evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the

superfamily reveals an impressive catalogue of molecular evolution mechanisms that

resulted in remarkable functional innovation and specialisation from a relatively small set of

components.

Introduction

New complex forms, functions, and molecular systems arise by the shift in function (co-

option) of elements that may have evolved to tackle different adaptive needs [1]. At the molec-

ular level, this involves tinkering with pre-existing molecular structures by diverse processes,
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including mutation, recombination, and gene fusion and fission [2]. These variants are ulti-

mately subject to natural selection and may eventually become fixed in populations [3]. In Bac-

teria and Archaea, this is facilitated by the constant income of novel genetic information by

horizontal gene transfer [4–6]. Complex adaptations can evolve through a series of small adap-

tive steps. E.g., metabolic networks evolve stepwise to accommodate novel reactions at their

edges [7]. Innovation may also arise by processes of neofunctionalisation or subfunctionalisa-

tion following the duplication of genes encoding proteins with multiple functions or the acqui-

sition by horizontal transfer of homologous genetic systems. How these processes shape the

evolution of macromolecular complexes remains poorly known.

The appendages of Bacteria and Archaea are striking examples of functional diversification.

They are complex macromolecular machineries encoded by many genes and spanning several

cellular compartments that can evolve towards novel functions. E.g., the type III protein secre-

tion system (T3SS) evolved from the secretion apparatus of the bacterial flagellum [8], the type

IV secretion system (T4SS) from the conjugation apparatus [9], and the type VI secretion sys-

tem (T6SS) possibly from co-option of phage structures [10,11]. A particularly remarkable

illustration of these processes is provided by the type IV filament (TFF) superfamily of bacte-

rial and archaeal systems that include the type II secretion system (T2SS), the type IVa pilus

(T4aP), the type IVb pilus (T4bP), the mannose-sensitive hemagglutinin pilus (MSH), the

tight adherence (Tad) pilus, the competence pilus (Com), and the type IV-related pili in

Archaea (Archaeal-T4P), which includes the archaeal flagella (archaellum). These systems

have core homologous components, sometimes in multiple copies, and present similarities in

terms of macromolecular architecture throughout Bacteria and Archaea (Fig 1) [12–14]. They

include AAA+ ATPases, among which the T4aP PilT is the most powerful molecular motor

known [15]; an integral (cytoplasmic) membrane (IM) platform; and a prepilin peptidase that

matures a set of specific pilins or pseudopilins (in T2SS) [16]. Bacteria with two cell mem-

branes (diderms) also encode a secretin that forms an outer-membrane pore [17]. Other

Fig 1. Schematic representation of the different systems and associated genes. Homologous components are represented in the same colour. The table below

the drawing indicates the colour code and the name of the different components in each type of system. For the Archaeal-T4P, the representation of the systems is

based on the representation of the archaellum, and the genes mentioned in the legend are the names of the genes used in the literature (not the arCOG database’s

names). Some systems have multiple homologues of the ATPase, and these are shown as multiple clusters in the figure (with same shape and colour). Archael-

T4P, type IV-related pili in Archaea; arCOG, archaeal Cluster of Orthologous Genes; Com, competence pilus; IM, integral membrane; MSH, mannose-sensitive

hemagglutinin pilus; SDA, secretin-dynamic–associated; Tad, tight adherence; TFF, type IV filament; T2SS, type II protein secretion system; T4aP, type IVa pilus;

T4bP, type IVb pilus.

https://doi.org/10.1371/journal.pbio.3000390.g001
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proteins of these systems are either specific for each system or evolve too fast to allow the infer-

ence of homology among all variants.

The TFF nanomachines assemble filaments composed of subunits with an N-terminal

sequence motif named class III signal peptide, generically named type IV pilins [14]. These

systems are involved in functions typically associated with extracellular pili in Bacteria and

Archaea, including adherence, cell–cell attachment, and the formation of biofilms [18–20].

They are exploited by phages for cell infection [21]. T4aP, T2SS, T4bP, and Tad are also impor-

tant virulence factors in pathogenic Bacteria [22–27]. Nevertheless, and in spite of their homol-

ogy, TFFs have evolved specific biological functions. T4aP and T4bP allow Bacteria to move by

twitching motility (a form of surface movement promoted by repeated cycles of extension–

retraction of the pilus) [28,29]. T2SS secrete proteins from the periplasm across the outer

membrane [16]. Some Com, T4aP, and Archaeal-T4P facilitate the uptake of extracellular

DNA into the cell [30,31]. In Bacteria, these systems are by far the most frequent appendages

involved in natural transformation [31], the exception beingHelicobacter, which use a system

derived from a T4SS [32]. Archaeal-T4P include the archaellum involved in motility by rota-

tion of the appendage, extracellular structures involved in sugar uptake (Bindosome or Bas),

the UV-inducible pilus of Sulfolobus (Ups) involved in establishing cell–cell contacts to enable

DNA repair under stress conditions, and several pili with poorly characterised functions

[33–35].

The functional diversification of the superfamily is not clade-specific because different

types of systems are present in the same clades. This suggests frequent horizontal transfer and/

or an ancient origin of the superfamily. T4aP and the Tad pilus can be found in most bacterial

phyla [36,37], and Archaeal-T4P in most Archaea [35]. The T2SS, T4bP, and MSH have only

been described in diderms [38,39]. The distribution of the TFFs involved in competence is

poorly known because different types may be involved in the process, in which they have a

necessary but not sufficient role [31], and still keep additional functions associated with motil-

ity or adhesion. In summary, the TFF superfamily has diversified into several different func-

tions by co-option processes using a common set of homologous components identifiable

across Bacteria and Archaea.

Previous studies dedicated to the evolution of the AAA+ ATPases, Tad, T4aP, and T2SS

date from the previous decade [12,37,40,41], when data were scarce and phylogenetic methods

less sophisticated. Archaeal systems were studied in detail recently [35,42] but independently

of the evolution of bacterial systems. More recent works only briefly studied the phylogenies of

some of the components of these systems [43]. Importantly, there is a lack of studies integrat-

ing all the systems and all available genomic data, a prerequisite to understand the processes of

functional diversification of the superfamily. Here, we identified the typical TFFs and their var-

iants using specific annotation tools on all complete genomes of Bacteria and Archaea. These

systems were analysed using phylogenetic techniques to characterise the history of the TFF

superfamily, clarify the relationships among its members, and decipher the molecular evolu-

tion mechanisms underlying its functional diversification. Finally, we characterised their

genetic organisations and how they relate to the rates of horizontal gene transfer. This integra-

tive analysis provided a consistent scenario for the diversification of the superfamily involving

processes of gene duplication, fission, transfer, accretion, and mutation.

Results

Relations of homology between the key components of the machineries

We started our study by building MacSyFinder models [44] for the identification of TFFs in

the complete genomes of Bacteria and Archaea. Briefly, these models give a detailed account of
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the genetic composition and organisation of the systems. We adapted previously published

models of T4aP (including the Com systems of diderms), T2SS, and Tad [39,45], in which we

incorporated additional components and stricter rules in terms of genetic composition and

organisation to identify TFFs with high stringency for the initial phylogenetic and genomics

analyses (S1 Fig). We used the literature to produce equivalent models and associated hidden

Markov model (HMM) protein profiles for the Com of monoderms (ComM) and for the

Archaeal-T4P. For the latter, we used 66 archaeal Cluster of Orthologous Genes (arCOGs)

identified from [35] after a step of reanalysis of the initial 191 arCOGs to remove redundancy.

We could not build models for T4bP and MSH systems at this point because too few systems

were described in the literature. This work resulted in five initial models, including 154 HMM

protein profiles, of which 17 are novel (S1 Table).

To establish the relations of homology between the components of the different systems in

a precise and homogeneous manner, we made pairwise profile–profile alignments of their

HMM protein profiles using HHsearch v3.0.3 [46] (p-value threshold of 0.001). These align-

ments are very sensitive and highlight more distant relations of homology than typical

sequence alignment methods [46]. We obtained a graph with 10 components (sets of con-

nected nodes), representing the significant relations of reciprocal similarity between the pro-

files (Fig 2). The five largest components include the proteins known to be homologous and

represent each individual key function: secretins, prepilin peptidases, ATPases, IM platforms,

and pilins (major and minor). The ATPase component includes TadZ, a protein from another

subfamily of P-loop ATPases (FleN) with an atypical Walker-A motif that retains ATP binding

capacity while displaying low ATPase activity [47,48]. It localises at the pole at early stages of

pili biogenesis and functions as a hub for recruiting other Tad pili components, contrary to the

ATPases involved in pilus assembly or retraction.

These results establish a precise and extensive network of sequence similarity between the

key components of TFFs, systematising previous descriptions. The largest component of the

graph includes the major and minor pilins, which are small and very diverse across the TFF

superfamily. Their profile–profile alignments suggest they are all evolutionarily related. The

remaining components were smaller and usually revealed at most one component per TFF

family.

The phylogenies of the components of the TFF superfamily

The presence of homologues of the major functional components of the TFFs across most

types of systems raises the question of how their functional diversification took place from a

common ancestor. To study this, we added to the models described above a very simple

generic model to identify all systems with three key components (the ATPase, the IM platform,

and a major pilin). Accessorily, it also searches for a secretin, absent in monoderms, and a pre-

pilin peptidase, sometimes shared between systems [49–51] (S1 Fig). The search for systems

using the MacSyFinder models resulted in the identification of 6,652 systems in 3,700 genomes

(1,486 species) (S2 Fig), of which 1,584 were classed as generic systems, reflecting the conserva-

tive character of the initial models. This data set was too large to analyse using sophisticated

phylogenetic methods and included many systems that were very similar, e.g., from different

strains of the same species. We reduced this redundancy by clustering very similar systems.

We then picked one representative per cluster, thus preserving most of the diversity of the data

set. In this process, we prioritised the inclusion of experimentally validated systems, including

MSH (1) and T4bP (5), for which models were not available (see Methods). This nonredun-

dant set contains 309 representative systems (33 T4aP, 47 Archaeal-T4P, 29 T2SS, 5 T4bP, 1

MSH, 31 ComM, 72 Tad, 101 generic) (S2 Table). Hence, the systems used in the subsequent
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analyses are associated with a (sometimes large) number of other very similar systems that are

from the same cluster.

We inferred the phylogeny of each of the five core protein components (AAA+ ATPase, IM

platform, major pilin, secretin, and prepilin peptidase) by maximum likelihood with IQ-Tree

[52]. We made 10 reconstructions per component with the most thorough mode of topological

search to account for the stochasticity of the method. The detailed analysis of key events

revealed by these trees can be found in S3 Table (the trees themselves are in S4 Table). The

ATPase trees are very well supported at most of the key nodes, they are consistent across repli-

cated inferences, and they clearly separate the different types of systems (S3 Fig). The trees

include two system-specific duplication events of the ATPases, one ancestral to the large clade

—including T4aP, T4bP, MSH, T2SS, and ComM (PilT/PilB)—and another within a clade of

T4aP (PilT/PilU). The IM platform tree also discriminates between types of systems and

includes pairs of homologues in Tad (TadB/TadC) and some archaeal systems (S6 Fig). The

prepilin peptidase tree is poorly supported and shows scattered distribution of the different

Fig 2. Results of the HMM–HMM alignments (HHSearch) between all the components of the TFF superfamily. The colour of the nodes represents the known or

predicted function of the protein. The size of the outlines is proportional to the frequency of the profiles in the detected systems (thicker outlines indicate higher

frequencies). Com, competence pilus; HMM, hidden Markov model; IM, integral membrane; MSH, mannose-sensitive hemagglutinin pilus; Tad, tight adherence; TFF,

type IV filament.

https://doi.org/10.1371/journal.pbio.3000390.g002
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types of systems (S8 Fig). Because prepilin peptidases can be exchanged between systems [49–

51], we have excluded them from further analyses. The secretin and major pilin trees have

some poorly supported branches, but they separate the different systems well. Overall, the pro-

tein components’ trees show that the ATPase, the IM platform, and the major pilin are good

phylogenetic markers for the evolution of the TFF superfamily. The secretin tree, even if rela-

tively well supported, is less informative for inferring the global evolutionary scenario because

the component is absent from monoderms.

The root of the TFF superfamily

The ATPase tree is the only one that can be rooted because this is the only ubiquitous compo-

nent with well-conserved homologues in distinct machineries that can serve as external groups

[40,41]. We used FtsK as an outgroup to root the tree because it is very conserved, single-copy,

present and essential in most bacterial phyla [53,54], and shows little evidence of horizontal

transfer [41]. Its closest homologue, HerA, is an archaeal protein from which it diverged con-

comitantly with the archaeal–bacterial division after the last universal common ancestor [41].

We retrieved the sequences of FtsK from a previous study [9], aligned them with the ATPase

sequences of the investigated systems, and inferred a maximum likelihood tree. This tree

shows that the FtsK sequences are monophyletic (100% Ultrafast Bootstrap Approximation

[UFBoot] support) and branch between two large clades: Tad and Archaeal-T4P on one side

(100% UFBoot) and a clade grouping the T2SS, T4aP, ComM, and T4bP on the other side

(100% UFBoot) (S4 Fig). The overall rooted topology is very similar to that of the unrooted

tree in 8 out of 10 trees (S3 Table). The inclusion of the ubiquitous ATPase of the T4SS

(VirB4) as an outgroup with FtsK also showed a split between the archaeal and the bacterial

branches of the tree (S5 Fig). This confirms that this ATPase family is also an outgroup of the

TFF superfamily. We rooted the trees of the IM platform and major pilin using the root of the

ATPase trees because all three proteins showed a consistent split between Tad/Archaeal-T4P

on one side and the remaining systems on the other (S6 and S7 Figs).

The analysis of gene duplications provides additional information on the possible roots of

the superfamily phylogenetic tree. Placing a duplication event on a tree corresponds to setting

as anterior the branch in which the duplication occurred, and as posterior, those of the two

paralogues [55,56]. The duplications of the ATPases therefore exclude the root from the group

T4aP, T4bP, ComM, MSH, and T2SS. The duplication of the IM platform in the Tad system,

also present in some Archaeal-T4P, excludes the root from within these groups. Hence, the

analyses of duplication events are consistent with the root as defined above by the tree of the

ATPases.

Producing a concatenate tree

Because the ATPase and the IM platform have phylogenetic trees that are broadly consistent

(S3 Table) and are the most informative markers of the phylogeny, we computed a phyloge-

netic tree of their concatenate using a partition model (best model for each gene partition, as

computed by IQ-Tree). The major pilin was excluded from the concatenate because it shows

less-consistent and less-supported topologies. Concatenation required the use of a procedure

to deal with multiple homologues in the same system (to have one marker per component per

system). For those present in a few taxa, we chose in each system the protein most similar in

sequence to the most closely related systems lacking paralogues (see Methods). For the

ATPases, we used PilB because this ATPase is responsible for the assembly of the pilus, which

is an essential function in all families, contrary to the function of PilT/PilU (retraction). There

was no good argument to pick TadB or TadC platform proteins, and we therefore made 10

Diversification of the type IV filament superfamily
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phylogenetic reconstructions with each of them in parallel in ATPase/IM platform concate-

nates. As expected, the best trees (highest log likelihood) for the two TadB/PilB and TadC/PilB

concatenates were never rejected by the individual proteins’ alignments (p> 0.05, Approxi-

mately Unbiased [AU test], S7 Table). Furthermore, after correction for multiple comparisons,

only two of the 40 comparisons between the individual proteins and the concatenate trees

were significantly incongruent (TadB versus the two trees with lowest likelihood obtained for

the TadB/PilB concatenate). We present in Fig 3 the highest log-likelihood tree obtained for

the TadC/PilB concatenate (the combination of markers with no significant conflict with the

gene trees). Overall, these concatenate trees show that the TFF families derived from an ances-

tral system, which diversified initially into an archaeal system ancestor of Tad/Archaeal-T4P

and a bacterial system ancestor of the remaining TFFs.

The archaeal systems and the emergence of Tad

The ATPase, IM platform, and concatenate trees are broadly consistent with five or six groups

within Archaea (Fig 3, S3, S6 and S10), several of which replicate previous findings (groups

archaellum, Halo pilus, Epd, ‘Adhesive archaeal pilus’ [Aap], Bas/Ups [35]). All experimentally

validated archaella are part of a highly supported clade (100% UFBoot, group 3 in [35]) that is

the sister clade to another highly supported clade containing two pili involved in surface adhe-

sion in Halobacteria (Halo pilus, group 2 in [35]). They are sister groups of a clade gathering

the Bas, the Ups, and noncharacterised pili from Crenarchaeota and Thaumarchaeaota (group

4 in [35]). Aap cluster with the Halo pilus in the concatenate TadC/PilB and group apart closer

to the Bas and the Ups pilus in other trees. The rooted tree shows two basal clades of Archaeal-

T4P systems of unknown function, mostly found in methanogens (group 1 from [35], which is

separated by the root in our tree).

Unexpectedly, the position of the root places Tad as a system derived from Archaeal-T4P

systems. This feature is found in the trees of ATPase, IM platform, and major pilin with high

confidence. Furthermore, all these trees showed a monophyletic clade, including the Tad and

the ‘EppA-dependent’ (Epd) pilus (clade ‘Epd-like’), whose major pilins have similarly short

sequence lengths when compared to the others from Archaeal-T4P (S7 Fig). Both Epd-like pili

and Tad have two homologous genes encoding the IM platform, suggesting that their common

ancestor already contained them both. We examined the domain structure of these two genes

and found that each has one ‘T2SSF’ domain (PFAM domain PF00482), whereas most other

Archaeal-T4Ps have two such domains and longer IM platform proteins. This strongly sug-

gests that TadB and TadC were derived from an ancestral event of gene fission and not a dupli-

cation as previously suggested. To confirm this observation, we aligned the TadB and TadC

profiles with the archaeal IM platforms containing two T2SSF domains. In these cases, TadC

aligned best with the N-terminal domain, while TadB aligned best with the C-terminal domain

of the archaeal proteins. To further test the gene fission scenario, we made a tree using the con-

catenate of TadC and TadB, and this tree was similar to the tree of the concatenate (S4 Table).

Finally, the Tad systems have a protein, TadZ, that has significant HMM–HMM profile align-

ments with Archaeal-T4P components (arCOG00589 and arCOG05608), including those

from the Epd-like clade (group 1 from [35]), but not with profiles from the bacterial systems.

Altogether, these results strongly suggest that an ancestral Archaeal-T4P harbouring two genes

encoding the IM platform diversified into Epd-like systems in Archaea and was transferred

horizontally, apparently only once, to Bacteria, leading to the extant Tad systems.

The transfer of the system from Archaea to Bacteria was very ancient. Tad systems were fre-

quently transferred among Bacteria since then (see below), and it is not possible to infer the

precise bacterial taxa that acquired the original system. However, the Tad systems at the basis

Diversification of the type IV filament superfamily
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Fig 3. Rooted phylogeny of the TFF superfamily. The tree was built with the concatenate of the IM platform (using TadC) and the AAA+ ATPase

(using PilB). The branches are in green if the ultrafast bootstrap is>95%. The supports of the significant nodes are indicated in text. The different

coloured strips indicate the classification of the systems with the MacSyFinder annotation (with the initial model and with the final one) and the

annotation of the systems in the literature. The systems known to be implicated in natural transformation are indicated in dark purple. Known

subtypes of Archaeal-T4P are indicate by text in red. The tree was built using IQ-Tree, 10,000 replicates of UFBoot, with a partition model. Halo pilus

Diversification of the type IV filament superfamily
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of the clade are from Proteobacteria in 18 out of 20 concatenate trees, often with very good

support (S3 Table). The two odd concatenate trees place Firmicutes at the base of the Tad

clade but with very low support. This suggests that the ancestor of the Tad system was acquired

by a diderm bacterium, and the accretion of the outer-membrane, pore-forming secretin to

the Tad system may have been the founding event of these systems.

The diversification of the bacterial TFF superfamily

The other major clade of the TFF superfamily only has bacterial systems (T4aP, T4bP, ComM,

MSH, T2SS). The vast majority of the concatenate and component trees place T4bP at the

basal position in the clade (in the others, some generic systems take this position). This is fol-

lowed by a split between ComM on one side and T4aP, MSH, and T2SS on the other. T4aP are

polyphyletic in all the phylogenetic reconstructions, showing a few clusters with the experi-

mentally validated systems (Fig 3). Some of these systems are in monoderms such as Firmi-

cutes and Actinobacteria, as previously observed [14,57]. MSH and T2SS are both clearly

distinct and derived from the T4aP. The MSH system falls in a highly supported clade (100%

UFBoot) with other systems of very similar gene composition. Intriguingly, all MSH loci lack a

prepilin peptidase. They may use a protein from another system because MSH were systemati-

cally present in genomes with T2SS, T4aP, or Tad, which encode a prepilin peptidase. Systems

previously identified as T2SS show two exceptions to monophyly. First, the position of chla-

mydial T2SS next to the other T2SS is highly supported in the ATPase and in the concatenate

tree (>95% UFBoot) but not in the trees of the secretin, major pilin, and IM platform. This

suggests a chimeric origin for this system in which different components were recruited from

different types of systems. Second, the so-called T2SS of Bacteroidetes (represented by Cyto-
phaga, [58]) always cluster with T4aP and away from the remaining T2SS.

The key early event in the ATPase trees of the Bacteria-only TFF large clade was the amplifi-

cation leading to the paralogues PilB (the assembly ATPase) and PilT (the retraction ATPase).

This event appears as a simple duplication at the base of the tree in certain of the ATPase trees

but also shows more complex scenarios in others (S3 Table). In the PilB part of the ATPase

tree, T4bP is basal, and the other systems are regrouped with T4aP. This scenario is consistent

with that of the secretin tree, in which if one places the root between T4aP and T4bP, one finds

T2SS deriving from a T4aP system, as in the PilB trees. This is also sustained, albeit with low

support, by the major pilin tree, in which one finds at basal positions T4aP and T4bP. The

presence of PilT in the early stages of evolution of the TFF superfamily could be an indication

that the most ancient systems already had ATPases specialised in pilus retraction.

One of the most interesting functions of the superfamily, from the evolutionary point of

view, is the involvement of some of its systems in natural transformation. The ComM system

is commonly found in Firmicutes, even if it is unclear whether it is always involved in transfor-

mation. It is monophyletic in all the phylogenetic reconstructions we made, usually with very

high support (�95%). In the concatenate trees, ComM branches apart from a group gathering

T4aP, MSH, and T2SS after the divergence with T4bP. The trees of individual components

show similar scenarios once one accounts for the effects of the ATPase paralogues and for the

low support of some parts of the IM platform trees. In summary, these results suggest that

ComM arose early and only once in the history of the TFF superfamily. The T4aP systems

indicates two pili characterised in Halobacteria. Aap, adhesive archaeal pilus; Archaeal-T4P, type IV-related pili in Archaea; ComM, competence

pilus of monoderms; Epd, EppA dependent; IM, integral membrane; MSH, mannose-sensitive hemagglutinin pilus; Tad, tight adherence; TFF, type

IV filament; T2SS, type II protein secretion system; T4aP, type IVa pilus; T4bP, type IVb pilus; UFBoot, Ultrafast Bootstrap Approximation; Ups,

UV-inducible pilus of Sulfolobus.

https://doi.org/10.1371/journal.pbio.3000390.g003
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experimentally linked to natural transformation in diderms were systematically identified as

T4aP and also tend to cluster together in the tree.

TFFs are ubiquitous in the prokaryotic world

We used the best concatenate tree, rooted using the information of the rooted ATPase tree, to

class the numerous generic systems that we had previously identified. We assumed that clades

in which all systems were either generic or of a single type (of which at least one was validated

experimentally) could be tentatively assigned to that type. Generic systems in clades lacking

experimentally validated systems were left unassigned. Only two types of systems were para-

phyletic in the tree—T4aP and Archaeal-T4P—and were thus treated differently. T4aP was

split in a few monophyletic clades, and systems within each clade were reassigned using the

method above. The Archaeal-T4P systems, from which Tad derives, can be easily distinguished

from the latter and thus reassigned using a taxonomic criterion. This analysis significantly clar-

ified the systems’ assignment (compare S2 Fig with S11 Fig): 1,795 out of the 2,031 generic sys-

tems were reassigned to classical systems, mostly T2SS (479) and T4aP (748).

We used these tentatively assigned systems to produce more sensitive MacSyFinder models.

First, we changed the HMM profiles to account for the genetic diversity introduced by the

reassigned systems. Second, we created models to detect T4bP and MSH because we now had

a much larger number of examples of these systems. Finally, we searched for genes systemati-

cally associated with the systems’ loci in a neighbourhood of ±20 genes that were not matched

by any of the HMM profiles of the models. We clustered the proteins by sequence similarity

and analysed the largest families. This ‘guilt-by-association’ approach failed to show other pro-

teins systematically associated with a particular type of system (S5 Table), suggesting that our

models already encompass their most frequent components. This process resulted in more

sensitive models that accounted for all known types of systems and correctly identified the 94

experimentally validated systems of Bacteria analysed in S2 Table, except the T2SS of Chla-

mydia and Bacteroidetes (shown above to be peculiar).

Using the improved models, we found 9,026 systems within 4,610 genomes, including

1,728 T2SS, 2,021 Tad, 2,558 T4aP, 908 ComM, 559 Archaeal-T4P, 177 T4bP, 191 MSH, and

884 generic systems (Fig 4, S6 Table). A few systems classed in a given type with the initial con-

servative models—14 T2SS, 10 T4aP, 5 Tad, 1 ComM—are classed as generic with the new

models. However, the inverse is much more frequent because we reclassified 1,114 generic sys-

tems as 1,408 T4aP, 338 T2SS, 670 Tad, 4 ComM, and 226 Archaeal-T4P. The large number of

generic systems reassigned to T4aP is not surprising because these systems are encoded in

multiple loci, are very diverse, and are present in several clades in the tree. This makes them

harder to detect using the initial model. The many reassignments of generic systems as T2SS

reflect a posteriori the excessive stringency of our initial model based on existing knowledge of

systems in Proteobacteria and the existence of T2SS with little or no experimental evidence in

other phyla. The reassignment led to identification of T2SS in a much broader set of taxa,

including Armatimonadetes, Deferribacteres, Clostridia (from a clade known to contain

diderms, further supported by the presence of a secretin), Spirochaetes [59], and Aquificae.

We also observe many new Tad systems in Elusimicrobia, Actinobacteria, Bacilli, and Clos-

tridia (Fig 4 versus S2 Fig). Our phylogenetics-driven approach for designing new models

allowed us to detect diverse putative MSH and T4bP. These systems were so far only described

as such in Gamma-proteobacteria, but we identified them also in Chrysiogenetes and Epsilon-

proteobacteria for MSH and in Acidithiobacillia and Nitrospirae for T4bP.

In certain cases, the phylogenetic annotation identified some systems that we missed using

the improved, models and provides information to explain the large number of generic
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systems in certain clades. The T2SS in Chlamydiae [60] are close to the other T2SS for several

phylogenetic markers but are classed as generic because they apparently lack homologues of

the minor pilins and the assembly proteins GspLM [60]. Many of the systems of Actinobacteria

remain classed as generic systems. A large fraction of them could be classed as Tad by

Fig 4. Taxonomic distribution of the systems in Bacteria and Archaea obtained using the final models. Cells indicate the number of genomes with at least one

detected system. The cell’s colour gradient represents the proportion of genomes with at least one system in the clade. The bar plot shows the total number of detected

systems. The bars are separated in two categories: Alpha-, Beta-, and Gamma-proteobacteria versus the other clades. The cladogram symbolises approximated

relationships between the bacterial and archaeal taxa analysed in this study. Archaeal-T4P, type IV-related pili in Archaea; Com, competence pilus; ComM, Com in

monoderms; MSH, mannose-sensitive hemagglutinin pilus; Tad, tight adherence; T2SS, type II protein secretion system; T4aP, type IVa pilus; T4bP, type IVb pilus.

https://doi.org/10.1371/journal.pbio.3000390.g004
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proximity to experimentally validated systems in the phylogeny, but they lack identifiable

homologues of some usual components such as the minor pilins and TadC (their TadB does

not contain two domains like those of homologues in some Archaea, showing this is not the

result of a gene fusion).

Genetic organisation is associated with differences in rates of horizontal

transfer

The systems differ strikingly in terms of genetic organisation (Fig 5). ComM and T4aP are usu-

ally found in multiple loci, whereas MSH and Tad are almost exclusively encoded in a single

locus. This characteristic further contributes to set MSH apart from the remaining T4aP.

Hence, as systems diverged, their genetic organisation also changed. To detail the prototypical

genetic organisations of each type of system, we built a graph on which nodes represent com-

ponents and edges link components that are encoded contiguously in the genome. The edges

are weighted by the frequency of contiguity: genes that are systematically contiguous are linked

by thick edges. This graph quantifies the prevailing genetic organisations for most types of

Fig 5. Genetic organisation of the detected systems. For each detected system (those indicated in Fig 4), the edge width represents the number of times the two genes are

contiguous divided by the number of times the rarest gene is present in the system. The colour of the edge represents the number of times the two genes are contiguous in

the system divided by the number of systems. Com, competence pilus; ComM, Com in monoderms; Epd, EppA dependent; IM, integral membrane; MSH, mannose-

sensitive hemagglutinin pilus; Tad, tight adherence; T2SS, type II protein secretion system; T4aP, type IVa pilus; T4bP, type IVb pilus.

https://doi.org/10.1371/journal.pbio.3000390.g005
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systems (Fig 5). The Archaeal-T4P show very diverse genetic organisation, presumably because

they include very different systems (S12 Fig). The representative archaella systems show more

conserved genetic organisation [35,42] (S13 Fig). Interestingly, the genetic organization of the

key components of Epd is very similar to the Tad, presumably pre-dating Tad’s ancestor trans-

fer to Bacteria: the two IM platform genes are contiguous and followed by the major ATPase

and the secondary one (TadZ in Tad and FlaH [arCOG04148] in Epd) (see Fig 5).

The patterns of genetic organisation of the homologous components differ between sys-

tems. In general, pilins are encoded in a single locus but can vary in their colocalisation with

the rest of the genes: they can be apart (T4aP), at the edge of the locus (ComM, Tad), or in the

middle (T2SS, T4bP). In Archaea, all cases were found. Interestingly, many duplicated genes

tend to be contiguous, e.g., pilTU (ATPases). This is consistent with models suggesting that

duplication processes often produce tandem duplicates [61]. The variability between types of

systems and the conservation within types suggest that genetic organisation is under selection

within types but changes rapidly upon functional innovation.

The genetic organisation of the loci can also reflect the action of horizontal gene transfer. If

the systems are often gained or lost within lineages, as was shown for Tad [62] but much less

so for the archaellum [42], then systems encoded in a single locus are much more likely to be

successfully transferred because all the necessary genetic information can be transferred in one

event [63]. Systems scattered across the genomes cannot be transferred in a single event

(although parts of the system can presumably be exchanged if the recipient genome encodes a

system with similar genetic organisation). We thus hypothesised that single-locus systems are

more likely to undergo horizontal gene transfer. To test this hypothesis, we compared the phy-

logenetic tree of each system, i.e., a subtree of the larger phylogenetic reconstruction, with a

maximum likelihood tree of the 16S rRNA sequences of the species carrying the systems (S14

Fig). We excluded the archaeal systems from these analyses because their loci are harder to

define precisely (sometimes scattered and multiple systems per genome) and their functions

are still poorly delimited in most cases (complicating the definition of the clade to use in the

analysis). We found that systems encoded systematically in a single locus are more frequently

transferred than those encoded in several loci (Fig 6). These results are reinforced by the analy-

sis of the frequency with which systems are encoded in plasmids, which closely follows the

trends observed for the frequency of transfer (highest in Tad and lowest in ComM; Fig 6). The

contrast is especially interesting between the Tad and T4aP systems that are both present in

many different clades and are encoded almost exclusively in one locus (Tad) or many loci

(T4aP). This association between rates of transfer and organisation suggests that systems that

are frequently gained and lost endure a selective pressure for being encoded in a single locus.

Discussion

We used comparative genomics and phylogenetics to produce models and protein profiles that

identify TFFs in the genomes of Bacteria and Archaea. The final models classify most systems

and assign them classifications that are consistent with the phylogenetic analysis. Some dis-

crepancies persist. They can be due to systems very divergent from the models (see below) or

to the presence of inactive and partly deleted loci (remnants of formerly functional systems).

The models are publicly available and provide a significant advance relative to our previous

work because they are more sensitive and cover more types of systems (Archaeal-T4P, ComM,

MSH, and T4bP). We used them to quantify the frequency and taxonomic distribution of the

different systems and found that every inspected phylum of Bacteria and Archaea has TFFs

from one or several families. Some of these are widespread (e.g., T4aP, Tad), whereas others

(MSH, T4bP) are abundant in Proteobacteria but absent from most other phyla. With the
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exception of archaella, most archaeal systems are poorly characterized. When known, they

tend to have diverse functions, components and genetic organization. Further experimental

study of these systems is required to produce reliable MacSyFinder models for each of them.

Our approach may be regarded as conservative. First, some components of the systems

were excluded from phylogenetic analyses because they were not sufficiently conserved in terms

of amino acid sequence. The minor pilins are a particularly important set of proteins that were

ignored because they produced short and very poor multiple alignments across systems. Sec-

ond, the models were built based on experimentally validated systems and using information

from monophyletic clades of a given type. If the systems were described in few species or in a

small number of phyla, our ability to identify them is limited, especially when they are very dif-

ferent from known systems in terms of gene repertoires and protein sequences.

These limitations may explain why our improved models classed the T2SS of Chlamydiae

as generic: they carry few components, and they have different origins. This may result from

the impact of the peculiar developmental cycle and intracellular lifestyle of Chlamydia on its

envelope [60]. In other cases, systems may actually differ from the descriptions in the litera-

ture. This is probably the case of the so-called T2SS of Bacteroidetes. This system is involved in

protein secretion [58] but consistently branches apart from T2SS in all analyses of the phyloge-

netic markers. The major pilin of this system is very divergent compared to major pseudopilins

from Proteobacteria. Our analysis raises the exciting possibility that it might represent a novel

type of protein secretion system derived from the T4aP independently of the T2SS.

All trees show that the widely studied T4aP systems are very diverse and form several differ-

ent clades in the tree, whereas the one with the PilU ATPase, the most widely studied, accounts

for a minority of the identified systems. Most of the other T4aP are poorly characterised and

may represent systems with novel properties. Finally, the results obtained with the final

improved models showed few systems identified as generic. This suggests that there may be

few novel families of systems to be discovered in the superfamily that contain the three key

components (ATPase, IM platform, major pilin) and are present in the phyla represented in

the genome database. On the other hand, the diversity of certain types of systems—such as the

T4aP and the Archaeal-T4P—may still reveal surprising novel functionalities.

Fig 6. Association between organisation and horizontal transfer of the different systems. For each system, we

compared the subtree of the systems with the 16S tree of the same species using ALE v0.4 to obtain the proportion of

transfers. The panel above the graphic indicates the proportion of systems in a single locus and the proportion of

systems on chromosomes (the others being found on plasmids). ComM, competence pilus of monoderms; Tad, tight

adherence; T2SS, type II protein secretion system; T4aP, type IVa pilus.

https://doi.org/10.1371/journal.pbio.3000390.g006
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The phylogeny of the key components of the TFFs revealed an initial split between archaeal

and bacterial systems, suggesting that these structures may have pre-dated the last common

ancestor of all cellular organisms (Fig 7; see also S8 Table). This ancestral system presumably

had one ATPase for its assembly (the function performed by PilB in T4aP), an IM platform,

pilins, and a prepilin peptidase. Among these key components, only the ATPase has identifi-

able sequence homologues outside the superfamily, but the other components have distant

sequence or structural homologues that suggest they may pre-date the last common ancestor

of all TFFs. The PFAM domain of the prepilin peptidase of TFF belongs to the PFAM clan

CL0130 with other signal-peptide inner-membrane–associated peptidases, several of which are

found in Bacteria, Eukaryotes (the presenillin family proteases), and Archaea [64]. The protein

Fig 7. Evolutionary scenario of the TFF superfamily. The tree was based on the information of the trees of the concatenate and simplified to

highlight the key clades and events. The colour of the triangles indicates the type of the systems. Each vertical bar on the branch indicates a numbered

evolutionary event, whose details are specified under the corresponding number in the list ‘Key events’. The hypotheses for the composition of the

last common ancestor of the TFF superfamily are indicated at the root, and the distant homologues of these systems are indicated in the list

‘Homologous of ancestral components’, in which homology was observed by sequence (‘aa’) or structural (‘struct’) similarity. Halo pilus indicates

two pili characterised in Halobacteria. Aap, adhesive archaeal pilus; Epd, EppA dependent; IM, integral membrane; MSH, mannose-sensitive

hemagglutinin pilus; Tad, tight adherence; TFF, type IV filament; T2SS, type II protein secretion system; T3SS, type III protein secretion system;

T4aP, type IVa pilus; T4bP, type IVb pilus; Ups, UV-inducible pilus of Sulfolobus.

https://doi.org/10.1371/journal.pbio.3000390.g007
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profiles of the integral membrane platform match those of some ATP-binding cassette (ABC)

transporters, and the protein is structurally very similar to one of the V-type ATP synthase

subunits [65]. The platform may thus have been co-opted from these ubiquitous membrane-

associated systems. The small size and rapid evolution of the pilins preclude the tracing of

their evolution at deep time scales. Fast evolution of pilin globular domains may be associated

with the variability of essential inner-membrane components that promote pilin targeting to

the assembly site or connect the inner- and outer-membrane subcomplexes [66,67]. It is also

difficult to determine whether there were other components in the ancestral system of the

superfamily because they either evolve swiftly or are present in only a small number of systems.

A recent study showed that a minimal set of eight genes was sufficient for the assembly of the

T4aP of Neisseria meningitidis [68]. Four of them, PilMNOP, are essential for the assembly but

are lacking in our list of ancestral genes because their homologs were lacking, or very rare, in

genes neighboring T4bP, ComM, Tad, and Archaeal-T4P. They were found in MSH and T2SS

(Fig 2, S5 Table), suggesting that they arose more recently and that other systems do not

require these proteins for assembly (Fig 7; S8 Table). In short, our results are consistent with

the idea that the ancestral system was able to energise its assembly and build up a pilus with

matured pilins on top of an assembly platform, the basic molecular architecture of extant

systems.

Our results and previous data on the genetic composition and organisation of archaeal sys-

tems [35] reveal processes of functional diversification leading to families of different func-

tions. The Sulfolobus genus alone counts systems from four of the seven different Archaeal-

T4P types studied experimentally (Aap, Bas, Ups, and archaellum). Even though horizontal

transfers might be frequent among Archaea, our approach places the root of Archaeal-T4P

within systems of methanogens from the Euryarchaeota phylum (group 1 of Makarova and

colleagues [35]), and this is consistent with a proposed rooting for the archaeal tree of life

within methanogens [69]. Further experimental work is needed to elucidate the functions of

these Archaeal-T4P.

The archaeal origin of Tad is consistently suggested by the rooted phylogenetic analyses

and the specific shared characteristics of pilins, the IM platform, and TadZ-like proteins in

Tad and Archaeal-T4P (S8 Table). The literature often classes Tad pilus as T4bP [70]. Our

study shows that these systems are very different in terms of components, genetic organisation,

and evolutionary origins. This is in accordance with recent works proposing to clearly separate

Tad from T4bP and to name them as T4cP [43]. The Epd-like systems share the closest ances-

try with Tad systems among the entire TFF superfamily and are the ones with more similar

genetic organization of the key components. They were only characterised inMethanococcus
maripaludis, in which they are involved in surface attachment, a trait they share with the Tad

pilus [71]. A striking trait of Tad (and Epd) is the systematic presence of two genes (tadB and

tadC) encoding the IM platform. This has been regarded as the result of a gene duplication

[37], but the size, domain content, and sequence similarity of these genes are more parsimoni-

ously explained by a gene fission event, e.g., by a mutation integrating a stop codon within the

ancestral gene. This produces a complex evolutionary scenario: the original IM platform was

probably the result of an internal gene duplication event that pre-dated the last common

ancestor of the TFF superfamily and is present in most systems. In the Epd and Tad clades,

this was followed by a fission event that resulted in two tandem homologous genes. In some

Tad systems of Actinobacteria, one of these components (TadC) was lost. The adaptive rele-

vance of these successive events in the light of emerging structural data could be an interesting

topic of future research.

The secretin tree provides some information about the process of transfer of the ancestral

Tad to Bacteria. It places Tad’s secretin within those of T4aP systems with high confidence and
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typically close to Proteobacteria. This suggests that the co-option of the secretin upon transfer

of the ancestor to a diderm was the founding event of Tad systems. It occurred at a time when

most types of systems (T4aP, T4bP, ComM, and possibly MSH and T2SS) were already in

place. Tad’s secretin makes a monophyletic clade in the tree, suggesting that the accretion of

the secretin to this system only happened once. Interestingly, it has been shown that TadD is

essential to the assembly of the Tad secretin in Aggregatibacter actinomycetemcomitans [72].

While it was originally thought that TadD had no homologues in the other TFFs, we observed

that it has a homologue in MSH systems (MshN, Fig 2). Further work will be needed to deter-

mine if the acquisitions of the secretin and TadD are linked or result from independent co-

option events. If the scenario of a single, ancestral secretin acquisition in Tad is correct, then

the adaptation of Tad to monoderms, which occurs at several places independently in the tree,

involved the loss of the secretin. This event of loss seems very common because it is also found

once in the initial evolution of ComM and several times at the emergence of T4aP of mono-

derms. Finally, the large taxonomic distribution of Tad, in spite of its relatively recent origin, is

in agreement with the high frequency of horizontal transfer observed for this system.

Secretins were co-opted on multiple occasions in the TFF superfamily. Co-options of a

secretin from other systems are very common. They were observed multiple times in the evo-

lution of the T3SS (e.g., from Tad and from T2SS) and in filamentous phages [8]. In this

respect, it is interesting to analyse the six TFFs with secretins (3 T4aP, 2 Tad, and 1 T2SS) in

Firmicutes with an outer membrane (Halanaerobiales and Negativicutes). Four of these sys-

tems group with the TFFs of Firmicutes, and two were more closely related to systems from

diderms. Their secretins were placed in the tree with proteins from the same TFF family of

diderms and lacked distinctive domain architecture. There is thus no evidence that secretins

were co-opted to adapt to the membrane of diderm Firmicutes, possibly because the ancestors

of Firmicutes were diderm [73].

The T4bP is the most basal system among Bacteria. Subsequently, a split separated ComM

from T4aP, and the latter then diversified into T2SS and MSH. Recent works suggest that the

last common ancestor of Bacteria was a diderm [73]. Our analysis shows that Tad, T2SS, and

T4aP are monophyletic clades in the phylogeny of the secretin, in agreement with previous

works [74], suggesting that there was little transfer of the secretin between systems. If one

roots the secretin tree between T4bP and T4aP, as in the concatenate trees, then it largely reca-

pitulates the tree of the TFFs concatenate (except for the position of Tad). This is in line with a

very ancient acquisition of the secretin by the TFF superfamily. Because T4bP are the most

basal systems in the tree and are only found in diderms, this strongly suggests that the original

bacterial system had a secretin and was present in a diderm.

Until recently, it was thought that only systems encoding PilT were capable of pilus retrac-

tion. This would suggest that the ability to retract the pilus resulted from the neofunctionalisa-

tion of one of the copies (PilB in T4aP) of the protein at the moment of the duplication of the

ATPase, leading to PilB/PilT in T4P. Surprisingly, it was recently shown that the Tad system of

Caulobacter crescentus is also able to retract the pilus [43], and there is evidence that the PilB

ATPase is implicated in the process [75]. As these authors, we could not identify any ortholo-

gue of PilT in this system, in agreement with a PilT-independent retraction of the pilus. It is

possible that the original ATPase of the ancestor system of T4bP and T4aP could perform both

activities—assembly and retraction/disassembly—and that the duplication resulted in subfunc-

tionalisation of these functions when both PilB and PilT were present. Interestingly, the T4aP

in Vibrio cholerae was shown to retract with low speed in the absence of PilT [76], even if pilT
mutants have extremely low [76] or undetectable rates [77] of DNA uptake. This would con-

tribute to explain how ComM, devoid of PilT, could retract a filament carrying DNA in Strep-
tococcus [78] and how nontypeable Haemophilus are able to uptake DNA using a T4aP that
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lacks PilT [79], whereas PilT mutants are defective in transformation in several Bacteria [77].

It was also previously suggested that pilus retraction of the Archaeal-T4P might be required to

explain some archaeal communities’ behaviour, like transition from sessile to swimming stages

[80]. Some overlap between the functions of PilT and PilB might also explain why PilT is fre-

quently lost (e.g., in T2SS and ComM). In line with the specialisation of the roles of this family

of ATPases following duplication, a recent study showed that PilU improves retraction in high

friction environments, whereas PilT is sufficient for motility in free solution [81]. It is tempt-

ing to speculate that other, rarer duplications of these ATPases are involved in further speciali-

sations of retraction functions.

The increase in the diversity of systems able to retract the pilus opens the possibility that

many other pili could be involved in natural transformation because the role of the pilus is to

attach the DNA and bring it to the cell surface. Actually, a number of arguments are in favour

of the hypothesis that the ancestor of the bacterial systems, or even the last common ancestor

of the superfamily, might have been able to facilitate natural transformation. First, ComM,

Tad, and T4aP have been associated with this mechanism. Second, the predicted repertoire of

genes of the last common ancestor of these types of systems could suffice for DNA attachment

and retraction towards the cell envelope necessary for transformation. Third, systems that

emerged within Archaea are able to facilitate transformation. The Ups pilus in Sulfolobus is

highly expressed under UV light, mediates cell aggregation, and facilitates natural transforma-

tion mediated by the independent Crenarchaeal system for exchange of DNA (Ced) [82,83]. A

Tad locus (archaea-derived, like all Tad) fromMicrococcus luteus has recently been shown to

be required for natural transformation [84]. We identified this system within the Tad clade,

and its gene repertoire includes a single ATPase. Fourth, it has been previously shown that

other key components of the transformation machinery—DprA and ComEC—are widespread

across Bacteria [31,85]. The DNA uptake machinery required for transformation is encoded in

many Bacteria that were never shown to be naturally transformable [86,87]. E.g., Escherichia
coli and other enterobacteria contain functional T4aP genes coregulated with the competence

machinery [66,88], which are required for natural transformation [89]. If many TFFs have the

same ability, then a vast majority of Bacteria could potentially be naturally transformable.

Interestingly, ComM and T4aP systems known to be involved in natural transformation tend

to cluster (apart) in the phylogenetic tree of the concatenate. This suggests that even though

many T4aP might facilitate transformation, those effectively involved in transformation have

evolved certain traits improving this function. One such feature is the presence of two disul-

phide bonds in pilins, which may stabilise the structure and improve retraction-force resis-

tance of Acinetobacter [90] and enterobacterial T4aP major pilins [66] or of the competence-

specific minor pilins in Neisseria [91].

Our study has revealed how a small set of proteins with different functions evolved to pro-

duce different adaptive functions involved in different types of motility, adherence, DNA

uptake, and protein secretion. This process involved 1) accretion of accessory proteins, such as

the secretin and secretin-associated proteins, to cope with the existence of an outer membrane

in diderms; 2) duplication and subfunctionalisation of key components, such as pilins and

ATPases; 3) internal gene duplication in the IM platform, followed by gene fission in TadBC;

4) several cases of gene loss, notably for some of the IM platform homologues in Tad, for the

PilT ATPase, and for the secretin in monoderms; 5) gene transfer between distant clades,

including a rare example of a large macromolecular system (Tad) transferred from Archaea to

Bacteria; and 6) these events being accompanied by rearrangements of the genetic loci. TFFs

were frequently transferred horizontally, which certainly accelerated their evolution because

genetic exchanges break clonal interference and accelerate innovation processes by recombi-

nation [92]. Interestingly, we observed that genetic organisation and horizontal transfer were
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intimately associated, with systems encoded in one single locus showing higher rates of trans-

fer. This may be a general pattern in the molecular evolution of complex systems in Bacteria

and Archaea. Strong genetic linkage facilitates positive selection in physically interacting pro-

teins [93] and the spread of the system to other species [63]. Novel genetic contexts may, in

turn, select for further changes in the systems. Once functions remain for a long period of time

in the lineage, as seems to be the case for ComM and some T4aP, major adaptive changes in

the systems may become rare, and rearrangements splitting the initial locus may be eventually

fixed. Radical changes in systems encoded in split loci are less likely to be spread by horizontal

transfer, unless the recipient cell has already a copy of the system with similar genetic organisa-

tion. As a result, a tight association is established between genetic organisation and the ability

of a system to evolve and spread by the action of horizontal gene transfer.

Methods

Data

We analysed 5,768 complete bacterial and archaeal genomes from NCBI RefSeq (ftp://ftp.ncbi.

nlm.nih.gov/genomes/refseq/, last accessed in November 2016), representing 2,268 species of

Bacteria and 168 species of Archaea.

Detection of the TFF superfamily

All the systems of the family were detected using MacSyFinder v1.0.2 [44]. This program uses a

model to identify a type of system in a DNA sequence (typically a replicon). The model specifies

the components of the system, each represented by an HMM profile, and how their systems are

organised in the sequence. A full description of the program and the models can be found in

http://macsyfinder.readthedocs.io/en/latest/index.html. Briefly, the components can be manda-

tory, accessory, or forbidden. This does not represent a biological classification. The classification

is made to distinguish between components that are ubiquitous and easy to identify (mandatory)

and those that are either frequently absent or easily missed (accessory). A system is only validated

if it fulfils a quorum of mandatory (minimum mandatory genes required [MMGR]) and/or man-

datory + accessory genes (minimum genes required [MGR]). A locus is excluded if it contains a

forbidden gene (these are useful to discriminate between closely related systems with a few specific

components). Components are expected to be clustered in the genome at a short distance (defined

in the model). Yet, some components can be defined as ‘loners’ and encoded apart. A component

can be set as ‘exchangeable’, in which case several HMM profiles can be used to detect it (e.g., the

same prepilin peptidase is used by T2SS and T4aP in some cases [49–51], and both profiles can be

used to identify the prepilin peptidase of each of the two types of systems).

For this work, we could use the models previously proposed by TXSScan [39] for T2SS, T4aP,

and Tad, but we wished to add a few components that were missing there. For the Archaeal-T4P

and for ComM, we did not have an initial model. We proceeded in two steps. First, we made con-

servative initial models that matched the archetypal systems but sometimes were too strict for

some atypical systems. This resulted in a list of systems in which we had strong confidence. How-

ever, it also missed many systems. To identify these systems, we built a model called ‘generic’ that

had only the basic building blocks of these systems, with all the homologous proteins set as

‘exchangeable’. Following the comparative and phylogenetic analyses, we redefined all the models

to make less-initial models that could identify a larger number of systems. Both sets of models are

made available. The table with all protein profiles is given in S4 Table.

Generic. We defined the model called ‘generic’ to search for variants of the TFF superfam-

ily that include the key components but do not fit the strict definitions of the more specific

models (T4aP,T2SS, etc.). This model assumes that all the HMM profiles of the same connected
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component in the profile–profile graph of similarity can fill in for the function. Hence, it can iden-

tify very divergent or minimalistic systems, as well as chimeric systems with components that

match profiles from different types. A cluster of components is classed as generic if it does not fit

any of the more specific models and contains an ATPase, an IM platform, and a major pilin. In

addition to these three proteins, the generic model also includes the prepilin peptidase and the

secretin that are not deemed essential for the system because the former may be recruited from

other systems in the genome [51], and the latter is specific to diderms.

Tad. The initial model of Tad closely followed the definitions proposed in [39]. This

model includes all the known key components of the system and assumes that they are all

encoded together, with the exception of tadV, the prepilin peptidase gene that can be encoded

apart (loner) and be exchangeable with a number of homologous components from the T4aP

(pilD) and ComM (comC).

The final model includes tadD, rcpB, and rcpC as new accessory components. The prepilin

peptidase TadV is no longer exchangeable. The model defines the Tad pilus as multi_loci to allow

for the existence of systems encoded in loci scattered in the genome (even if this is very rare).

T4aP. The initial model of T4aP was significantly improved from the model in [39]. It is

more precise in the annotation of the retraction ATPases (pilT and pilU) and the major (pilA)

and minor pilins (pilE, pilX, and fimT), and now accounting for five further components: pilT,

pilE, pilA, and fimT set as mandatory and pilU and pilX set as accessory, according to their

occurrence in the systems. Accordingly, the number of MGR and MMGR was increased to 8.

The prepilin peptidase pilD was changed to mandatory, loner, and exchangeable with a num-

ber of homologous components from T2SS (gspO) and ComM (comC) according to its locali-

sation, which could be found alone in the genome, and the fact that the HMM profiles of these

two genes often have better e-value than the one of the T4aP.

The final model of T4aP includes pilW, pilX, and pilY as new accessory components. We

decreased MMGR to 4 and MGR to 5, which better fit the data. We set fimT, pilM, pilP, and

pilA as accessory to help MacSyFinder to search more complete T4aP in the genome. We also

removed the forbidden genes gspN, tadZ, and gspC.

T2SS. The initial model of T2SS followed closely the definitions proposed in [39], in

which we increased the MGR to 8 and set the prepilin peptidase gspO as mandatory, loner, and

exchangeable with a number of homologous components from the T4aP (pilD).

The final model was relaxed to identify a larger fraction of the systems. We reduced the

MMGR to 4 and the MGR to 5. To fit the data better, we added the prepilin peptidase of

ComM (comC) as another exchangeable gene of gspO. We set the gspC gene as mandatory and

gspM as accessory, and gspD was set as a loner to better fit the data.

ComM. In this initial model, only the genes that compose the pilus were used in the

model, not the genes that encode DNA uptake system, such as comEA, comEB, and comEC
[31,78,94–96]. The minimal distance between genes was set to 5. The MMGR was set to 3 and

the MGR to 5, and the system was set as multi_loci because some genes are loners. The genes

comC, comGA, comGB, comGC, and comGD were set as mandatory, and the other ones were

set as accessory in relation with their presence in experimentally validated systems, curated

with an exploratory phase to know the relative abundance of the genes in the systems (the

genes with more than 80% of presence in the detected systems were set as mandatory and the

others as accessory). comC was set as a loner and exchangeable with pilD of the T4aP because

we found a case in which the HMM profile of pilD was better in e-value than that of comC, and

for the same reason, comGA was set as exchangeable with pilB of T4aP. The genes comB,

comK, and comX were set as loners because they are often found alone in the genome.

In the final model, we changed the number of genes for the MMGR and MGR to 4. We also

added the genes encoding the DNA uptake system in the plasma membrane (comEC, comEB,
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and comEA). comEC was set as mandatory, comEB and comEA were set as accessory, and

comEC and comEB were set as loners. Changing the gene comGD to accessory allowed us to

search for loner genes without changing the MGR number.

Archaeal. Initial model. We here describe the first tool, to our knowledge, to detect

Archaeal-T4P. We extracted the sequences from the 200 arCOG families (2014 version, [97])

deemed to be associated with Archaeal-T4P by Makarova and colleagues [35]. We built HMM

profiles for each of these families: sequences were aligned with MAFFT v7.273 and linsi algo-

rithm, and the alignment extremities were trimmed based on the results of BMGE with BLO-

SUM40 matrix [98,99]. HMM profiles were generated using HMMER version 3.1b2 [100].

These profiles were compared to profiles of Tad, T4aP, and T2SS from TXSScan [39] using

HHsearch (e-value and p-value threshold of 0.001 for the family cutoff) in order to define supra-

families of components [46]. Core ‘mandatory’ components were defined based on the litera-

ture and experimentally validated systems. Other components were set as ‘accessory’. The

arCOG families that matched on the same component were defined as exchangeable. The prepi-

lin peptidase was set as a loner gene that can be part of multiple systems. This initial model

asked for a minimal number of mandatory genes and overall number of genes of 4. Of 14 exper-

imentally validated systems found in the literature, 10 were detected with this initial model (S1

Table). After counting the occurrence of the different arCOGs in the detected Archaeal-T4P, we

removed those without any occurrence to reduce the number to 109 arCOG families. Final

model. The number of genes for MMGR and MGR was reduced to 3, which better fits the data.

T4bP. Final Model. This class includes the R64 thin pilus, toxin-coregulated pilus, bun-

dle-forming pilus, longus pilus, and Cof pilus [27]. Because we do not have many experimen-

tally validated systems for the T4bP, we used the phylogenetic information of the TFF

superfamily trees to have a set of T4bP-related proteins to create the HMM profiles and the

definition of the model. We created 8 HMM profiles; the MMGR was set to 4 and the MGR to

4. The system was set as multi_loci because some genes are loners. The genes pilD, pilB, pilA,

pilC, and pilQ were set as mandatory, and the other ones were set as accessory, according to

their occurrence in the detected systems. The prepilin peptidase pilD was set as a loner. pilA
was set as exchangeable with pilA of T4aP because we found cases in which the HMM profile

of pilA of T4aP had a better e-value in matches to T4bP than the pilA of T4bP.

MSH. Final Model. Because we do not have many experimentally validated systems for

the MSH, we used the phylogenetic information of the TFF superfamily tree to have a set of

MSH-related proteins to create the HMM profiles and the definition of the model. We created 20

HMM profiles; the MMGR was set to 3 and the MGR to 4. The system was set as multi_loci

because some genes are loners. The genesmshA,mshE,mshG,mshL, andmshMwere set as man-

datory, and the others were set as accessory, according to their occurrence in the detected systems.

The genemshAwas set as a loner, according to detected systems found in the genomes.mshBwas

set as exchangeable with pilA of T4bP because we found cases in which the HMM profile of pilA
of T4bP provided better e-values when matching MSH systems than themshB of MSH. For simi-

lar reasons,mshCwas set as exchangeable with fimT of T4aP. The model for MSH does not

include a prepilin peptidase because such a gene could not be identified in the locus.

Retrieval and construction of protein profiles

We retrieved 37 profiles for T2SS, T4aP, and Tad from TXSScan [39]. For two HMM profiles

of T4aP that combine the detection of two protein paralogues (T4P_pilT_pilU and T4P_pi-

lAE), we decided to separate the sequence of the different proteins from the original alignment

of this profile to generate five separate HMM profiles (T4P_pilT, T4P_pilU, T4P_pilA,

T4P_fimT, and T4P_pilE).
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To create the HMM profiles, we used the following methodology. For the genes that had

few representatives in the experimentally validated data set, we used BLASTP v 2.5.0+ (default

settings, e-value<1 × 10−6) [101] to search for homologues among complete genomes. To

remove very closely related proteins, we performed an all-against-all BLASTP v2.5.0+ analysis

and clustered the proteins with at least 80% sequence similarity using SiLiX v1.2.10-p1 (default

settings) [102]. We selected one sequence from each family as a representative. We aligned all

the representatives using MAFFT v7.273 (—auto, automatic selection of the parameters

depending of the size of the alignment, default values for the other parameters) [98]. With

SEAVIEW [103], the poorly aligned regions at the extremities were manually trimmed in the

alignment. The trimmed alignment was used to build the HMM profile using hmmbuild

(default parameters) from HMMER package v3.1b2 [104].

For the HMM profiles of the final model, we used the sequences of the profiles described

above. Using the information of the phylogeny of the systems, we added the sequences of the

systems that were annotated as generic but that clustered in a group of experimentally vali-

dated systems. We aligned all the representatives using MAFFT v7.273 (—auto, automatic

selection of the parameters depending of the size of the alignment, default values for the other

parameters) [98]. With SEAVIEW [103], the poorly aligned regions at the extremities were

manually trimmed in the alignment. The trimmed alignment was used to build the HMM pro-

file using hmmbuild (default parameters) from HMMER package v3.1b2 [104].

Phylogenetic inference

Phylogenetic analyses based on protein sequences involved an initial alignment of the

sequences using MAFFT v7.273 (linsi algorithm) [98]. Multiple alignments were analysed

using Noisy v1.5.12 (default parameters) [105] to select the informative sites. We inferred max-

imum likelihood trees from the curated alignments or their concatenates, using IQ-TREE v

1.6.7.2 [52] (options -allnni, -nstop 1,000, -nm 100,000). We evaluated the node supports

using the options -bb 1,000 for ultrafast bootstraps and -alrt 1,000 for SH-aLRT [106]. The best

evolutionary model was selected with ModelFinder (option -MF, BIC criterion) [107]. We

used the option -wbtl to conserve all optimal trees and their branch lengths.

The phylogenetic trees of 16S rRNA sequences were built from a data set including one

sequence per genome of 5,776 genomes. The 16S sequences were retrieved from genome

sequences using RNammer v1.2 [108] (options -S set to bac and the -m to ssu). We aligned

archaeal and bacterial 16S rRNA separately using the secondary structure models with SSU_A-

lign v0.1.1 (http://eddylab.org/software/ssu-align/, default options). Poorly aligned positions

were masked with ssu-mask. The alignment was trimmed with trimAl v1.4rev15 [109] (-noall-

gaps, which allows for removing regions that are only composed of gaps from the alignment).

The maximum likelihood trees were inferred using IQ-TREE v1.6.7.2 [52] (using the best-

selected model SYM + R6 for the archaeal tree and SYM + R10 for the bacterial tree, -bb

10,000 ultrafast bootstrap [106], -wbtl to conserve all optimal trees and their branch lengths).

Reference systems data set

The data set with all the systems identified in the genomes is too large to make phylogenetic

inferences. It also contains many very closely related systems that may provide little additional

information to infer the deeper nodes of the tree. Hence, we developed a method to remove

redundancy in the data set while maximising its genetic diversity. The method prioritises the

inclusion of systems that were experimentally validated to facilitate the analysis of the results.

The method consists of several sequential steps (S15 Fig).
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1. We inferred the maximum likelihood tree for each key components’ family as mentioned

above and extracted the matrices of patristic distances (using the R function ‘cophenetic_-

phylo’ of the package ape) between all leaves of the trees. This resulted in a set of distance

matrices between systems.

2. When there were multiple copies of a family of clade-specific paralogues, the system was

represented multiple times in the phylogeny and in the distance matrix. To solve the prob-

lem and to have only one distance between two systems, we chose the minimal distance

between the paralogues of the systems.

3. Each core protein family has a different rate of evolution. To compare them, we normalised

each matrix by the sum of all the branch lengths in the tree of the family. We then built a

matrix that is the average of all normalised matrices. This average matrix was used to infer a

tree with bioNJ [110]. The tree was rooted at the midpoint.

4. We used the bioNJ tree to define monophyletic groups of similar systems. We iteratively

used the R function ‘cutree’ from the stats package by gradually decreasing or increasing

the heights at which the tree should be ‘cut’ until we obtained between 200 and 300 groups.

5. At this stage in the method, we had obtained a set of monophyletic groups of closely related

systems. To pick the representative system of each group, we had the following order of pri-

orities: i) inclusion of systems validated experimentally, ii) inclusion of the systems with

fewest paralogues. In some rare cases, a given type of systems (e.g., T2SS) had less than 20

instances after this procedure. In this case, and to increase the statistical power of the analy-

ses, we modified the height of the ‘cutree’ function for the specific subtree of the systems

lacking representative to obtain a minimum of 20 systems for each group if possible. The

systems selected to make the phylogeny are named ‘representative systems’.

6. We removed some complex systems from the reference ones (6/39 Archaeal-T4P and 10/

101 generic) because they had two paralogues of all the genes or were generic systems with

components from different types (e.g., T2SS_gspE and T4P_pilB).

Dereplicated data set

To reduce the number of paralogues in each system, we used the following method (S16 Fig).

1. We inferred the maximum likelihood tree for each key components’ family of the represen-

tative data set as mentioned above and extracted the matrices of patristic distances (using

the R function ‘cophenetic_phylo’ of the package ape) between all leaves of the trees. This

resulted in a set of distance matrices between proteins.

2. For each system with more than one copy per gene, we found the nearest system, based on

patristic distances extracted from the ATPase or the IM platform tree (depending on the

number of copies of the ATPase), that had only one copy of this gene.

3. We use this nearest system to choose the copy of the duplicate gene with the smallest dis-

tance to its homologue in this nearest system.

4. In the end, each system is represented by a single instance of each of the core proteins, and

we called this set of selected sequences and systems the ‘dereplicated data set’.

Concatenate trees and ML topology tests

The Tad pilus and T4aP show cases of system-wide duplications: some of their gene families

have several members in the same systems. That is the case of the IM platform for the Tad
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pilus (TadB and TadC are homologues that resulted from an initial gene internal duplication

before the last common ancestor of TFFs, followed by a gene fission event) and for the ATPase

of the T4aP (PilB and PilT/PilU are paralogues). Candidate systems’ trees were generated

based on the concatenation of all possible combinations of putative sets of orthologues, i.e.,

each paralogue was picked one after the other to represent their system in phylogenetic analy-

ses. E.g., for the IM platform, a first set of orthologues would consist of TadB sequences for

Tad systems together with IM platform sequences from all other systems, and another would

consist of TadC sequences for Tad systems together with IM platform sequences from all other

systems. For the ATPase, we decided to only focus on the functional orthologous gene, the

PilB sequences for T4aP systems.

Therefore, there were two possible combinations of the mandatory genes to generate con-

catenates of the ATPase IM platform. In total, we generated two concatenates and used

IQ-Tree to compute maximum likelihood phylogenetic trees, using partition models (option

-spp, the location of the genes in the concatenation defines the partitions, the model for each

partition corresponds to the model found previously for the individual analyses).

In order to assess the congruence between the concatenate trees and the individual protein

trees, a maximum likelihood topology test (AU for ‘Approximately Unbiased’ [111]) was per-

formed using IQ-Tree. Each protein alignment was used as an input to assess the congruence

of its ML tree with those of the 10 concatenate trees. The parameters of the model were esti-

mated on the initial parsimony tree (option -n 0). A correction for multiple tests was applied

to the p-values (sequential Bonferroni per batch of 10 concatenate trees).

Analysis of the neighbourhood of the systems

We searched for genes systematically associated with a given type of systems by analysing the

neighbourhood of each system. For each locus of a system, we identified its first gene (position

XFirst) and last gene (position XEnd). We then took all the genes in a neighbourhood of 10 (i.e.,

between XFirst-10 and XEnd+10). When a system was encoded in multiple loci in the genome,

each locus was analysed in the same way. We then clustered all these proteins by sequence sim-

ilarity using BLASTP v. 2.5.0+ (default settings, e-value< 1 × 10−6) [101] and SiLiX v1.2.10-p1

(minimal percentage of identity to accept blast hits for building families at 50%) [102]. We

kept the clusters if they had proteins represented in systems of different leaves in the tree. The

proteins of each cluster were aligned with MAFFT and used to build HMM protein profiles as

described above.

To annotate the protein clusters, we used two methods. First, we searched for similarities of

their HMM profiles with the profiles used to identify the TFFs’ components using HHsearch

(v3.0.3, p-value< 1 × 10−5). Second, we searched for homologies between the remaining clus-

ters and the profiles of the PFAM database (v31.0, same method).

To test whether a given cluster is significantly positively associated with a given type of sys-

tem, we made the following analysis. We counted the occurrences of the elements of the cluster

associated with a given type and made a contingency table in which the columns are the type

versus all other types and the lines are presence or absence of an element from the cluster. To

test statistical significance, we used a Fisher’s exact test on the contingency table. Because this

implicates many statistical tests—one test per type per cluster and this for many clusters and

several types—we adjusted the p-values for multiple tests using the Bonferroni correction. We

kept the association between a given cluster and a given type of system if the number of ele-

ments in the cluster neighbouring systems of that type was higher than expected by chance

and if the corrected p-value< 0.05. The resulting matrix of presence/absence for genes posi-

tively associated with the systems can be found in S5 Table.
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Inferring transfers of systems

We took the phylogenetic tree of all systems and picked the subtrees of each type of system.

For each of these trees, we pruned the 16S rRNA tree such that it only includes species present

in the system tree. We used ALE v0.4 (default parameters), a reconciliation program that intro-

duces events of duplication, transfer, and loss (DTL) in a gene tree, and amalgamated the most

frequent subtrees in a sample distribution of the gene tree to improve it and make it congruent

with the species (reference) tree in a maximum likelihood framework [112]. Using ALE, we

computed a number of DTL events introduced in each system’s trees given the 16S rRNA tree

as a reference. We then computed the proportion of transfers by collecting the number of

transfers for each type of system and dividing it by the number of branches in the subtrees of

each type of system.

Analysis of genetic organisation

We identified all pairs of contiguous components of the systems (for a gene Xp in the cluster,

we look at the genes Xp − 1 and Xp + 1). We constructed an adjacency matrix using this infor-

mation, and we used it to construct a graph of the genetic organisation of the systems. We nor-

malised the association between two genes to represent two different types of information:

1. To know how frequently two genes are contiguous, we divided the number of contiguous

occurrences by the number of occurrences of the rarest of the two genes. This corresponds

to the edge widths in Fig 5.

2. To know how many times the contiguity is found in the system, we divided the number of

times the contiguity is observed by the number of systems detected. This corresponds to the

edge colours in Fig 5.

Supporting information

S1 Fig. Representation of the initial and final models of the systems. Homologous genes are

indicated by the same colour. Mandatory genes are indicated with a full outline, accessory

genes are indicated with a dash outline, and forbidden genes are indicated with a red cross.

The exchangeable genes are indicated by an arrow. The loner genes are indicated by a star

below the gene. For the Archaeal-T4P, the aCXXX name indicates that all the homologous

arCOGs for this function (they are set as exchangeable). The empty box in the genetic model

indicates that the genes are exchangeable with all the homologous genes of the other models.

Archaeal-T4P, type IV-related pili in Archaea; arCOG, archaeal Cluster of Orthologous Genes.

(PDF)

S2 Fig. Taxonomic distribution of the systems in Bacteria and Archaea with the initial

models. Cells indicate the number of genomes with at least one detected system. The cell’s col-

our gradient represents the proportion of genomes with at least one system in the clade. The

bar plot shows the total number of detected systems. The bars are separated in two categories:

Alpha-, Beta-, and Gamma-proteobacteria versus the other clades. The cladogram symbolises

approximated relationships between the bacterial and archaeal taxa analysed in this study.

(PDF)

S3 Fig. Rooted phylogeny of the ATPase. The colour of the label of the leaves indicates the

taxonomic group of the species. The different coloured strips indicate the classification of the

systems with the MacSyFinder annotation (with the initial model and with the final one) and

the annotation of the systems in the literature. The systems known to be implicated in natural
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transformation are indicated in dark purple. Known subtypes of Archaeal-T4P are indicate by

text in red. The annotation of the domains of the proteins using are also added. The tree was

built using IQ-Tree, 10,000 replicates of UFBoot, model LG + 10. Halo pilus indicates two pili

characterised in Halobacteria. Archaeal-T4P, type IV-related pili in Archaea; UFBoot, Ultrafast

Bootstrap Approximation.

(PDF)

S4 Fig. Rooted phylogeny of the ATPase with FtsK as external group. The colour of the

label of the leaves indicates the taxonomic group of the species. The different coloured strips

indicate the classification of the systems with the MacSyFinder annotation (with the initial

model and with the final one) and the annotation of the systems in the literature. The systems

known to be implicated in natural transformation are indicated in dark purple. Known sub-

types of Archaeal-T4P are indicate by text in red. The annotation of the domains of the pro-

teins using are also added. The tree was built using IQ-Tree, 10,000 replicates of UFBoot,

model LG + R10. Halo pilus indicates two pili characterised in Halobacteria. Archaeal-T4P,

type IV-related pili in Archaea; UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

S5 Fig. Rooted phylogeny of the ATPase with FtsK and virB4 as external group. The colour

of the label of the leaves indicates the taxonomic group of the species. The different coloured

strips indicate the classification of the systems with the MacSyFinder annotation (with the ini-

tial model and with the final one) and the annotation of the systems in the literature. The sys-

tems known to be implicated in natural transformation are indicated in dark purple. Known

subtypes of Archaeal-T4P are indicate by text in red. The annotation of the domains of the

proteins using are also added. The tree was built using IQ-Tree, 10,000 replicates of UFBoot,

model LG + R9. Halo pilus indicates two pili characterised in Halobacteria. Archaeal-T4P,

type IV-related pili in Archaea; UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

S6 Fig. Rooted phylogeny of the IM platform. The colour of the label of the leaves indicates

the taxonomic group of the species. The different coloured strips indicate the classification of

the systems with the MacSyFinder annotation (with the initial model and with the final one)

and the annotation of the systems in the literature. The systems known to be implicated in nat-

ural transformation are indicated in dark purple. Known subtypes of Archaeal-T4P are indi-

cate by text in red. The annotation of the domains of the proteins using are also added. The

tree was built using IQ-Tree, 10,000 replicates of UFBoot, model LG + F + R8. Halo pilus indi-

cates two pili characterised in Halobacteria. Archaeal-T4P, type IV-related pili in Archaea; IM,

integral membrane; UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

S7 Fig. Rooted phylogeny of the major pilin. The colour of the label of the leaves indicates

the taxonomic group of the species. The different coloured strips indicate the classification of

the systems with the MacSyFinder annotation (with the initial model and with the final one)

and the annotation of the systems in the literature. The systems known to be implicated in nat-

ural transformation are indicated in dark purple. Known subtypes of Archaeal-T4P are indi-

cate by text in red. The annotation of the domains of the proteins using are also added. The

tree was built using IQ-Tree, 10,000 replicates of UFBoot, model LG + F + R7. Halo pilus indi-

cates two pili characterised in Halobacteria. Archaeal-T4P, type IV-related pili in Archaea;

UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

Diversification of the type IV filament superfamily

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000390 July 19, 2019 26 / 34

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000390.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000390.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000390.s006
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000390.s007
https://doi.org/10.1371/journal.pbio.3000390


S8 Fig. Unrooted phylogeny of the prepilin peptidase. The colour of the label of the leaves

indicates the taxonomic group of the species. The different coloured strips indicate the classifi-

cation of the systems with the MacSyFinder annotation (with the initial model and with the

final one) and the annotation of the systems in the literature. The systems known to be impli-

cated in natural transformation are indicated in dark purple. Known subtypes of Archaeal-

T4P are indicate by text in red. The annotation of the domains of the proteins used are also

added. The tree was built using IQ-Tree, 10,000 replicates of UFBoot, model VT + F + R6.

Archaeal-T4P, type IV-related pili in Archaea; UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

S9 Fig. Unrooted phylogeny of the secretin. The colour of the label of the leaves indicates the

taxonomic group of the species. The different coloured strips indicate the classification of the

systems with the MacSyFinder annotation (with the initial model and with the final one) and

the annotation of the systems in the literature. The systems known to be implicated in natural

transformation are indicated in dark purple. Known subtypes of Archaeal-T4P are indicate by

text in red. The annotation of the domains of the proteins used are also added. The tree was

built using IQ-Tree, 10,000 replicates of UFBoot, model LG + F + R8. Archaeal-T4P, type IV-

related pili in Archaea; UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

S10 Fig. Rooted phylogeny of the TFF superfamily. The tree was built with the concatenate

of the IM platform (using TadB) and the AAA+ ATPase (using PilB). The colour of the label of

the leaves indicates the taxonomic group of the species. The different coloured strips indicate

the classification of the systems with the MacSyFinder annotation (with the initial model and

with the final one) and the annotation of the systems in the literature. The systems known to

be implicated in natural transformation are indicated in dark purple. Known subtypes of

Archaeal-T4P are indicate by text in red. The tree was built using IQ-Tree, 10,000 replicates of

UFBoot, with a partition model. Halo pilus indicates two pili characterised in Halobacteria.

Archaeal-T4P, type IV-related pili in Archaea; Tad, tight adherence; TFF, type IV filament;

UF, Ultrafast Bootstrap Approximation.

(PDF)

S11 Fig. Taxonomic distribution of the systems in Bacteria and Archaea using the phyloge-

netic clustering to annotate generic systems. Cells indicate the number of genomes with at

least one detected system. The cell’s colour gradient represents the proportion of genomes

with at least one system in the clade. The bar plot shows the total number of detected systems.

The bars are separated into two categories: Alpha-, Beta-, and Gamma-proteobacteria versus

the other clades. The cladogram symbolises approximated relationships between the bacterial

and archaeal taxa analysed in this study.

(PDF)

S12 Fig. Genetic organisation of the Archaeal-T4P in genomes. The edge width represents

the number of times the two genes are contiguous divided by the number of times the rarest

gene is present in the system. The colour of the edge represents the number of times the two

genes are contiguous in the system divided by the number of systems. Archaeal-T4P, type IV-

related pili in Archaea.

(PDF)

S13 Fig. Genetic organisation of the archaellum in genomes. The edge width represents the

number of times the two genes are contiguous divided by the number of times the rarest gene

is present in the system. The colour of the edge represents the number of times the two genes
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are contiguous in the system divided by the number of systems.

(PDF)

S14 Fig. 16S tree used to infer horizontal transfers. The colour of the leaves represents the

phyla of the Bacteria. The tree was built using IQ-Tree, 1,000 replicates of UFBoot, model

SYM + R10. UFBoot, Ultrafast Bootstrap Approximation.

(PDF)

S15 Fig. Schema of the workflow used to choose the representative systems.

(PDF)

S16 Fig. Schema of the workflow used to choose the species-specific paralogues.

(PDF)

S1 Table. List of all the profiles of the TFF superfamily used in the analysis. TFF, type IV fil-

ament.

(XLSX)

S2 Table. Experimentally validated systems used in the analysis.

(XLSX)

S3 Table. Description of all the genes and concatenate trees inferred in this study.

(XLSX)

S4 Table. All trees inferred in this study in newick format.

(TXT)

S5 Table. Matrix of presence/absence of neighbouring genes positively associated with the

systems (family of genes is in columns and systems are in rows).

(XLSX)

S6 Table. All the systems detected by MacSyFinder with the search using the final models.

(XLSX)

S7 Table. Tree topology tests (AU) using IQ-TREE between concatenated trees and the

genes that compose the concatenate. AU, Approximately Unbiased.

(XLSX)

S8 Table. Global scenario of TFF evolution: Summary of the evolutionary events presented

in Fig 7. TFF, type IV filament.

(PDF)
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