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Abstract: Platycodon grandiflorum (PG) is widely used in Asia for its various beneficial effects.
Although many studies were conducted to understand the molecular mechanisms of PG, it is still
unclear how the combinations of multiple ingredients work together to exert its therapeutic effects.
The aim of the present study was to provide a comprehensive review of the systems-level mechanisms
of PG by adopting network pharmacological analysis. We constructed a compound–target–disease
network for PG using experimentally validated and machine-leaning-based prediction results.
Each target of the network was analyzed based on previously known pharmacological activities of
PG. Gene ontology analysis revealed that the majority of targets were related to cellular and metabolic
processes, responses to stimuli, and biological regulation. In pathway enrichment analyses of targets,
the terms related to cancer showed the most significant enrichment and formed distinct clusters.
Degree matrix analysis for target–disease associations of PG suggested the therapeutic potential of
PG in various cancers including hepatocellular carcinoma, gastric cancer, prostate cancer, small-cell
lung cancer, and renal cell carcinoma. We expect that network pharmacological approaches will
provide an understanding of the systems-level mechanisms of medicinal herbs and further develop
their therapeutic potentials.

Keywords: Platycodon grandiflorum; Kilkyung; systems-level mechanism; network pharmacology;
traditional Asian medicine

1. Introduction

Platycodon grandiflorum (PG), known as Kilkyung (in Korea), Jiegeng (in China), or Kikyo (in Japan),
is widely used worldwide for its therapeutic effects on cough, phlegm, sore throat, and so on. So far,
many studies focused on the biological effects of PG, such as anti-inflammatory [1–3], anti-cancer [4,5],
anti-oxidative [6,7], and anti-obesogenic properties [8]. In particular, a number of studies investigated
the efficacy of platycodin D, the main active component of PG. Platycodin D was found to have diverse
pharmacological effects, such as inducing apoptosis [9–13], anti-obesity [14,15], and anti-inflammatory
effects [16–18], increasing airway mucin release [19,20], and protection against hepatotoxicity [21,22].
However, PG contains various ingredients in addition to platycodin D, and many of the ingredients
may work together to exert the therapeutic effects of PG.

Despite many studies trying to understand the molecular mechanisms of PG, it is still unclear
how the combinations of multiple ingredients work together to exert its therapeutic effects. Since most
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diseases are caused by an interplay of multiple molecular components [23], it is necessary to decipher
the systems-level mechanisms of PG to understand and further develop its therapeutic potential.

Network pharmacology is a novel approach for investigating the systems-level mechanisms of
drugs [24]. It integrates multiple sources of information and adopts computational methods such
as bioinformatics and network analysis, as well as experimental approaches. Recently, network
pharmacological approaches were employed to investigate the systems-level mechanisms of herbs
or herbal formulae, highlighting the potential of traditional herbal medicine in “multi-compound,
multi-target” therapeutics [25–29].

So far, there are several studies reviewing the therapeutic mechanisms of PG systemically based on
individual experimental results; however, there were no attempts to apply network pharmacological
analysis to decipher the systems-level mechanisms of PG. In this review, we attempt to provide
comprehensive insight into the systems-level mechanisms of PG by adopting network pharmacological
analysis. Firstly, we briefly introduce the chemical constituents that have a high possibility of being
active compounds. Next, we constructed a compound–target–disease network using compound–target
interaction data from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php) [30]. In order to review the major targets of PG, the Uniprot
database (https://www.uniprot.org/) was employed, and, to survey the pathways of selected
targets, the Protein Analysis Through Evolutionary Relationships (PANTHER, http://www.pantherdb.
org/) [31,32] classification system, Enrichr method (http://amp.pharm.mssm.edu/Enrichr/) [33,34],
and clustergram method were applied [35]. Finally, absolute and relative degree matrices were
constructed from a network of PG to investigate related diseases (Figure 1).

Figure 1. Framework of network pharmacological analysis of Platycodon grandiflorum (PG);
TCMSP: Traditional Chinese Medicine Systems Pharmacology database; OB: oral bioavailability;
DL: drug-likeness.

2. Compound Analysis

Among the compounds contained in the herb, not all compounds have drug characteristics.
To search for compounds that have potential as a drug, we applied oral bioavailability (OB)
and drug-likeness (DL) data to the compound the filtering process. [36]. OB is calculated
based on permeability (P)-glycoprotein and cytochrome P450, which affect drug absorption
and metabolism [37]. Meanwhile, DL is derived using Lipinski’s rule of five and Tanimoto
coefficients [38]. To extract candidate compounds from PG, the thresholds of OB and DL were
set to ≥30 (OB) and ≥0.18 (DL) and applied for filtering. Compound information was extracted
from the TCMSP database [30]. The candidate compounds turned out to be as follows: acacetin,
luteolin, cis-dihydroquercetin, spinasterol, robinin, 2-O-methyl-3-O-β-D-glucopyranosyl platycogenate,
and dimethyl 2-O-methyl-3-O-α-D-glucopyranosyl platycogenate A. Among them, compounds with no
interacting target were excluded, resulting in three flavonoids (acacetin, luteolin, cis-dihydroquercetin)
and one steroid (spinasterol) (Figure 2a).

Acacetin was reported to inhibit the proliferation of cancer cells by blocking cell-cycle progression
and inducing apoptosis. For example, it was demonstrated to obstruct the proliferation of cancer
cells from liver, lung, prostate, and breast tumors [39–42]. Dihydroquercetin was shown to have
neuroprotective and hepatoprotective activity through antioxidant effects [43,44]. Luteolin was found
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to promote antioxidant activity [45,46], lipolysis [47], and anti-angiogenic activity [48]. Spinasterol
was investigated for anti-carcinogenic [49], anti-tumor [50], and anti-nociceptive effects [51].

It is worthy of note that there can be other potential therapeutic compounds of PG in addition
to the compounds we suggested based on the TCMSP database and filtering process. For example,
platycodin D is the most frequently reported active compound among PG compounds [52,53] although
it showed OB and DL values below the threshold (7.60 and 0.01, respectively) (Figure 2b). Platycodin
D was reported to have various pharmacological effects, such as inducing apoptosis [9–13], as well as
anti-obesity [14,15] and anti-inflammatory [16–18] properties, increasing airway mucin release [19,20],
and protection against hepatotoxicity [21,22].

Figure 2. Chemical structures of PG compounds. (a) Four components of PG were selected from the
TCMSP database with threshold values of 30 and 0.18 for OB and DL, respectively. (b) Platycodin D is
a major active component of PG.

3. Construction of PG Compound–Target–Disease (CTD) Network

In order to predict the systemic therapeutic effects of PG, we constructed a CTD network
comprising three types of nodes (compounds, targets, and diseases) and two types of edges (between
compounds and targets, and between targets and diseases; CT and TD interactions, respectively).
CT and TD interaction information was extracted from TCMSP. CT interaction data include not only
experimentally validated interactions, but also predicted interactions based on machine learning (ML)
methods such as support vector machines and random forest algorithms. The performance of this
ML-based method was proven to be reliable [54].

The degree of each node was defined by the number of connections that the node has. Specifically,
target degree was defined as the number of connections each target has to compounds, and disease
degree was defined as the number of connections each disease has to targets. To explore as many
potential targets and diseases of PG as possible, the thresholds of OB and DL were set to 0. Instead,
we only included targets and diseases with more than three degrees in further analysis. Cytoscape
3.6.1 (http://www.cytoscape.org/) [55] was used to visualize the constructed network (Figure 3).

http://www.cytoscape.org/
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Figure 3. Compound–target–disease (CTD) network of PG. The red circles represent compounds,
the purple circles represent targets, and the orange circles represent diseases. The compounds, targets,
and diseases of each network are sorted in descending order from the bottom of the figure in a circular
layout, on the basis of the number of degrees. The size of the target and disease nodes reflects the
number of degrees. The node was removed when the number of degrees of the target and disease
nodes was <3. The orange box represents the top five targets and diseases in terms of degrees.

The CTD network constructed for PG contained 33 compounds, 40 targets, and 28 diseases.
Five targets with the most degrees among the 40 targets were as follows: trypsin-1, dipeptidyl
peptidase IV, estrogen receptor, prostaglandin G/H synthase 2, and prostaglandin G/H synthase 1;
the top five diseases that were most relevant to PG were as follows: unspecific cancer, breast cancer,
pancreatic cancer, Alzheimer’s disease, and prostate cancer.

4. Target Analysis

Since presenting only the name of the target has limitations in providing an understanding of
the therapeutic effects of PG, we queried the top 10 biological functions of each target in Uniprot,
a target annotation information database. Since many of the CT interactions in the network were
based on the results of ML prediction without experimental validation, there is the possibility of
spurious interactions in the network. Therefore, we mainly focused on targets with high numbers of
degrees (top 10 targets) for target analysis. Among many target annotations in Uniprot, to find the
pharmacological functions of PG, 12 pharmacological activities of PG were pre-selected based on two
review papers [56,57], i.e., apophlegmatic and antitussive, immune, anti-inflammatory, anti-oxidant,
anti-tumor and anti-cancer, anti-diabetic, anti-obesity, anti-allergic, anti-microbial, cardiovascular,
hepatoprotective, and neuroprotective activities. The pharmacological activities of each target were
retrieved from the annotation information of Uniprot and matched with the pharmacological activities
of PG (Table 1).

Among the top 10 targets, DPP4 is known as a gene involved in T-cell immune activation, and
has a biological process of insulin secretion, as well as locomotor and psychomotor behavior. ERS1
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and AR are involved in gene expression control, which affect cell proliferation and differentiation
of the target tissue. In particular, ERS1 is known to act on cancer, tumor, and inflammation by
controlling phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B (Akt) signaling associated with cell
abnormal proliferation [58], and AR is known to be associated with prostate cancer [59]. PTGS2, better
known as COX2, is involved in prostanoid synthesis. This gene was reported to cause inflammatory
responses and phenotypic changes, resistance to apoptosis, tumor angiogenesis, and cancer [60–62].
NOS2 is a gene that produces nitric oxides (NOs), mediating tumoricidal and bactericidal actions in
macrophages [63]. This gene is also closely related to the inflammatory response because it is involved
in prostaglandin secretion [62]. CA2 is known as the target of breast cancer and glaucoma treatment
drugs [64]. CA2 is also related to osteopetrosis because it plays an important role in bone resorption
and osteoclast differentiation [65].

Table 1. Top 10 targets in the compound–target (CT) network and pharmacological activity of
each target.

Gene Name Protein Name Target Degrees Pharmacological Activities in Uniprot

PRSS1 Trypsin-1 17 -

DPP4 Dipeptidyl peptidase IV 16 Immune activitiesAnti-diabetic
activitiesAnti-microbial activities

ESR1 Estrogen receptor 12 Anti-inflammatory activitiesAnti-cancer
activitiesAnti-tumor activities

PTGS2 Prostaglandin G/H synthase 2 12 Anti-inflammatory activitiesAnti-cancer
activitiesAnti-tumor activities

PTGS1 Prostaglandin G/H synthase 1 12 Anti-inflammatory activities
ADH1C Alcohol dehydrogenase 1C 12 -

AR Androgen receptor 10 Anti-cancer activities

NOS2 Nitric oxide synthase, inducible 9 Anti-tumor activitiesAnti-microbial
activitiesAnti-inflammatory activities

CA2 Carbonic anhydrase II 9 Anti-cancer activities
F2 Prothrombin 9 Cardiovascular activities

5. Pathway Analysis

Next, we performed pathway analysis using predicted targets of PG. Pathway analysis aims to
provide insight into the biological processes involved in the predicted targets. Firstly, to capture the
related biological functions of PG, every target of the CT network was assigned to biological processes
using the “PANTHER GO-Slim Biological Process” feature of the PANTHER database [31].

As a result, 112 targets were assigned to 261 biological processes. Biological processes were
classified into 11 categories as follows: cellular process, metabolic process, response to stimulus,
biological regulation, multicellular organismal process, developmental process, localization, cellular
component organization or biogenesis, immune system process, locomotion, and reproduction
(Figure 4)
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Figure 4. Biological processes related to targets of PG. Targets were assigned to biological processes
using “Panther GO-slim Biological Process”. Hits mean the number of assigned targets to the
corresponding biological processes. The proportion of each biological process is color-coded in the
pie chart.

We also applied gene set enrichment analysis (GSEA) [66] to investigate target-related pathways.
The pathway information of the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2016 database
(https://www.kegg.jp/) [67] was used for the enrichment analysis. The top 10 enriched terms
were ranked in descending order as follows: pathways in cancer, PI3K/Akt signaling pathway,
hypoxia-inducible factor 1 (HIF-1) signaling pathway, prostate cancer, advanced glycation end
products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway in diabetic
complications, hepatitis B, proteoglycans in cancer, glioma, estrogen signaling pathway, and small-cell
lung cancer. These enriched terms were visualized as a bar graph using a combined score and as a
network based on the gene content similarity among the enriched terms (Figure 5) [33,34]. The network
of pathways provides information on how the diverse pathways are related in terms of the target
genes of PG. We found that PG mainly acts on pathways related to cancers, and non-cancer pathways
such as hepatitis B, AGE/RAGE, and glioma, which share target genes in common with various
cancer-related pathways.

https://www.kegg.jp/
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Figure 5. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2016 library.
Analysis was performed on the “Enrichr” platform (http://amp.pharm.mssm.edu/Enrichr/). The 112
targets of PG were used to obtain the results. (a) The top 10 enriched pathway terms are displayed in
a bar graph. They are ranked by a combined score calculated by p-value and z-score. The length of
the bar and the brightness of its color represent the significance of the specific pathway. (b) The top 10
enriched pathway terms are displayed as a network. Each node represents a pathway, and each edge
represents the gene content similarity among the pathways.

To show how the pathways share target genes in common in more detail, we constructed a
clustergram of pathways and genes. Only pathways with combined scores greater than 20 were
included in the clustergram (Figure 6). To define clusters, we cut the dendrogram at the fifth level,
resulting in nine clusters (Table 2). We found that many of the clusters were cancer pathways or closely
related to cancers (clusters 1, 2, 3, 4, 8, and 9). These findings are consistent with many previous studies
of PG. For example, PG was reported to inhibit proliferation of HT-29 colon cancer cells by inducing
apoptosis via both caspase-dependent and -independent pathways [5]. Also, Shin et al. reported the
effects of platycodin D on the production of reactive oxygen species (ROS) and showed the association
of these effects with apoptotic tumor cell death [68]. PI3K-Akt signaling pathway which stimulates cell
growth and cell cycle progression, is closely related to oncogenesis, and has been reported as a major
cancer control pathway of PG [69,70]. Also, several studies have reported that PG stimulates NO and
TNF-α release and is able to upregulate iNOS and TNF-α expression for anti-tumor activity [71,72].

http://amp.pharm.mssm.edu/Enrichr/
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Figure 6. Clustergram of pathways. Rows and columns represent the pathways and input genes,
respectively. The enriched terms in the rows of the heat map are clustered by the similarity of the gene
contents. The input genes in the column are sorted in descending order of the sum of the columns from
left to right. The colors of the boxes represent each cluster.

Table 2. Cluster of the enriched pathway. PI3K—phosphatidylinositol 3-kinase; HIF-1—hypoxia-
inducible factor 1; AGE—advanced glycation end products; RAGE—receptor for AGE; TNF—tumor
necrosis factor.

Cluster No. Enriched Pathway

Cluster 1 Pathways in cancer
Cluster 2 PI3K signaling pathway
Cluster 3 HIF-1 signaling pathway
Cluster 4 Proteoglycans in cancer
Cluster 5 Estrogen signaling pathway

Cluster 6 AGE/RAGE signaling pathway in diabetic complications, apoptosis, T-cell receptor signaling
pathway, Chagas disease (American trypanosomiasis), TNF signaling pathway, influenza A

Cluster 7 Insulin signaling pathway, thyroid hormone signaling pathway, non-alcoholic fatty liver disease
(NAFLD), insulin resistance

Cluster 8 Prostate cancer, bladder cancer, pancreatic cancer, glioma, melanoma
Cluster 9 Measles, Epstein–Barr virus infection, small-cell lung cancer, hepatitis B, viral carcinogenesis

6. Disease Analysis

Finally, we analyzed the therapeutic effects of PG on diseases. Potential target diseases of PG
were analyzed based on the target–disease information from TCMSP, which extracted information
from PharmGKB (https://www.pharmgkb.org/) [73] and the Therapeutic Targets Database (http:
//bidd.nus.edu.sg/BIDD-Databases/TTD/TTD.asp) [74]. At first, disease degrees were calculated for
all diseases in TCMSP by counting the number of interactions with targets in the constructed CTD
network of PG (Figure 7a and Table 3). Since the results are affected by the selection of thresholds for
OB and DL, the degrees of diseases were calculated across a wide range of thresholds, resulting in
a degree matrix of diseases. In the matrix, only diseases whose average disease degree was >3 were
displayed. Unspecific cancer shows the highest degree, followed by cancer-related diseases such as
breast cancer, pancreatic cancer, and prostate cancer. Among non-cancer diseases, Alzheimer’s disease
shows the highest degree.

https://www.pharmgkb.org/
http://bidd.nus.edu.sg/BIDD-Databases/TTD/TTD.asp
http://bidd.nus.edu.sg/BIDD-Databases/TTD/TTD.asp
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Figure 7. Degree matrices of the related diseases. Each row represents the major diseases of the
CTD network, and each column represents the 10 thresholds of OB and DL. (a) The matrix shows the
absolute degree of each disease. Only diseases with an average degree of 3 or higher are displayed.
The color bar indicates the absolute degree of diseases. (b) The matrix represents the relative degree.
Only the top 50% of diseases indicated by total herbs’ degrees are selected. The color bar represents the
relative degree of diseases.

Table 3. The potential target diseases based on the absolute degree matrix of Platycodon grandiflorum.

Disease Name Degree (From the
1st Level Threshold) Disease Name Degree (From the

1st Level Threshold)

Cancer, unspecific 11 Alcoholism 3
Breast cancer 9 Bladder cancer 3

Pancreatic cancer 7 Neurodegenerative diseases 3
Alzheimer’s disease 7 Brain injury 3

Prostate cancer 7 Schizophrenia 3
Inflammation 5 Hepatocellular carcinoma 3

Cardiovascular disease,
unspecified 5 Multiple sclerosis 3

Non-small-cell lung cancer 5 Chronic inflammatory diseases 3
Non-insulin-dependent diabetes

mellitus 5 Diabetes mellitus 3

Solid tumors 5 Osteoarthritis 3
Renal cell carcinoma 4 Anxiety disorder, unspecified 3

Obesity 4 Rheumatoid arthritis, unspecified 3
Multiple myeloma 4 Crohn’s disease, unspecified 3

Lung cancer 4 Asthma 3

The high proportion of cancer diseases in our results raised concerns that the results could
be biased to specific diseases that have many related genes in the database (target genes are not
evenly distributed for diseases). To avoid this bias, we calculated the relative degrees by dividing
each degree by the maximum degree of the corresponding disease. The relative degree of a disease
shows a comparative advantage of PG for various diseases by controlling for the frequency of the
disease in the database (Figure 7b and Table 4). The results of the relative degree analysis were not
identical with those of the absolute degree analysis, but the overall trend of a high proportion of
cancer diseases was found again. Major diseases targeted by PG according to relative degrees are as
follows: hepatocellular carcinoma, gastric cancer, prostate cancer, small-cell lung cancer, and renal
cell carcinoma. Our network pharmacological analysis of target diseases of PG concurs with many
previous studies on PG. The anti-cancer effect of PG was actively verified on various cancers such
as hepatocellular carcinoma [11,12], lung cancer [4,10], breast cancer [13,75], colon cancer [5], and
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leukemia [68]. In addition, several studies described the beneficial effects of PG on various diseases
such as anti-obesity [76,77] and neuroprotective [78] effects, and immune system activation [79,80].

Table 4. The potential target diseases based on the relative degree matrix of Platycodon grandiflorum.
HCV—hepatitis C virus.

Disease Name Relative Degree (From
the 1st Level Threshold) Disease Name Relative Degree (From

the 1st Level Threshold)

Hepatocellular
carcinoma 0.82 Pancreatic cancer 0.53

Gastric cancer 0.81 Solid tumor 0.53
Prostate cancer

(metastatic) 0.80 HCV infection 0.52

Small-cell lung cancer 0.79 Head and neck tumors 0.52
Renal cell carcinoma 0.75 Lymphangiomatosis 0.52

Squamous cell carcinoma 0.66 Non-small cell lung
cancer 0.51

Endometrial carcinoma 0.62 Prostate cancer 0.49
Metastatic osteosarcoma

in the lung 0.62 Colorectal cancer 0.48

Leukemia, unspecified 0.61 Hormone-refractory
prostate cancer 0.47

Tumors 0.59 Kaposi’s sarcoma 0.47
Breast cancer 0.56 Lung cancer 0.47
Mesothelioma 0.55 Obesity 0.45

Glioblastoma multiforme 0.54 Solid tumors 0.34
Insulin-dependent
diabetes mellitus 0.53

7. Concluding Remarks and Future Directions

PG contains various ingredients, as well as platycosides (e.g., platycodin D), and these components
could interact with multiple targets and pathways simultaneously in a complex manner to exert PG’s
therapeutic effects. However, it is a challenging task to understand the complex mechanisms of
action of PG at a systems level via conventional approaches based on reductive analysis. In the
present study, we attempted to review the systems-level mechanisms of PG by applying network
pharmacological methods, such as CTD network construction, target analysis, pathway analysis, and
disease analysis using bioinformatics tools and databases. Our analysis revealed candidate targets
of PG and target-related pathways which take the simultaneous actions of multiple compounds on
multiple targets into account. We can also suggest potential target diseases of PG from this analysis,
providing insight into PG’s therapeutic potential. We employed various analytical approaches to
give reliable information at multiple levels and showed consistent results throughout the analysis.
Furthermore, we tried avoiding publication bias that can occur when using bioinformatics databases
in disease analysis, by considering the relative degree of diseases [25].

Although our network pharmacology-based review of systems-level mechanisms of PG is
encouraging, a limitation should also be noted. Currently, there are several different approaches
to each network pharmacological analysis step, such as the predictions of OB, DL, and drug–target
interactions [36], and there is no consensus about which approaches are more appropriate for
understanding the systems-level mechanisms of herbs with multiple components. Since the results of
analysis are dependent on adopted methodologies, future studies are needed to optimize each step
of the analysis by combining experimental validation data. It will also be necessary to incorporate
multi-scale models of diseases and drugs based on systems-level experiments such as gene expression
profiling, because they can provide more downstream results of complex interactions between multiple
target genes [81,82]. In spite of this limitation, however, we found that our prediction-based results
were generally consistent with previous research on pathways and diseases treated with PG extracts.



Molecules 2018, 23, 2841 11 of 15

Furthermore, we can suggest more comprehensive mechanisms of therapeutic effects of PG in terms
of target proteins, pathways, and diseases than manual reviews of the literature. We expect that the
review of systems-level mechanisms of herbs via network pharmacology will be a valuable approach
for understanding and developing the therapeutic potential of herbs.
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