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Humans and nonhuman animals display conformist as well as
anticonformist biases in cultural transmission. Whereas many
previous mathematical models have incorporated constant con-
formity coefficients, empirical research suggests that the extent
of (anti)conformity in populations can change over time. We
incorporate stochastic time-varying conformity coefficients into
a widely used conformity model, which assumes a fixed num-
ber n of “role models” sampled by each individual. We also
allow the number of role models to vary over time (nt). Under
anticonformity, nonconvergence can occur in deterministic and
stochastic models with different parameter values. Even if strong
anticonformity may occur, if conformity or random copying
(i.e., neither conformity nor anticonformity) is expected, there
is convergence to one of the three equilibria seen in previ-
ous deterministic models of conformity. Moreover, this result is
robust to stochastic variation in nt . However, dynamic properties
of these equilibria may be different from those in determinis-
tic models. For example, with random conformity coefficients,
all equilibria can be stochastically locally stable simultaneously.
Finally, we study the effect of randomly changing weak selec-
tion. Allowing the level of conformity, the number of role models,
and selection to vary stochastically may produce a more realis-
tic representation of the wide range of group-level properties
that can emerge under (anti)conformist biases. This promises to
make interpretation of the effect of conformity on differences
between populations, for example those connected by migration,
rather difficult. Future research incorporating finite population
sizes and migration would contribute added realism to these
models.

random conformity | stochastic local stability | convergence |
random selection

Cavalli-Sforza and Feldman (1) studied the finite popu-
lation dynamics of a trait whose transmission from one

generation to the next depended on the mean value of that
trait in the population. This “group transmission” constrained
the within-group variability but could lead to increasing vari-
ance in the average trait value between groups. Other anal-
yses of cultural transmission biases have incorporated char-
acteristics of trait variation, such as the quality, and char-
acteristics of transmitters, including success and prestige (2).
Another class of transmission biases is couched in terms of
the frequencies of the cultural variants in the population (3).
These “frequency-dependent” biases include conformity and
anticonformity, which occur when a more common variant is
adopted at a rate greater or less than its population frequency,
respectively (4).

Humans have exhibited conformity in mental rotation (5), line
discrimination (6), and numerical discrimination tasks (7). Anti-
conformity has been exhibited by young children performing
numerical discrimination (7). Unbiased frequency-dependent
transmission, known as random copying (8), has been suggested
to account for choices of dog breeds (9), Neolithic pottery motifs,
patent citations, and baby names (10, 11). However, baby name
distributions appear more consistent with frequency-dependent
(8, 12) and/or other (13, 14) biases.

In nonhuman animals, conformity has been observed in nine-
spined sticklebacks choosing a feeder (15) and great tits solving
a puzzle box (16, 17) (but see ref. 18). Fruit flies displayed both
conformist and anticonformist bias with respect to mate choice
(19) (but these authors used a different definition of anticon-
formity from that of ref. 4, which we use, and therefore did not
consider these behaviors to be anticonformist).

Asch (20, 21) used a different definition of conformity from
ref. 4, namely “the overriding of personal knowledge or behav-
ioral dispositions by countervailing options observed in others”
(ref. 22, p. 34). Aschian conformity (22) has been observed
in chimpanzees (23, 24), capuchin monkeys (25, 26) (but see
ref. 27), vervet monkeys (28), and great tits (16). It has also
been empirically tested in at least 133 studies of humans and,
in the United States, has declined from the 1950s to the
1990s (29).

Temporal variation may also occur in forms of conformity
other than Aschian. In ref. 12, popular US baby names from
1960 to 2010 show a concave turnover function indicative
of negative frequency-dependent bias, but male baby names
from earlier decades (1880 to 1930) show a convex turnover
indicative of positive frequency-dependent or direct bias. How-
ever, most previous mathematical models of conformity have
incorporated constant, rather than time-dependent, conformity
coefficients.
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Cavalli-Sforza and Feldman (ref. 3, chap. 3) and Boyd
and Richerson (ref. 4, chap. 7) studied models of frequency-
dependent transmission of a cultural trait with two variants. Boyd
and Richerson (4) incorporated conformist and anticonformist
bias through a conformity coefficient denoted by D . In their
simplest model, if the frequency of variant A is p and that of vari-
ant B is 1− p, then the frequency of variant A in the offspring
generation, p′, is

p′= p+Dp(1− p)(2p− 1), [1]

where D > 0 entails conformity (A increases if its frequency is
p> 1

2
), D < 0 entails anticonformity, D =0 entails random copy-

ing, and −2<D < 1. In this model, each offspring samples the
cultural variants of n =3 members of the parental generation
(hereafter, role models). Sampling n > 3 role models requires
different constraints and, if n > 4, there are multiple conformity
coefficients (Eq. 19).

Many subsequent models have built upon Boyd and Rich-
erson’s (4) simplest model (Eq. 1). These have incorpo-
rated individual learning, information inaccuracy due to envi-
ronmental change (30–34), group selection (35), and other
transmission biases, including payoff bias (36), direct bias,
and prestige bias (37). Other models, which include a sin-
gle conformity coefficient and preserve the essential features
of Eq. 1, incorporate individual learning, environmental vari-
ability (32, 38), group selection (39), and multiple cultural
variants (38).

In agent-based statistical physics models, the up and down
spins of an electron are analogous to cultural variants A and
B (40, 41). Individuals are nodes in a network and choose
among a series of actions with specified probabilities, such as
independently acquiring a spin, or sampling neighboring individ-
uals and adopting the majority or minority spin in the sample.
The number of sampled role models can be greater than three
(42, 43). (Anti)conformity may occur if all (42–47), or if at
least r (40, 48), sampled individuals have the same variant.
In contrast, Boyd and Richerson’s (4) general model (Eq. 19)
allows, for example, stronger conformity to a 60% majority
of role models and weaker conformity or anticonformity to a
95% majority (in humans, this might result from a perceived
difference between “up-and-coming” and “overly popular”
variants).

In Boyd and Richerson’s (4) general model, individuals sam-
ple n role models, which is more realistic than restricting n
to 3 (as in Eq. 1); individuals may be able to observe more
than three members of the previous generation. With n > 4,
different levels of (anti)conformity may occur for different sam-
ples j of n role models with one variant. In addition to the
example above with 60 and 95% majorities, other relationships
between the level of conformity and the sample j of n are pos-
sible. For example, the strength of conformity might increase
as the number of role models with the more common variant
increases. In a recent exploration of Boyd and Richerson’s (4)
general model, we found dynamics that departed significantly
from those of Eq. 1 (49). If conformity and anticonformity occur
for different majorities j of n role models (i.e., j > n

2
), poly-

morphic equilibria may exist that were not possible with Eq. 1.
In addition, strong enough anticonformity can produce noncon-
vergence: With as few as 5 role models, stable cycles in variant
frequencies may arise, and with as few as 10 role models, chaos
is possible. Such complex dynamics may occur with or without
selection.

Here, we extend both Boyd and Richerson’s (4) simplest
(Eq. 1) and general (Eq. 19) models to allow the conformity
coefficient(s) to vary randomly across generations, by sampling
them from probability distributions. Although some agent-based
models allow individuals to switch between “conformist” and

“non-” or “anticonformist” states over time (40, 42, 47, 50, 51),
to our knowledge, random temporal variation in the confor-
mity coefficients themselves has not been modeled previously.
In reality, the degree to which groups of individuals conform
may change over time, as illustrated by the finding that young
children anti-conformed while older children conformed in a
discrimination task (7); thus, it seems reasonable to expect
that different generations may also exhibit different levels of
conformity. Indeed, generational changes have occurred for
Aschian conformity (29) and possibly in frequency-dependent
copying of baby names (12). Our stochastic model may there-
fore produce more realistic population dynamics than previ-
ous deterministic models, and comparisons between the two
can suggest when the latter is a reasonable approximation to
the former.

We also allow the number of role models, nt , to vary over
time. Agent-based conformity models have incorporated tem-
poral (43) and individual (43, 45, 46) variation in the number
of sampled individuals, whereas here, all members of genera-
tion t sample the same number nt of role models. Causes of
variation in nt are not explored here, but there could be sev-
eral. For instance, different generations of animals may sample
different numbers of role models due to variation in popula-
tion density. In humans, changes in the use of social media
platforms or their features may cause temporal changes in
the number of observed individuals. For example, when Face-
book added the feature “People You May Know,” the rate of
new Facebook connections in a New Orleans dataset nearly
doubled (52).

In the stochastic model without selection, regardless of the
fluctuation in the conformity coefficient(s), if there is confor-
mity on average, the population converges to one of the three
equilibria present in Boyd and Richerson’s (4) model with con-
formity (D(j )> 0 for n

2
< j <n in Eq. 19). These are p∗=1

(fixation on variant A), p∗=0 (fixation on variant B), and p∗= 1
2

(equal representation of A and B). However, their stability
properties may differ from those in the deterministic case. In
Boyd and Richerson’s (4) model with random copying, every
initial frequency p0 is an equilibrium. Here, with random copy-
ing expected and independent conformity coefficients, there is
convergence to p∗=0, 1

2
, or 1. In this case, and in the case

with conformity expected, convergence to p∗=0, 1
2

, or 1 also
holds with stochastic variation in the number of role models,
nt . With either stochastic or constant weak selection in Boyd
and Richerson’s (4) simplest model (Eq. 1) and random copying
expected, there is convergence to a fixation state (p∗=0 or 1).
Finally, with anticonformity in the deterministic model or anti-
conformity expected in the stochastic model, nonconvergence
can occur.

Generalizing the Deterministic Model
Here we generalize Eq. 1 to allow the coefficient D to change
randomly at each generation. If t denotes the generation number
(t =0, 1, 2, . . . ), then Eq. 1 becomes

pt+1 = pt +Dtpt(1− pt)(2pt − 1). [2]

In Eq. 2 we assume that the random variables Dt for t =
0, 1, 2, . . . are identically distributed with −2<Dt < 1 for n =3
role models, E(Dt)= d , Var(Dt)=σ2, and Dt are independent
of pt in each generation t . We focus on the possible convergence
of pt to equilibrium as t→∞.

Eq. 1 entails that σ2 =0, and we now summarize the known
results for this model. If the conformity coefficients are constant
over time, i.e., Dt ≡ d 6=0 for all t , then
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1) There are three possible equilibria, p∗=0, p∗=1, and p∗=
1
2

, where p∗=0 and p∗=1 correspond to fixation in type
B and type A, respectively, and p∗= 1

2
is a polymorphic

equilibrium where both A and B are equally represented.
2) As t→∞ there is always convergence of pt to an equilibrium.
3) If d > 0, namely with conformity bias, if 0≤ p0<

1
2

, then
pt −−−→

t→∞
0, whereas if 1

2
< p0≤ 1, then pt −−−→

t→∞
1.

4) If d < 0, namely with anticonformity bias, if 0< p0< 1, then
pt −−−→

t→∞
1
2

.

In generalizing Eq. 1, we investigate whether, if Dt changes
randomly over generations, there is also global convergence of
the process {pt}∞t=0 and, if so, what can be said about the limit
distribution. Our analysis is based on the following observations
for the process {pt}∞t=0 (t =0, 1, 2, . . . ) specified in Eq. 2:

Observation 1.

1) If 0< p0<
1
2

, then 0< pt <
1
2

with probability 1.
2) If 1

2
< p0< 1, then 1

2
< pt < 1 with probability 1.

Observation 2.

1) If d =E(Dt)= 0, then E(pt+1 | pt)= pt .
2) If d =E(Dt)> 0, then if 0< p0<

1
2

, E(pt+1 | pt)< pt and if
1
2
< p0< 1, then E(pt+1 | pt)> pt . If d =E(Dt)< 0, then if

0< p0<
1
2

, E(pt+1 | pt)> pt , and if 1
2
< p0< 1, then E(pt+1 |

pt)< pt .

Proof of Observation 1. From Eq. 2 we see that(
pt+1− 1

2

)
=
(
pt − 1

2

)
[1+ 2Dtpt(1− pt)]. [3]

Since Dt satisfies −2<Dt < 1, and 0≤ x ≤ 1 entails that 0≤
x (1− x )≤ 1

4
, with probability 1 we have

1+2Dtpt(1− pt)≥ 1− 4pt(1− pt)≥ 0, [4]

with equality only when pt =
1
2

. Therefore the signs of (pt − 1
2
)

and (pt+1− 1
2
) coincide.

Proof of Observation 2. For all t =0, 1, 2 . . .

1) If d =E(Dt)= 0, then Eq. 2 gives E(pt+1 | pt)= pt .
2) If 0< p0<

1
2

, then by Observation 1 we have 0< pt <
1
2

and
pt(1− pt)(2pt − 1)< 0. Hence, if d > 0, Eq. 2 implies that
E(pt+1 | pt)< pt and if d < 0, then E(pt+1 | pt)> pt . If 1

2
<

p0< 1, then with probability 1 we have 1
2
< pt < 1, and a

similar calculation shows that E(pt+1 | pt)> pt if d > 0 and
E(pt+1 | pt)< pt if d < 0.

Using the two observations, we have the following result.

Result 1. For any starting 0≤ p0≤ 1, the process {pt}∞t=0 converges.
That is, limt→∞ pt = p∞ with probability 1.
Proof: From Observation 2 and the fact that 0≤ pt ≤ 1 with prob-
ability 1 for all t =0, 1, 2, . . . , and any 0≤ p0≤ 1, the process
{pt}∞t=0 is a bounded martingale, submartingale, or supermartin-
gale. Therefore, the martingale convergence theorem ensures
that there is a random variable p∞ such that pt −−−→

t→∞
p∞ with

probability 1.
As the process {pt}∞t=0 is bounded by 0 and 1, the Lebesgue

convergence theorem gives the following result:

Result 2. For any 0≤ p0≤ 1, limt→∞ E(p`t )=E(p`∞) for `=
1, 2, . . . .

The constant equilibria p∗=0, p∗= 1
2

, and p∗=1 are also
equilibria of the process {pt}∞t=0 determined by Eq. 2. Is there
a relation between these constant equilibria and the random
variable p∞? The following result gives the answer:

Result 3. If pt −−−→
t→∞

p∞, then p∞(1− p∞)(2p∞− 1)= 0 with

probability 1; namely,

P
(
p∞=0 or p∞= 1

2
or p∞=1

)
=1. [5]

Proof: From Eq. 2, since Dt is independent of pt ,

E(pt+1 | pt)= pt +E(Dt)pt(1− pt)(2pt − 1), [6]

which implies that

E(pt+1)=E(pt)+ dE [pt(1− pt)(2pt − 1)]. [7]

By Result 2, E(pt)−−−→
t→∞

E(p∞) and E [pt(1− pt)(2pt −
1)] −−−→

t→∞
E [p∞(1− p∞)(2p∞− 1)]. Therefore from Eq. 7

dE [p∞(1− p∞)(2p∞− 1)]= 0. [8]

If d 6=0, then Eq. 8 implies E [p∞(1− p∞)(2p∞− 1)]= 0. Now if
0< p0<

1
2

, then also 0≤ p∞≤ 1
2

with probability 1, and p∞(1−
p∞)(2p∞− 1)≤ 0. Thus in this case, p∞(1− p∞)(2p∞− 1)= 0
with probability 1. A similar argument applies if 1

2
< p0< 1.

If d =0, we use Eq. 2 to see that

E(pt+1 | pt)= pt ,

Var(pt+1 | pt)=Var(Dt)p
2
t (1− pt)

2(2pt − 1)2.
[9]

Now Var(Dt)=σ2, and

Var(pt+1)=E [Var(pt+1 | pt)]+Var [E(pt+1 | pt)] [10]

=σ2E
[
p2
t (1− pt)

2(2pt − 1)2
]
+Var(pt). [11]

Applying Result 2, Var(pt)−−−→
t→∞

Var(p∞) and

E
[
p2
t (1− pt)

2(2pt − 1)2
]
−−−→
t→∞

E
[
p2
∞(1− p∞)2(2p∞− 1)2

]
.

Therefore, since σ2> 0, Eq. 11 implies that

E
[
p2
∞(1− p∞)2(2p∞− 1)2

]
=0. [12]

But p2
∞(1− p∞)2(2p∞− 1)2≥ 0 with probability 1. Hence, Eq.

12 is possible if and only if p∞(1− p∞)(2p∞− 1)= 0 with
probability 1.

Result 3 entails that the random variable p∞ can take only the
three values 0, 1, and 1

2
corresponding to the constant equilibria

p∗=0, p∗=1, and p∗= 1
2

. What are the probabilities that p∞
takes each of these values?

Result 4. If d =E(Dt)= 0, then

1) If 0< p0<
1
2

,

P(p∞=0)=1− 2p0, P(p∞= 1
2
)= 2p0. [13]

2) If 1
2
< p0< 1,

P(p∞= 1
2
)= 2(1− p0), P(p∞=1)=2p0− 1. [14]

Proof: If d =E(Dt)= 0, then Eq. 2 implies that E(pt+1 | pt)=
pt , so E(pt+1)=E(pt) for all t =0, 1, 2, . . . . Therefore E(pt)=
p0 for all t =0, 1, 2, . . . , and E(p∞)= p0. If 0< p0<

1
2

, then 0≤
p∞≤ 1

2
and by Eq. 5, P(p∞=0 or p∞= 1

2
)= 1. Hence the ran-

dom variable p∞ takes two values 0 and 1
2

, and as E(p∞)= p0,
the probabilities of 0 and 1

2
are as in Eq. 13. The argument is

similar if 1
2
< p0< 1.

Denton et al.
On randomly changing conformity bias in cultural transmission

PNAS | 3 of 12
https://doi.org/10.1073/pnas.2107204118

https://doi.org/10.1073/pnas.2107204118


If d =E(Dt) 6=0, the analysis is more complicated because in
this case it is not clear what E(p∞) is. We address this case using
the notion developed by Karlin and Liberman (53) of stochastic
local stability (SLS) of a constant equilibrium. Let {xt}∞t=0 be
a sequence of random variables satisfying xt+1 = f (xt) for t =
0, 1, 2, . . . . Then x∗ is a constant equilibrium of this sequence if
x∗ satisfies x∗= f (x∗).
Definition: SLS. A constant equilibrium x∗ is said to be SLS if for
any ε> 0 there is a δ > 0 such that

|x0− x∗|<δ=⇒P
(
lim
t→∞

xt = x∗
)
≥ 1− ε. [15]

In our case, the sequence {pt}∞t=0 determined by Eq. 2 has three
constant equilibria: p∗=0, p∗=1, and p∗= 1

2
. Following ref.

53, to determine whether a constant equilibrium p∗ is SLS we
examine the linear approximation of the transformation in Eq. 2
“near” p∗. The linear approximations of Eq. 2 near p∗=0 and
p∗=1 for small νt are both

νt+1 = νt(1−Dt), [16]

while that near p∗= 1
2

for small ηt is

ηt+1 = ηt(1+
Dt
2
). [17]

In Eq. 16, the frequency of a rare variant increases under anti-
conformity (Dt < 0), whereas in Eq. 17, the frequency of a
common variant (ηt >

1
2
) increases under conformity (Dt > 0).

Thus, we have the following:

Result 5.

1) If E [log(1−Dt)]< 0, then both p∗=0 and
p∗=1 are SLS. If E [log(1−Dt)]> 0, then
P (limt→∞ pt =0)=P (limt→∞ pt =1)=0.

2) If E
[
log(1+ Dt

2
)
]
< 0, then p∗= 1

2
is SLS, whereas if

E
[
log(1+ Dt

2
)
]
> 0, then P

(
limt→∞ pt =

1
2

)
=0.

As both functions y = log(1− x ) and y = log(1+ x
2
) are con-

cave (for x < 1 and x >−2, respectively), we apply Jensen’s
inequality to obtain

E [log(1−Dt)]< log [E(1−Dt)],

E
[
log(1+ Dt

2
)
]
< log

[
E(1+ Dt

2
)
]
,

[18]

since −2<Dt < 1 with probability 1 and σ2 =Var(Dt)> 0.
Applying inequalities in Eq. 18 and Result 5, we have the

following:

Result 6.

1) If d =E(Dt)≥ 0, then p∗=0 and p∗=1 are SLS.
2) If d =E(Dt)≤ 0, then p∗= 1

2
is SLS.

Therefore, if d =E(Dt)= 0, all three constant equilibria, p∗=
0, p∗=1, and p∗= 1

2
are SLS. Hence p∞ can take the three

values as stated in Result 4.
The dynamics with n =3 role models are illustrated in Figs. 1

A, D, and G; 2A; and 3A. Dt is denoted by Dt(2) because it cor-
responds to the case where j =2 of 3 role models have the same
variant [the reason for this Dt(j ) notation becomes clear with
n > 4 and is described under Eq. 19]. Consistent with Observa-
tion 1, runs that start in (0, 1

2
) or ( 1

2
, 1) remain in (0, 1

2
) or ( 1

2
, 1),

respectively. Equilibria are p∗=0, 1
2

, and 1. It is possible that
all three equilibria are SLS with E [Dt(2)]= 0, E [Dt(2)]< 0, or
E [Dt(2)]> 0 (Fig. 1 A, D, and G, respectively). For p∗= 1

2
to

be unstable (Fig. 2A), it is necessary that E [Dt(2)]> 0. In this
case, the dynamics are similar to those of deterministic Eq. 1
with conformity (D > 0). For p∗=0 and 1 to be unstable (Fig.

3A), it is necessary that E [Dt(2)]< 0, in which case the dynamics
are similar to Eq. 1 with anticonformity (D < 0). With n =3 and
identically distributed conformity coefficients, there is always
convergence of the population to an equilibrium.

If Dt(2) are not identically distributed, nonconvergence can
occur with n =3 role models. In Fig. 4A, Dt(2) alternates
between two fixed values, producing a stable, two-generation
cycle in the frequency of A. This cycle is confined to a region
in (0, 1

2
) or ( 1

2
, 1), depending on whether the initial frequency p0

is below or above p= 1
2

, respectively. [Recall that Observation 1
does not rely on the assumption of identically distributed Dt(2).]

More Role Models. The above results apply when the number of
role models is n =3. Do such results for global convergence hold
for any number n of role models? To address this, we follow
Boyd and Richerson (4) and Eq. 2 above is replaced by

pt+1 = pt +

n∑
j=0

Dt(j )

n

(
n

j

)
pj
t (1− pt)

n−j . [19]

Eq. 19 with the subscript t removed from Dt(j ) is the gen-
eral form of Boyd and Richerson’s (4) deterministic model.
The sum contains the probability of each possible sample j
of n role models with variant A (a binomial, due to random
sampling) multiplied by the scaled conformity coefficient for
that sample, Dt (j)

n
. For any generation t =0, 1, 2, . . . the vector

Dt = [Dt(0),Dt(1), . . . ,Dt(n)]of conformity coefficients Dt(j )
has the following properties for j =0, 1, 2, . . . ,n:

Dt(0)=Dt(n)= 0, Dt(n − j )=−Dt(j ), [20a]

and for j =1, 2, . . . ,n − 1, −j <Dt(j )<n − j . [20b]

Eq. 20b ensures that probabilities of acquiring A and B are in
(0, 1). The left-hand side of Eq. 20a entails that if a sample
contains A(B) at frequency 1, an individual acquires A(B) with
probability 1, and the right-hand side entails “equal treatment”
of A and B . If an individual samples j of type A and n − j of
type B , the amount by which it (anti)conforms to A, namely
Dt(j ), must be equal and opposite to the amount by which it
(anti)conforms to B , −Dt(j ), for all probabilities to sum to 1.
Therefore, when A rather than B is present in n − j role models,
its conformity coefficient Dt(n − j ) must equal that for B in the
same scenario: −Dt(j ). Therefore, Eq. 19 is equivalent to

pt+1 = pt +
n∑

j=k

Dt(j )

n

(
n

j

)[
pj
t (1− pt)

n−j − pn−j
t (1− pt)

j
]
,

[21]

where k = n
2
+1 if n is even and k = n+1

2
if n is odd.

Assume that the conformity coefficients change randomly at
each generation t , and for any t =0, 1, 2, . . . , Dt is a vector of
random variables such that the Dt s are identically distributed and
independent of the population state pt . The entries of Dt , Dt(j ),
need not be identically distributed. Since probabilities of differ-
ent samples j of n , with corresponding Dt(j ), depend on pt , it is
possible that higher or lower pt corresponds to greater or smaller
differences between pt+1 and pt .

Assume first that E(Dt)= 0; i.e., E(Dt(j ))= 0 for all t =
0, 1, 2, . . . and j =0, 1, 2, . . . ,n . In this case we have the
following result:
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Result 7.

1) If E(Dt)= 0, then starting from any initial state 0≤ p0≤ 1
the process {pt}∞t=0 converges; that is, limt→∞ pt = p∞ with
probability 1.

2) If, in addition, Dt(k),Dt(k +1), . . . ,Dt(n) for any t are inde-
pendent random variables, then p∞ takes the values 0, 1

2
, 1 with

probability 1.

Proof: If Dt is independent of pt and E(Dt)= 0 for t =
0, 1, 2, . . . , Eq. 19 implies that E (pt+1 | pt)= pt . Hence {pt}∞t=0

is a bounded martingale and the martingale convergence
theorem implies that limt→∞ pt = p∞ with probability 1.

Let σ2
j =Var (Dt(j )) be the positive variance of Dt(j )

for j =1, 2, . . . ,n − 1 [σ0 =σn =0 as Dt(0)=Dt(n)= 0].
Then, if Dt(k),Dt(k +1), . . . ,Dt(n − 1) are independent

random variables, Eq. 21 implies for any t =0, 1, 2, . . .
that

Var(pt+1 | pt)

=

n−1∑
j=k

σ2
j

n2

(
n

j

)2[
pj
t (1− pt)

n−j − pn−j
t (1− pt)

j
]2
.

[22]

Since Var(pt+1)=Var(E(pt+1 | pt))+E (Var(pt+1 | pt)), we
have

Var(pt+1)=Var(pt)

+

n−1∑
j=k

σ2
j

n2

(
n

j

)2

E

{[
pj
t (1− pt)

n−j − pn−j
t (1− pt)

j
]2}

.
[23]

Fig. 1. Stochastic local stability of p* = 0, 1
2 , 1. Each plot shows 25 runs with initial p0 = 0.25 (red) and 25 runs with p0 = 0.75 (blue). Eighty generations

are shown, although equilibria p* = 0, 1
2 , 1 may take longer to be reached; how often each equilibrium was reached is in SI Appendix, section A along

with E[Dt(j)], the mean of log[1−Dt(n− 1)], and the mean of log
[
1 +

Dt (2)
2

]
for n = 3. (A) n = 3, Dt(2)∼U[0, 1) with probability 2

3 and Dt(2)∼U(−2, 0]

with probability 1
3 . (B) n = 4, Dt(3)∼U[0, 1) with probability 3

4 and Dt(3)∼U(−3, 0] with probability 1
4 . (C) n = 5, Dt(4)∼U[0, 1) with probability 4

5 and
Dt(4)∼U(−4, 0] with probability 1

5 . Dt(3)∼U[0, 2) with probability 3
5 and Dt(3)∼U(−3, 0] with probability 2

5 . (D) n = 3, Dt(2) is sampled from a truncated
normal distribution on (−2, 1) with mean (before truncation) −0.05 and SD 0.5. (E) n = 4, Dt(3) is sampled from a truncated normal distribution on (−3, 1)
with mean (before truncation) −0.05 and SD 0.5. (F) n = 5, Dt(4) is sampled from a truncated normal distribution on (−4, 1) with mean (before truncation)
−0.05 and SD 0.5. Dt(3) is sampled from a truncated normal distribution on (−3, 2) with mean (before truncation) 0.05 and SD 0.5. (G) n = 3, Dt(2) = 0.99
with probability 2

3 and Dt(2) =−1.5 with probability 1
3 . (H) n = 4, Dt(3) = 0.99 with probability 3

4 and Dt(3) =−2.5 with probability 1
4 . (I) n = 5, Dt(4) = 0.9

with probability 4
5 and Dt(4) =−3 with probability 1

5 . Dt(3) = 1.5 with probability 3
5 and Dt(3) =−2.85 with probability 2

5 .
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Fig. 2. Stochastic local stability of p* = 0, 1 and instability of p* = 1
2 . Each plot shows 25 runs with initial p0 = 0.499 (red) and 25 runs with p0 = 0.501

(blue). The first 80 generations are shown, although equilibria may take longer to be reached; how often each equilibrium was reached is in SI Appendix,

section A, along with E[Dt(j)], the mean of log[1−Dt(n− 1)], and the mean of log
[
1 +

Dt (2)
2

]
for n = 3. (A) n = 3, Dt(2)∼U[0, 1) with probability 0.9 and

Dt(2)∼U(−2, 0] with probability 0.1. (B) n = 4, Dt(3)∼U[0, 1) with probability 0.925 and Dt(3)∼U(−3, 0] with probability 0.075. (C) n = 5, Dt(4)∼U[0, 1)
with probability 0.98 and Dt(4)∼U(−4, 0] with probability 0.02. Dt(3)∼U[0, 2) with probability 0.55 and Dt(3)∼U(−3, 0] with probability 0.45. (D) n = 4,
Dt(3) = 0.99 with probability 3

4 and Dt(3) =−2.99 with probability 1
4 . (E) n = 5, Dt(4) = 0.99 with probability 3

4 and Dt(4) =−3.99 with probability 1
4 .

Dt(3) = 0.1 with probability 3
4 and Dt(3) =−0.1 with probability 1

4 .

Now as pt −−−→
t→∞

p∞ with probability 1, by the Lebesgue con-

vergence theorem E(p`t )−−−→
t→∞

E(p`∞) for any `=1, 2, . . . , and

Eq. 23 implies that

n−1∑
j=k

σ2
j

n2

(
n

j

)2

E

{[
pj
∞(1− p∞)n−j − pn−j

∞ (1− p∞)j
]2}

=0.

[24]

Hence pj
∞(1− p∞)n−j = pn−j

∞ (1− p∞)j for j = k , k +
1, . . . ,n − 1 and p∞=0, p∞=1, or p∞=1− p∞ in which case
p∞= 1

2
. Thus, with probability 1, p∞ takes values 0, 1

2
, 1.

The following result concerning the SLS of p∗=0 and p∗=1
holds for E(Dt)= 0 as well as E(Dt) 6= 0.

Result 8.

1) If E [log (1−Dt(n − 1))]< 0, then p∗=0 and p∗=1 are SLS.
2) If E [log (1−Dt(n − 1))]> 0, then P (limt→∞ pt =0)=0

and P (limt→∞ pt =1)=0.

The proof is similar to that of Result 5 based on the linear
approximation of Eq. 19 near p∗=0 and p∗=1 in equation
B2 of Denton et al. (49) and the assumption that Dt(n − 1)< 1
by Eq. 20b. If E (Dt(n − 1))> 0, then using Jensen’s inequality,
E [log (1−Dt(n − 1))]< 0, so p∗=0 and p∗=1 are SLS.

We are unable to obtain corresponding results for the
SLS of p∗= 1

2
. Consider the linear approximation of Eq. 19

near the constant equilibrium p∗= 1
2

given in ref. 49,
equation B8:

ν′= ν

1+ ( 1
2

)n−2
n−1∑
j=k

D(j )

n

(
n

j

)
((2j −n))

= νφn . [25]

Ref. 49’s table S1 shows that depending on n , φn can be negative,
in which case log φn is not defined and conditions for SLS of p∗=
1
2

cannot be determined. Also, Observation 1 does not hold.
With n > 3 role models and E(Dt) 6= 0, there need not be

convergence to an equilibrium (Fig. 5). Below we determine con-
ditions for convergence to an equilibrium with n =4 role models
and, subsequently, a general number n of role models.

Example: The Case of n = 4 Role Models. Recall that the recursion
with fixed conformity coefficients is the same for n =3 and 4
(4). However, with random conformity coefficients the case n =4
exhibits different evolutionary dynamics from those with n =3
role models. When n =4, we have five conformity coefficients
Dt(j ) for j =0, 1, . . . , 4, Eq. 20a and inequality in Eq. 20b,

Dt(0)=Dt(2)=Dt(4)= 0, Dt(1)=−Dt(3),

− 3<Dt(3)< 1.
[26]

Hence, from Eq. 21 with n =4 and k =3, we have

pt+1 = pt +Dtpt(1− pt)(2pt − 1), [27]

where Dt are identically distributed and correspond to Dt(3)
in Eq. 26. Therefore in this case [1+ 2Dtpt(1− pt)] with
−3<Dt < 1 can be negative, and by Eq. 3,

(
pt+1− 1

2

)
and
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Fig. 3. Stochastic local stability of p* = 1
2 and instability of p* = 0, 1. Each plot shows 25 runs with initial p0 = 0.001 (red) and 25 runs with p0 = 0.999

(blue). The equilibrium p* = 1
2 is reached in every case, although only the first 80 generations are shown and this equilibrium may take longer to be

reached. SI Appendix, section A reports E[Dt(j)], the mean of log[1−Dt(n− 1)], and the mean of log
[
1 +

Dt (2)
2

]
for n = 3. (A) n = 3, Dt(2)∼U[0, 1) with

probability 0.05 and Dt(2)∼U(−2, 0] with probability 0.95. (B) n = 4, Dt(3)∼U[0, 1) with probability 0.25 and Dt(3)∼U(−3, 0] with probability 0.75. (C)
n = 5, Dt(4)∼U[0, 1) with probability 0.4 and Dt(4)∼U(−4, 0] with probability 0.6. Dt(3)∼U[0, 2) with probability 0.1 and Dt(3)∼U(−3, 0] with probability
0.9. (D) n = 5, Dt(4) =−3.9 with probability 3

4 , Dt(4) = 0.9 with probability 1
4 , Dt(3) = 0.9 with probability 3

4 , and Dt(3) =−1.9 with probability 1
4 .

(
pt − 1

2

)
can have different signs. Therefore Observation 1, which

was a key factor in the proof of global convergence when n =3,
does not hold. Will there still be global convergence of {pt}when
d =E(Dt) 6=0 with n =4?

Since
(
pt+1− 1

2

)
and

(
pt − 1

2

)
can have different signs, from

Eq. 3 we focus on Qt =(pt − 1
2
)2. Then(

pt+1− 1
2

)2 = (pt − 1
2

)2 [1+ 2Dtpt(1− pt)]
2. [28]

Now pt(1− pt)=
1
4
−Qt , and Eq. 28 is equivalent to

Qt+1 =Qt

[
1+2Dt

(
1
4
−Qt

)]2, t =0, 1, 2, . . . [29]

The following result applies to the process {Qt}∞t=0:

Result 9. If d =E(Dt)> 0, then for any 0≤Q0≤ 1
4

the process
{Qt}∞t=0 converges with probability 1, and if Q∞= limt→∞Qt ,
then Q∞ can take only two values, Q∞=0 or Q∞= 1

4
.

Proof: Rewrite Eq. 29 as

Qt+1 =Qt

[
1+4Dt

(
1
4
−Qt

)
+4D2

t

(
1
4
−Qt

)2]. [30]

Since Dt is independent of pt and so also of Qt , if d =E(Dt) and
σ2 =Var(Dt), we have

Fig. 4. Exact cycles. Each plot shows 25 runs with initial p0 <
1
2 (red) and 25 runs with p0 >

1
2 (blue). Eighty generations are shown, although simulations

ran for 106 generations; no equilibria were reached. Descriptions of the dynamics, exact initial frequencies, and E[Dt(j)] are reported in SI Appendix, section
A. (A) n = 3, Dt(2) alternates between −1.15 and 0.9 every other generation. (B) n = 4, Dt(3) =−2.99 every third generation and Dt(3) = 0.99 in the other
generations. (C) n = 5, Dt(4) =−3.99 and Dt(3) =−2.1 every third generation and in the other generations Dt(4) = 0.99 and Dt(3) = 0.5.
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Fig. 5. Stochastic fluctuation. Each plot shows 25 runs with initial p0 = 0.49 (red) and 25 runs with p0 = 0.51 (blue). Eighty generations are shown, although
simulations ran for 106 generations; no equilibria were reached. Mean frequencies and E[Dt(j)] are reported in SI Appendix, section A. (A) n = 5, Dt(4) =−3.9
with probability 1

2 , Dt(4) =−3.4 with probability 1
2 , Dt(3) =−2.9 with probability 1

2 , and Dt(3) =−2.4 with probability 1
2 . (B) n = 5, Dt(4) =−0.6 with

probability 1
2 , Dt(4) =−0.8 with probability 1

2 , Dt(3) = 1.85 with probability 1
2 , and Dt(3) = 1.95 with probability 1

2 .

E (Qt+1 |Qt)

=Qt

[
1+4d

(
1
4
−Qt

)
+4

(
σ2 + d2)( 1

4
−Qt

)2]. [31]

If d > 0, then E (Qt+1 |Qt)≥Qt for t =0, 1, 2, . . . . Thus
{Qt}∞t=0 is a submartingale and since 0≤Qt ≤ 1

4
, we can

apply the martingale convergence theorem to deduce that with
probability 1, {Qt}∞t=0 converges to Q∞. Also applying the
Lebesgue convergence theorem, E

(
Q`

t

)
−−−→
t→∞

E
(
Q`
∞
)

for any
`=1, 2, . . . .

Thus Eq. 31 entails that

E(Q∞)=E(Q∞)+ 4dE
[
Q∞

(
1
4
−Q∞

)]
+4

(
σ2 + d2)E [Q∞ ( 14 −Q∞

)2]. [32]

Since d > 0, we deduce from Eq. 32 that E
[
Q∞

(
1
4
−Q∞

)]
=0

and E
[
Q∞

(
1
4
−Q∞

)
2
]
=0. But 0≤Q∞≤ 1

4
with probability 1.

Hence Q∞
(
1
4
−Q∞

)
=0 with probability 1 and Q∞ can take

only the two values Q∞=0 or Q∞= 1
4

.
If Q∞=0, then limt→∞

(
1
2
− pt

)
2 =0 and limt→∞ pt = 1

2
.

If Q∞= 1
4

, then limt→∞ pt (1− pt)= 0. Therefore for t large,
either pt is near p∗=0 or pt is near p∗=1. But if d > 0,
both p∗=0 and p∗=1 are SLS. Therefore, if Q∞= 1

4
, either

limt→∞ pt =0 or limt→∞ pt =1.
Conclusion. If E (Dt)> 0, then the process {pt}∞t=0 converges
with probability 1. If p∞= limt→∞ pt , then p∞ can assume only
the three values 0, 1, 1

2
.

The situation is more complicated when d =E(Dt)< 0. Eq. 31
can be rewritten as E (Qt+1 |Qt)=Qt(1+ ut) with

ut =4d
(
1
4
−Qt

)
+4

(
σ2 + d2)( 1

4
−Qt

)2. [33]

Since 0≤ 1
4
−Qt ≤ 1

4
, we have

ut ≤ 4
(
1
4
−Qt

)[
d
(
1+ d

4

)
+ σ2

4

]
. [34]

If 4d + d2 +σ2≤ 0, or equivalently, if 4d +E(Dt
2)≤ 0, then

ut ≤ 0 and E (Qt+1 |Qt)≤Qt , making the process a bounded
supermartingale so that Qt −−−→

t→∞
Q∞ with probability 1. For

example, this occurs if Dt ∈ [−3, 0] so that σ2≤−d2− 3d by
the Bhatia–Davis inequality (54). Therefore, if ut ≤ 0, a similar
argument to the proof of Result 9 (Eq. 32) gives

4dE
[
Q∞

(
1
4
−Q∞

)]
+4

(
σ2 + d2)E [Q∞ ( 14 −Q∞

)2]=0.
[35]

As 0≤ 1
4
−Q∞≤ 1

4
and d

(
1+ d

4

)
+ σ2

4
< 0, we have

0≤ 4E
[
Q∞

(
1
4
−Q∞

)][
d
(
1+ d

4

)
+ σ2

4

]
≤ 0. [36]

Inequalities in Eq. 36 imply that E
[
Q∞

(
1
4
−Q∞

)]
=0 and

Q∞
(
1
4
−Q∞

)
=0 so that Q∞=0 or Q∞= 1

4
with probabil-

ity 1. Dynamics with n =4 role models are illustrated in Figs.
1 B, E, and H; 2 B and D; and 3B. The conformity coef-
ficient, Dt , is denoted by Dt(3) (Eqs. 26 and 27). Because
Observation 1 no longer holds with n > 3, runs that start in
(0, 1

2
) (red) or ( 1

2
, 1) (blue) can cross the p= 1

2
line (e.g.,

Fig. 1B). Fig. 1 B, E, and H shows examples in which all
three equilibria p∗=0, 1

2
, and 1 are SLS with E [Dt(3)]= 0,

E [Dt(3)]< 0, and E [Dt(3)]> 0, respectively. Fig. 2 B and D
shows that p∗= 1

2
can be unstable with either E [Dt(3)]> 0 or

E [Dt(3)]< 0. However, E [Dt(3)]< 0 is necessary for instability
of p∗=0 and 1 (Fig. 3B and Result 8). Here, the dynam-
ics are similar to those of Eq. 1 with anticonformity (D <
0), apart from fluctuations across p∗= 1

2
before reaching this

equilibrium.
Removing the assumption that Dt(3) are identically dis-

tributed, Fig. 4B shows an example in which Dt(3) takes one fixed
value every third generation and another fixed value in the other
generations. This system produces an exact six-generation cycle
in the frequency pt . Unlike in the case of n =3 (Fig. 4A), this
cycle occurs around p= 1

2
because Observation 1 does not hold.

Convergence for Any Number of Role Models. Result 9 can be gen-
eralized to apply for any number n of role models. Recall that
with n role models we have

pt+1 = pt +
n∑

j=k

Dt(j )

n

(
n

j

)[
pj
t (1− pt)

n−j − pn−j
t (1− pt)

j
]
,

[37]

where k = n
2
+1 if n is even and k = n+1

2
if n is odd. Denton et

al. (49) showed that for any j ≥ k

pj
t (1− pt)

n−j − pn−j
t (1− pt)

j

= pt(1− pt)(2pt − 1)Gj (pt(1− pt)),
[38]
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where Gj is a polynomial in the variable pt(1− pt) for n > 4.
Simple algebra shows that for any 0≤ pt ≤ 1

Gj (pt(1− pt)) = [pt(1− pt)]
n−j−1

×

[
2j−n−1∑

i=0

(1− pt)
ip2j−n−1−i

t

]
≥ 0.

[39]

Moreover, when j = k , if n is even and k = n
2
+1, then

pk
t (1− pt)

n−k − pn−k
t (1− pt)

k = [pt(1− pt)]
n
2
−1(2pt − 1),

[40a]

while if n is odd and k =
n +1

2
,

pk
t (1− pt)

n−k − pn−k
t (1− pt)

k = [pt(1− pt)]
n−1
2 (2pt − 1).

[40b]

As n ≥ 3, in both Eqs. 40a and 40b the power of [pt (1− pt)] is
at least 1.

We are now ready to prove a convergence result for any n ≥ 3
role models with identically distributed Dt .

Result 10. If E [Dt(j )]> 0 for all k ≤ j <n , where k = n
2
+1 if n

is even and k = n+1
2

if n is odd, the process {pt}∞t=0 converges with
probability 1. Moreover, if p∞= limt→∞ pt , then p∞ can assume
only the values 0, 1, and 1

2
.

The proof of Result 10 is similar to the proof of Result 9 and is
given in SI Appendix, section B.

To illustrate dynamics with n > 4 role models, examples with
n =5 are shown in Figs. 1 C, F, and I; 2 C and E; 3 C and
D; and 5. With n =5 there are two Dt(j ) parameters: Dt(4)
and Dt(3) correspond to the cases where j =4 or 3, respec-
tively, of the 5 role models have the same variant. Simultaneous
SLS of p∗=0, 1

2
, and 1 can occur with E [Dt(4)]=E [Dt(3)]= 0,

E [Dt(4)]< 0 and E [Dt(3)]> 0, or E [Dt(4)]> 0 and E [Dt(3)]<
0 (Fig. 1 C, F, and I, respectively). Note that all three equilib-
ria can also be SLS when both E [Dt(4)],E [Dt(3)]< 0 or both
E [Dt(4)],E [Dt(3)]> 0 (not shown in Fig. 1). Fixation states
p∗=0 and 1 may be SLS while p∗= 1

2
is unstable if E [Dt(4)]> 0

and E [Dt(3)]< 0 or if E [Dt(4)]< 0 and E [Dt(3)]> 0 (Fig. 2 C
and E). This is also possible with both E [Dt(4)],E [Dt(3)]> 0 or
both E [Dt(4)],E [Dt(3)]< 0 (not shown in Fig. 2). The condition
E [Dt(4)]< 0 is necessary but not sufficient for instability of p∗=
0 and 1 (Result 8). Fig. 3 C and D shows examples in which p∗=0
and 1 are unstable and p∗= 1

2
is SLS with E [Dt(4)]< 0 and

either E [Dt(3)]< 0 or E [Dt(3)]> 0. These dynamics are simi-
lar to those in the deterministic model with n =5, D(4),D(3)<
0, and sufficiently weak anticonformity or in some cases with
D(4)< 0 and D(3)> 0. In other cases with D(4)< 0 and D(3)>
0 in the deterministic model, stable polymorphic equilibria with
p∗ 6= 1

2
can occur (figure 1 of ref. 49). Fig. 5B incorporates these

specific values, namely E [Dt(4)]=D(4) and E [Dt(3)]=D(3)
from ref. 49’s figure 1, and shows stochastic fluctuation around
frequencies p 6= 1

2
. Finally, nonconvergence is also possible in

the stochastic model with E [Dt(4)],E [Dt(3)]< 0 (Fig. 5A) and
in the deterministic model with strong anticonformity (49).

Stable cycles can also occur when the coefficients Dt cycle
between fixed values (and are therefore not identically dis-
tributed). In Fig. 4C, Dt(4) and Dt(3) each take one fixed value
every third generation and another fixed value in the other gen-
erations. As in Fig. 4B, an exact six-generation cycle is produced,
but unlike in Fig. 4B, the red and blue runs cycle between
different frequencies.

Random Number of Role Models. Do the global convergence prop-
erties described in Results 7 and 10 for any fixed constant number
n (n ≥ 3) of role models also hold when the number of role
models can change randomly at each generation? In this case,
the frequency pt+1 of the variant A at generation t +1 for any
t =0, 1, 2, . . . depends on pt , nt , and Dnt , where
1) For each t , the number of role models nt is chosen, inde-

pendently of pt , from a probability distribution on the values
3, 4, 5, . . . ,N , which is the same for all t ;

2) Given nt , the conformity coefficients Dnt (0), Dnt (1),
. . . ,Dnt (nt) are random variables independent of pt . They
are subject to the constraints for j = 0, 1, . . . , nt

Dnt (0)=Dnt (nt)= 0, Dnt (j )=−Dnt (nt − j ) [41a]

and for j =1, 2, . . . ,nt ,−1,−j <Dnt (j )<nt − j . [41b]
For any generation t =0, 1, 2, . . . we then write pt+1 as (Eqs.

19 and 21)

pt+1 = pt +

nt∑
j=0

Dnt (j )

nt

(
nt

j

)
pj
t (1− pt)

nt−j [42a]

= pt +

nt−1∑
j=kt

Dnt (j )

nt

(
nt

j

)[
pj
t (1− pt)

nt−j − pnt−j
t (1− pt)

j
]
.

[42b]

From Eqs. 42a and 42b we have the following results that gen-
eralize Results 7 and 10 to the case where the number of role
models nt is chosen randomly at each generation.

Result 11.

1) If E [Dnt (j ) |nt ] = 0 for all j =0, 1, . . . ,nt , then limt→∞ pt =
p∞ with probability 1.

2) If, in addition, given nt the conformity coefficients
Dnt (kt),Dnt (kt +1), . . . ,Dnt (nt − 1) are independent
random variables (where kt =

nt
2
+1 if nt is even and

kt =
nt+1

2
if nt is odd), then p∞ assumes the values 0, 1, 1

2
with

probability 1.

Result 12. If E [Dnt (j ) |nt ]> 0 for j = kt , kt +1, . . . ,nt − 1
(where kt =

nt
2
+1 if nt is even and kt =

nt+1
2

if nt is odd), then
limt→∞ pt = p∞ with probability 1 and p∞ can assume the val-
ues 0, 1, 1

2
. The proofs of Results 11 and 12 are very similar to

the proofs of Results 7 and 10, respectively, and are given in SI
Appendix, section B.

Weak Random Selection. To incorporate natural selection on vari-
ants A and B into the Boyd and Richerson (4) model with n =3,
we assume that the fitness of A is 1+ s relative to 1 for B . Then
after selection, the frequency of A is given by

p′=
(1+ s)p [1+ (1− p)(2p− 1)D ]

1+ sp [1+ (1− p)(2p− 1)D ]
. [43]

Assume that selection is weak so that |s| is small. We can
approximate Eq. 43 by

p′' (1+ s)p [1+ (1− p)(2p− 1)D ]−sp2[1+ (1− p)(2p− 1)D ]2.
[44]

Suppose now that for all t (t =0, 1, 2, . . . ), st are identically dis-
tributed random variables and that, as before, Dt are identically
distributed random variables. Then

pt+1' (1+ st)pt [1+ (1− pt)(2pt − 1)Dt ]

− stp
2
t [1+ (1− pt)(2pt − 1)Dt ]

2.
[45]

For |st | small, we have the following result:
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Result 13. For any t =0, 1, 2, . . . , suppose that st and Dt are inde-
pendent of each other, both are independent of pt , E(Dt)= 0, and
E(st) 6=0. Then with probability 1, limt→∞ pt = p∞ and p∞=0
or p∞=1.
Proof: Let E(st)=µ and Var(Dt)=σ2. Then, as

[1+ (1− pt)(2pt − 1)Dt ]
2

=1+2(1− pt)(2pt − 1)Dt +(1− pt)
2(2pt − 1)2D2

t ,
[46]

Eq. 45 implies that

E (pt+1 | pt)' pt
{
1+µ(1− pt)

[
1− pt(1− pt)(2pt − 1)2σ2]}.

[47]

Since −2<Dt < 1, we have σ2 =E
(
D2

t

)
< 4, and as 0≤ pt ≤ 1

we have
pt(1− pt)(2pt − 1)2σ2< 1

4
· 1 · 4=1. [48]

Thus if µ> 0, then E (pt+1 | pt)≥ pt , and if µ< 0, then
E (pt+1 | pt)≤ pt , and the process {pt}∞t=0 is either a bounded
submartingale or a bounded supermartingale. The martingale
convergence theorem then ensures that limt→∞ pt = p∞ with
probability 1.

We can also classify p∞. For example, if µ=E(st)> 0, then
Eq. 47 implies that

E(pt+1)≥E(pt)+ µ̂E
{
pt(1− pt)

[
1− pt(1− pt)(2pt − 1)2σ2]}

[49]

for any 0< µ̂<µ. Since pt −−−→
t→∞

p∞ and 0≤ pt ≤ 1, for

all t =0, 1, . . . ,E(p`t )−−−→
t→∞

E(p`∞) for any `=1, 2, . . . . Then

from Eq. 49,

E
{
p∞(1− p∞)

[
1− p∞(1− p∞)(2p∞− 1)2σ2]}≤ 0. [50]

But Eq. 48 entails that

p∞(1− p∞)
[
1− p∞(1− p∞)(2p∞− 1)2σ2]≥ 0, [51]

which means that p∞(1− p∞)= 0 with probability 1. We there-
fore infer that with probability 1, either p∞= p∗=0 or p∞=
p∗=1. It should be pointed out that Result 13 also applies to the
case when st = s =µ is constant over time.

Observe that both p∗=0 and p∗=1 are constant equilibria
even though st and Dt are random variables. Following ref. 49,
the SLS of these equilibria is determined as follows:

p∗=0 is SLS if E {log[(1+ st)(1−Dt)]}< 0

p∗=1 is SLS if E
[
log

1−Dt

1+ st

]
< 0.

[52]

Thus, using Jensen’s inequality, if E(Dt)≥ 0 and E(st)≤ 0, both
E [log(1+ st)] and E [log(1−Dt)] are negative and p∗=0 is
SLS. If st are small for t =0, 1, 2, . . . , then E

[
log (1−Dt )

(1+st )

]
≈

E {log[(1−Dt)(1− st)]}, and p∗=1 is SLS if E(Dt)≥ 0 and
E(st)≥ 0. If st ≡ s is constant, then if E(Dt)≥ 0,

p∗=0 is SLS if − 1≤ s ≤ 0

p∗=1 is SLS if s ≥ 0.
[53]

Discussion
Previous analytical models of conformity have included constant
rather than variable conformity coefficient(s). Many of these
include a single conformity coefficient and dynamics that follow
Eq. 1 (4, 30–33, 35–37) or a similar formulation (32, 38, 39, 55).
These, dynamics are represented by an S -shaped curve and there

are three equilibria at p∗=0, 1
2

, and 1, with convergence to one of
these. Others have implemented qualitatively different formula-
tions of conformity that also include a single, constant conformity
coefficient and have found more complex dynamics (56, 57).

A model of “strong anticonformity” was explored in ref. 56,
where individuals acquire a variant that is sampled at a frequency
of 0 with probability 1 (i.e., the left-hand side of Eq. 20a does
not hold). In that model, stable cycles of variant frequencies can
occur with n =3 role models. In refs. 56 and 57, a model of
conformity was studied in which there is one cultural variant of
interest, such as an item of learned information. Conformity or
anticonformity occurs if this variant is present in the majority of
sampled role models, but if the variant is present in a minority of
role models, conformity or anticonformity to the opposite type
(absence of information) does not occur (i.e., the right-hand side
of Eq. 20a does not hold). In ref. 57, social and individual learn-
ers are in environments subject to change, and stable cycles in
variant frequencies as well as chaos may occur. Finally, ref. 58
included a modified version of Eq. 1 in a susceptible, infectious,
susceptible (SIS) epidemic-type model and found polymorphic
equilibria with p∗ 6= 1

2
. They also found that under some condi-

tions, a polymorphic equilibrium and a fixation state could be
stable simultaneously.

We previously showed that complex dynamics including cycles,
chaos, and stable polymorphic equilibria with p∗ 6= 1

2
are possi-

ble under Boyd and Richerson’s (4) general model of conformity
specified by Eqs. 19 and 20 (49). This model includes confor-
mity coefficients that are fixed over time but can differ in sign
and magnitude depending on the number of role models sam-
pled that carry the same variant. For example, in ref. 19, fruit
flies that observed 60% of conspecifics copulating with pink (or
green) males showed a greater than 60% chance of copulating
with the more commonly chosen male (i.e., conformist bias),
whereas those that observed 83% of conspecifics copulating with
pink (or green) males showed a less than 83% chance of copu-
lating with the more commonly chosen male (i.e., anticonformist
bias). Including both conformity and anticonformity that depend
on the numbers of A and B in the sample of role models is
necessary to allow polymorphic equilibria with p∗ 6= 1

2
, but is

not necessary to produce cycles or chaos. Cycles or chaos can
occur when n ≥ 5 or n ≥ 10, respectively, and anticonformity is
sufficiently strong (49).

The present analysis generalizes previous models by allowing
the conformity coefficient(s) to vary over time. Temporal vari-
ation in conformity may account for differences in baby name
turnover in recent versus older decades (12), and individuals’ ten-
dency to exhibit a related bias, namely Aschian conformity, has
decreased over time (29). Thus, conformity coefficients may be
better regarded as random variables than fixed parameters. At
each generation, t , conformity coefficient(s) are sampled from a
continuous or discrete probability distribution. With n ≥ 5 role
models there are multiple conformity coefficients in the model
(Eq. 19), which may be sampled from the same or from differ-
ent probability distributions, whereas with n =3 or 4 there is a
single conformity coefficient. All members of generation t display
the same levels of conformity, Dt . We have not considered indi-
vidual variation in conformity, which may be important in real
populations. We assume that Dt is sampled independently of the
population frequency, pt [although the probability of sampling j
ofn role models with conformity coefficientDt(j )does depend on
pt ]. Association between Dt and pt , such as increasing all confor-
mity coefficients Dt(j ) with increasing pt , could be incorporated
in future models to determine whether these relationships affect
the presence or stochastic local stability of equilibria.

In addition, we analyzed the role of variation in the number of
role models, nt , which is always finite and greater than or equal
to 3. In agent-based models of conformity on networks, the num-
ber of sampled role models can vary by individual (43, 45, 46)
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and over time (43). In the present model, the number of role
models can change over time, but is the same for all individu-
als in the population at a given time. For example, members of
different generations may encounter different numbers of role
models due to changes in the dispersion of individuals in a pop-
ulation or changes in modes of information transmission (e.g.,
social media).

In the deterministic model (4) with conformity [D(j )> 0 for
all n

2
< j <n in Eq. 19], the frequency of a common variant

(p> 1
2
) increases to 1 and the frequency of an uncommon vari-

ant (p< 1
2
) decreases to 0. Thus, stable equilibria are p∗=1

(variant A fixed) and p∗=0 (variant B fixed), whereas the equi-
librium p∗= 1

2
equal frequencies of A and B is unstable and

separates the two domains of attraction. In the stochastic model
with conformity expected [i.e., E [Dt(j )]> 0 for n

2
< j <n and all

t =0, 1, . . . ], convergence to one of the equilibria p∗=0, 1
2

, or 1
is also ensured. This is true whether the number of role models,
nt , is fixed or stochastically variable. Unlike in the deterministic
conformity model, here p∗= 1

2
need not be unstable, and thus

all three equilibria can be SLS (Fig. 1 G and H). Moreover,
if n > 3, p∗= 1

2
need not separate the domains of attraction:

A population with initial frequency p0<
1
2
(p0>

1
2
) can reach

p∗=1 (p∗=0) (Fig. 1H). On the other hand, if conformity is
expected, n =3, and p∗= 1

2
is unstable (Fig. 2A), Boyd and

Richerson’s (4) equation 1 with conformity (D > 0) provides a
reasonable approximation to the stochastic model.

In the deterministic model with random copying, where indi-
viduals do not favor a common or an uncommon variant [D(j )=
0 for all j in Eq. 19], there is no change in variant frequencies
and any initial p0 is an equilibrium. In the stochastic model, how-
ever, if E [Dt(j )]= 0 for all j and all t =0, 1, . . . , and Dt(j ) are
independent random variables for j > n

2
, then there is conver-

gence to one of p∗=0, 1
2

, or 1 with probability 1. In this model,
fluctuations in (anti)conformity can cause one variant to increase
relative to the other; hence, there cannot be equilibria where
the frequencies are nonzero and unequal (i.e., 0< p< 1

2
and

1
2
< p< 1). As in the model with conformity expected, this con-

vergence result holds with a fixed or time-varying number of role
models. Fig. 1 A–C shows that if n =3, 4, or 5 (respectively) and
random copying is expected, p∗=0, 1

2
, and 1 are all SLS.

With n =3 role models, E(Dt)= 0, and weak selection with
E(st) 6=0, convergence to p∗= 1

2
does not occur. This is intu-

itive, as E(st) 6=0 entails that one variant is selectively favored,
on average, relative to the other. In this case, convergence to a
fixation state (p∗=0 or 1) occurs with probability 1. With n =3
and either random copying or conformity expected, if weak selec-
tion is expected to favor variant A, p∗=1 is SLS; if it is expected
to favor variant B , p∗=0 is SLS; and if E(st)= 0, both p∗=0
and 1 are SLS. Finally, all of these results for selection also hold
if selection is constant, rather than randomly varying.

In the deterministic model with anticonformity [D(j )< 0 for
all n

2
< j <n in Eq. 19], convergence to an equilibrium is guar-

anteed if n =3 or n =4 (49), in which case p∗=0 and 1 are
unstable and p∗= 1

2
is globally stable, opposite to the deter-

ministic dynamics with conformity. In the stochastic model with
anticonformity expected, dynamics of Fig. 3 A (n =3) and B
(n =4) are reasonably approximated by Boyd and Richerson’s
(4) anticonformity model (apart from the fluctuations across
p∗= 1

2
prior to convergence in the case n =4). On the other

hand, Fig. 1 D and E shows that all three equilibria p∗=0, 1
2

, and
1 can be SLS with n =3 or 4 and E [Dt(2)]< 0 or E [Dt(3)]< 0,
respectively. Moreover, with n =4 and E [Dt(3)]< 0, p∗= 1

2
can

be unstable while p∗=0 and 1 are SLS (Fig. 2D), a result more
consistent with Boyd and Richerson’s (4) model of conformity
than anticonformity.

In both deterministic and stochastic models with anticonfor-
mity, nonconvergence can also occur. A common variant with

frequency pt >
1
2

may be strongly disfavored due to anticonfor-
mity such that pt+1 is well below p= 1

2
; this rare variant may

then be strongly favored such that pt+2 is well above p= 1
2

, and
so on. Figure 2 in ref. 49 illustrates a two-generation cycle around
p∗= 1

2
with n =5. In the stochastic model with n =5, fluctuation

around p∗= 1
2

is shown in Fig. 5A.
Finally, with n > 4, both conformity and anticonformity are

possible for different samples j of n role models with one variant.
In figure 1 of ref. 49, with n =5, D(4)=−0.7 (anticonformity)
and D(3)= 1.9 (conformity), there are two stable polymorphic
equilibria: p∗=0.1927 and 1− p∗=0.8073. Here, in the analo-
gous stochastic case E [Dt(4)]=−0.7 and E [Dt(3)]= 1.9, in Fig.
5B we see stochastic fluctuation around average frequencies p=
0.1929 (if p0< 1

2
) or p=0.8072 (if p0> 1

2
). Thus, although poly-

morphic equilibria with p∗ 6= 1
2

were not found in the stochastic
model, fluctuation occurred around average frequencies close to
the stable polymorphic equilibria with p∗ 6= 1

2
from the constant

conformity model.
Thus far, our discussion has pertained to cases with iden-

tically distributed Dt . This assumption is removed in Fig. 4,
where Dt instead cycles between fixed values. Here, unlike in
the case of identically distributed Dt , nonconvergence is pos-
sible with n =3 role models. Fig. 4A shows an example of
an exact two-generation cycle with n =3, where if the initial
frequency p0>

1
2

or p0<
1
2

, the cycle occurs above or below
p= 1

2
(respectively). With n =4, cycles can occur around p= 1

2
(Fig. 4B). These dynamics are more complex than in Boyd and
Richerson’s (4) model with constant conformity coefficients,
where nonconvergence is possible only for n ≥ 5 (49).

Future empirical research could explore the level of confor-
mity exhibited by members of a fixed age group over generations,
allowing the amount of temporal variation in conformity to be
estimated and hence which Dt distributions might be appro-
priate. Such research may also reveal deterministic trends in
conformity over time, stimulating new models. For example, just
as Aschian conformity in line discrimination tasks decreased
over time (29), Boyd and Richerson (4) conformity might also
decrease over time in similar mental discernment contexts. In
much of our analysis, the vector of conformity coefficients (Dt)
was sampled at each generation from the same multivariate dis-
tribution, and the assumption of identically distributed Dt was
removed only in examples with fixed, cycling Dt (Fig. 4). Addi-
tional research could explore how variation in the number of
role models, nt , is associated with the level of conformity. In our
model, for a given nt =n , an n-dimensional conformity vector
(Dt) is sampled from a probability distribution, but we do not
include any known relationships between Dt and nt , which may
exist and be important. For example, (anti)conformity might be
stronger if 70 of 100 sampled individuals share a variant com-
pared to 7 of 10 sampled individuals, as the smaller sample
might be perceived as a less reliable indicator of population-level
variation.

Other extensions of our analysis could model finite rather than
infinite populations, subpopulations with migration among them,
and individual-level variation in conformity. Finite populations
experience greater stochastic fluctuation in variant frequencies
than infinite populations, resulting in elimination of polymorphic
equilibria. Migration may also greatly alter population dynamics.
For example, incorporating migration into Boyd and Richerson’s
(4) deterministic conformity model with infinite population sizes
can produce surprising polymorphic equilibria (p∗ 6= 1

2
) (49). In

infinite, multipopulation models, it would be interesting to deter-
mine whether incorporating stochastic variation in conformity
would eliminate or allow stochastic local stability of these poly-
morphic equilibria. Finally, levels of conformity need not be the
same for all individuals in a population (41, 56), which we have
assumed. Incorporating individual-level variation in conformity
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could produce more realistic dynamics, as well as enable a more
direct application to empirical research on individual biases.

In conclusion, if conformity coefficients vary over time, evo-
lutionary dynamics are seen that are not possible with constant
conformity coefficients. In the constant conformity model, at
least one equilibrium must be unstable (49), whereas here all
equilibria can be stochastically locally stable simultaneously. We
find that irrespective of whether n is constant or time vary-
ing, if conformity is expected [E [Dt(j )]> 0 for all n

2
< j <n] or

random copying is expected [E [Dt(j )]= 0 for all j and Dt(j )
are independent], convergence to an equilibrium p∗=0, 1

2
, or

1 is ensured. If random copying is expected, n =3, and there is
weak selection that favors one variant over the other on aver-

age, only fixation states p∗=0 or 1 are reached as t→∞. With
anticonformity expected, nonconvergence is possible under dif-
ferent conditions from those in previous deterministic models
(49). Finally, when conformity coefficients are not identically dis-
tributed, exact cycles can arise with as few as n =3 role models.
Thus, temporal fluctuations in the patterns of conformity can
cause significant departures from the conclusions that have been
drawn from models with constant levels of conformity.
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with nonconformity in freely forming groups: Does the size distribution matter? Phys.
Rev. E 95, 062302 (2017).
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