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Identification of region-specific splicing
QTLs in human hippocampal tissue
and its distinctive role in brain disorders

Xiaoyan Li,1,2 Yiran Zhao,1,2 Hui Kong,1 Chengcheng Song,1 Jie Liu,1 and Junfeng Xia1,3,*
SUMMARY

Alternative splicing (AS) regulation has an essential role in complex diseases. However, the AS profiles in
the hippocampal (HIPPO) region of human brain are underexplored. Here, we investigated cis-acting
sQTLs of HIPPO region in 264 samples and identified thousands of significant sQTLs. By enrichment anal-
ysis and functional characterization of these sQTLs, we found that the HIPPO sQTLswere enriched among
histone-marked regions, transcription factors binding sites, RNA binding proteins sites, and brain
disorders-associated loci. Comparative analyses with the dorsolateral prefrontal cortex revealed the
importance of AS regulation in HIPPO (rg = 0.87). Furthermore, we performed a transcriptome-wide as-
sociation study of Alzheimer’s disease and identified 16 significant genes whose genetically regulated
splicing levels may have a causal role in Alzheimer. Overall, our study improves our knowledge of the tran-
scriptome gene regulation in the HIPPO region and provides novel insights into elucidating the pathogen-
esis of potential genes associated with brain disorders.

INTRODUCTION

Alternative splicing (AS) is an essential post-transcriptional regulatory process that enhances the diversity and complexity at the RNA level

through intron excision and exon ligation.1,2 By alternative pre-mRNA splicing, multiple transcripts, and protein isoforms can be generated

from a single gene with different biological functions.3 Emerging as one of the most important mechanisms regulating gene expression, AS

events affects about 95% of human multi-exon genes,4 which often occur in a cell or tissue-type specific manner.5 Notably, the molecular

mechanism of AS is particularly prevalent and intricate in the human brain,6 suggesting that such highly complex AS regulation in brain tissue

can play a crucial role in the normal development and functional maintenance of the central nervous system.7,8 Furthermore, accumulating

studies have indicated that aberrant splicing of a specific gene affected by genetic variants may be involved in the etiology and pathogenesis

of various brain disorders.9,10 For instance, Xu et al. found that multiple de novo gene mutations with strong genetic evidence can confer the

risk of schizophrenia by affectingAS.11Multiple humanpostmortembrain studies have also reportedAS dysregulation among individuals with

Alzheimer’s disease,12,13 Parkinson disease,14 and autism spectrum disorders.15,16

Recent large-scale transcriptome analyses have identified thousands of genetic variants throughout the genome that play a regulatory role

in AS, referred to as splicing quantitative trait loci (sQTL).9 Therefore, sQTL analysis is conducted to gain greater insight into the associations

between genetic variants andAS regulation.17 The splicing level of a splice site or alternative exon can be considered as quantitative traits and

maps to a genomic variant within a population in sQTL analysis. Previous studies have indicated that sQTLs have similar or even greater effects

on diseases and complex traits compared to expression quantitative trait loci (i.e., eQTL,meaninggenetic variants affecting gene expression),

highlighting the utility of sQTLs as a crucial approach for uncovering genetic variants of AS regulation.9 Through sQTL analysis, several recent

studies have successfully explored how functional genetic variation impacts AS (i.e., the splicing level) in human.18,19 However, there are rela-

tively few sQTL analyses based on RNA sequencing (RNA-seq) of the brain20–22 (i.e., most of these analyses mainly focused on non-neuronal

tissues), and none include a comprehensive sQTL analyses of the postmortem hippocampal (HIPPO) brain tissue.

Mounting evidence suggests that HIPPO region damage prominently implicated in the etiology and pathogenesis of brain disorders,

including schizophrenia, Alzheimer, epilepsy, depression and anxiety, but there is less research accessible since current large consortia favor

research on neocortical brain regions like the dorsolateral prefrontal cortex (DLPFC).23,24 Here, to comprehensively investigate sQTLs in the

HIPPO region of the human brain, we utilized transcriptome data and genotype data from 264 individuals in the second phase of the BrainSeq

Consortium (i.e., BrainSeq225). We eventually identified a total of 6,966 sQTLs involving in 14,559 AS events of 5,299 unique genes (defined as

sGenes) that are expected to be independent of one another after undergoing stringent quality control. The functional characterization of
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these sQTL single nucleotide polymorphisms (SNPs) was examined, and we comprehensively described the implicated regulatory regions

associated with sQTL variants as well as the genetic contribution of sQTL variants to the etiology of brain disorders. By comparing sQTL sig-

nals between HIPPO and DLPFC brain regions, we found a large genetic similarity between the two brain regions (rg = 0.87, calculated by

ldsc). In addition, transcriptome-wide association studies (TWAS) integrating sQTLs summary data and genetic association signals from

the genome-wide association studies (GWASs) of Alzheimer’s disease have been performed to unravel novel susceptibility genes in

HIPPO tissue. In conclusion, these findings provide a comprehensive sQTLs map in the HIPPO brain, which can advance our understanding

of the genetic architecture of complex brain disorders.

RESULTS

Robust identification of cis-sQTLs in human HIPPO region

Genetic variants with effects on RNA splicing are an important factor contributing to brain diseases risk. Considering that splicing regulation in

the HIPPO region of the humanbrain has not been systematically explored, we performed a sQTL analysis of the HIPPO region to enhance the

understanding of the link between splicing and brain diseases. All individuals (N = 264) from BrainSeq2 with no history of neurological and/or

neuropsychiatric diseases were included in the sQTL analysis. We first employed LeafCutter to analyze RNA-seq data to comprehensively

identify AS events in human HIPPO region. The regulation of brain splicing generates a large number of homologous genes, leading to

incomplete isoform annotations in brain. LeafCutter is an annotation-free method that allows for alternative exon identification and therefore

has important advantages in the context of brain.We then conducted cis-sQTLs (cis-windowofG100 kb around the AS event) discovery using

the linear regression model implemented in FastQTL. After applying stringent quality control and normalization (see STAR methods for de-

tails), we obtained a total of 11,157 significant sQTLs (FDR <0.05) involving in 16,492 AS events of 6,387 unique genes (Table S1). Positional

enrichment of sQTL SNPs showed that most of significant sQTL SNPs (i.e., with strong effects on splicing) were mainly enriched in exons or

proximal introns regions (G100 bp of junction) (Figure 1A). This observation is consistent with prior findings26,27 that many variants within

these regions have an impact on AS regulatory functions, indicating that sQTL SNPs closer to their splice sites had a significant effect on AS.

Functional characterization of sQTL SNPs

To characterize the function of each sQTL SNPs, we generated sQTL and non-sQTL datasets for comparative analysis. After sQTL SNPs

extracting (p-value filtering) and LD pruning (see STAR methods), we obtained sQTL and non-sQTL SNPs dataset, containing 6,966 SNPs

(contributed to AS regulation independently) and 124,801 SNPs (not contributed to AS regulation independently), respectively. We first func-

tionally classified these sQTL (Table S3A) and non-sQTL SNPs (Table S3B) with the variant types defined by SnpEff (Figure 1B). As expected,

we found that the sQTL SNPs were significantly enriched in exonic regions (correspond to red in Figure 1B) compared to non-sQTL SNPs (p =

2.43 3 10�76, odds ratio (OR) = 2.13, two-tail Fisher’s exact test). We then performed functional enrichment of sQTL SNPs among different

variant types. Notably, the enrichment of variants located in the splice regionwas themost significant compared to non-QTL SNPs (p = 8.653

10�62, OR = 4.83, two-tail Fisher’s exact test), suggesting that splice site variants may plays an important role in AS regulation (Figure 1C).

Moreover, there was significant enrichment of splice acceptor (p = 3.48 3 10�18, OR = 17.94, two-tail Fisher’s exact test) and splice donor

(p = 2.86 3 10�15, OR = 14.23, two-tail Fisher’s exact test), and underrepresentation of intergenic variants (Figure 1C).

Functional enrichment of sQTLs SNPs in regulatory elements and RBP binding sites

Previous studies have shown that regulatory elements (H3K4me1, H3K4me3, H3K9ac, H3K27ac, and DHS) and RBPs facilitate AS regulation

during transcription,18,21 sowe exploredwhether genomic regions taggedby sQTLSNPs are enriched in regulatory elements andRBPbinding

sites to understand the mechanism by which sQTL SNPs influence AS regulation (see STAR methods section for details). For regulatory ele-

ments, we found that sQTL SNPs are significant enriched in H3K4me3 (p = 2.04 3 10�21, OR = 2.10, two-tail Fisher’ exact test with), H3K9ac

(p = 1.693 10�17, OR = 1.89, two-tail Fisher’s exact test with) and H3K27ac (p = 1.19 3 10�18, OR = 1.91, two-tail Fisher’s exact test markers

compared to non-sQTL SNPs (Figure 2A). Increasing evidence indicates that H3K4me3 marks plays an important role in AS regulation.28–30 It

was previously reported that H3K4me3 histone modification was involved in AS regulation through control of spliceosome recruitment.29

According to the scoring criteria defined by RegulomeDB (Table S4), we found that sQTL SNPs were significantly enriched in SNPs with in

the category with a score of one (i.e., these SNPs have been experimentally shown to affect TFs binding) compared to non-sQTL SNPs (p =

1.32 3 10�42, OR = 2.51, two-tail Fisher’s exact test), indicating that these TFs affected by sQTL SNPs plays an important role in AS

regulation (Figure 2B). For RBP binding sites, as expected, we observed that sQTL SNPs were significantly enriched in 30 RBPs binding sites

(Figure 2C), providing further evidence that these sQTL SNPs fall in RBPs binding sites relevant to the AS regulation. Notably, identified RBPs

with prominent known roles in brain RBPs include SRSF1,31 LIN28B,32 TARDBP,33 ELAVL1,34 DDX3X,35 and ATXN2,36 while the functional

significance of the remaining RBPs is unclear.

Enrichment analysis of sQTL SNPs among brain disease-associated loci

To identify the potential contribution of sQTL SNPs to the risk of brain-related diseases, we utilized data mined from the GWAS catalog to

perform enrichment analysis for identified sQTL and non-sQTL SNPs. By exploring whether sQTL SNPs are significantly enriched for GWAS

loci associated with 12 brain disorders (see STARmethods), we found the sQTL SNPs were significantly enriched in brain disorders compared

to non-sQTL SNPs (p < 1.003 10�3, OR = 4.84, one-tailed Fisher’s exact test). Enrichment analysis of sQTL SNPs using summary data from the
2 iScience 26, 107958, October 20, 2023



Figure 1. Characterization of identified sQTL SNPs

(A) Each blue dot represents an SNP plotted according to its distance from the nearest AS event and the statistical significance of its association with AS (–log10

p-value).

(B) Pie charts indicating proportions of SNPs annotated with each functional category (splice acceptor, splice donor, splice region, synonymous, 50 UTR, 30 UTR,
non-coding exon, intron and intergenic). SNPs in exonic regions (nonsense, readthrough, start-loss, frameshift, canonical splice site, missense, synonymous,

splice region, 50 UTR, 30 UTR and non-coding exon) and SNPs in non-exonic regions (intron and intergenic) are indicated by red and blue colors, respectively.

(C) Enrichment of sQTL SNPs in each different functional type of variants. Exonic variants are shown in red and non-exonic variants are shown in blue. p-values

were calculated by two-tailed Fisher’s exact test with Bonferroni correction. Bars indicate 95% confidence intervals.
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largest GWAS to date for individual brain disorders was further performed. The most significant enrichment among psychiatric disorders was

observed for schizophrenia (p = 2.06 3 10�47, OR = 4.36), and the most significant enrichment among neurodegenerative disease was

observed for Alzheimer (p = 6.48 3 10�53, OR = 7.05) (Figure 2D). These results suggested that some of these SNPs probably contribute

to disease (including schizophrenia and Alzheimer) risk by affecting AS.

Enrichment of sGenes in different cell types of the brain

To further identify the cell types associated with AS regulation, EWCE was used to estimate the enrichment of these identified sGenes to

various cell types.We found that sGenewas significantly (Benjamini-Hochberg p < 0.05) enriched in a variety of cell types, including astrocytes
iScience 26, 107958, October 20, 2023 3



Figure 2. Enrichment analyses of sQTL SNPs among genetic regulatory elements and RBP

(A) Enrichment analysis of sQTL SNPs among variants in five types of regulatory elements (DNase I hypersensitive sites (DHS), H3K4 monomethylation marks

(H3K4me1), H3K4 trimethylation marks (H3K4me3), H3K9 acetylation marks (H3K9ac), H3K27 acetylation marks (H3K27ac)). p-values were calculated by two-

tailed Fisher’s exact test with Bonferroni correction.

(B) Enrichment analysis of sQTL SNPs among TF binding sites. The lower the horizontal coordinate score, the greater the possibility of variants site affecting TF

binding. p-values were calculated by two-tailed Fisher’s exact test with Bonferroni correction.

(C) The blue dot represents the top 30 most enriched RBPs, and the red dotted line represents p = 0.05 (Bonferroni-Corrected-value threshold).

(D) Enrichment analyses of sQTL SNPs among loci associated with 12 brain disorders.
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ependymal, oligodendrocytes, and pyamidal CA1, and 10 cell subtypes (Figures 3A and 3B). The results indicated that these identified sGenes

may have an important role in these cell types. In addition, we explored the potential cell-type differences across the HIPPO (including

CA1�CA4 and DG) and cortex brain regions. We downloaded single-cell sequencing expression data (N = 2,031 samples) of adult mouse

HIPPO and cortex region from Batiuk et al.,37 including AST1, AST2, AST3, AST4, AST5, microglia, neuron, oligodendrocyte, mural cell,
4 iScience 26, 107958, October 20, 2023



Figure 3. Enrichment of sGenes in different cell types of the brain and their comparison to DLPFC sQTLs

(A) Associations between sGenes and cell types from somatosensory cortex and hippocampal CA1 in mice were marked with asterisks, indicating Benjamini-

Hochberg significance (p < 0.05). The results show 3 significantly enriched cell types in the primary classification (p < 0.05), including astrocytes

oligodendrocytes and pyamidal CA1.

(B) The results show 9 significantly enriched cell types in the secondary classification (p < 0.05).

(C) The Venn diagram shows the number and percentage of sQTL SNPs that overlap in the two brain regions.

(D) Partitioning heritability enrichment of four brain disorders (Alzheimer’s disease, amyotrophic lateral sclerosis, schizophrenia, and bipolar disorder) in two

brain regions, p < 0.05 was significant (Bonferroni-Corrected-value threshold). Among the four diseases, Alzheimer’s disease was the most significantly

enriched, especially in the HIPPO. One asterisk (*) indicates a p-value <0.05; two asterisk (**) indicate a p-value <0.01, and three asterisk (***) indicate a

p-value <0.001.
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and endothelial cell. Interestingly, we observed that sGenes were significantly enriched in AST1, AST2, AST3, AST4, AST5, and oligodendro-

cyte cell types in bothHIPPOand cortex regions. (Figure S2).Many studies have reported the association of astrocytes with diseases, including

Alzheimer’s disease.37,38 For example, one study has reported the identification of a population of disease-associated astrocytes in a mouse

model of Alzheimer’s disease,39 suggesting that these results are consistent with our findings.
iScience 26, 107958, October 20, 2023 5
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Tissue specificity of sQTLs between brain HIPPO and DLPFC regions

Previous studies have showed that AS events associated with brain diseases tend to be brain region-specific,22 indicating that there are dif-

ferences betweenHIPPO andDLPFC region sQTLs at the level of SNPs. By performing the same sQTLmapping analysis on the DLPFC region

(the specific procedure is the same as HIPPO, see STAR methods section for details), we observed approximately 6.8% of sQTL SNPs over-

lapped between the HIPPO andDLPFC (as shown in the Figure 3C), and we noted that the p values of the overlapping sQTL SNPs were highly

significant in both brain regions. To further measure the genetic similarity of sQTLs in two different brain regions, we calculated rg using the

ldsc software40 (rg = 0.87), indicating a strong genetic similarity between the two brain regions.We further compared the enrichment patterns

of 12 brain disease-associated GWAS in sQTL from HIPPO brain regions and DLPFC brain regions, and found significant enrichment in four

brain disorders (Figure 3D). Among them, Alzheimer-associated variants are the most significantly enriched in the HIPPO and DLPFC regions

(p = 9.493 10�6 and p = 8.153 10�4, respectively) (Figure 3D). Interestingly, sQTL SNPs showedmore significant enrichment in HIPPO brain

regions compared to DLPFC, suggesting that Alzheimer-related risk variants may bemore relevant to HIPPO brain regions. Therefore, study-

ing AS events in HIPPO brain regions for Alzheimer deserves in-depth study. Additionally, genetic variants associated with risk for amyotro-

phic lateral sclerosis (p = 2.283 10�2 and p = 5.733 10�3, respectively), schizophrenia (p = 1.453 10�3 and p = 1.763 10�4, respectively) and

bipolar disorder (p = 1.223 10�3 and p = 1.103 10�4, respectively) were significantly enriched for both HIPPO and DLPFC regions, whereas

depression GWAS was not significant for both regions (Figure 3D). Overall, these results are consistent with previous findings41 that sQTL

SNPs identified by HIPPO harbor substantial disease risk, suggesting AS regulation in the HIPPO brain region deserves further study in brain

disorders development.
sGenes with the context of splicing networks

By constructing a splicing co-expression network using robust WGCNA, we identified a total of 14 functional modules of co-expressed

sGenes in the HIPPO region (Figure 4A).We performedGOand KEGGenrichment analysis of obtained sGenesmodules to identify important

biological processes andmetabolic pathways (Table S5A). One interesting splicing co-expressedmodule are turquoisemodule with the high-

est number of sGenes (Figure 4B), which was enriched for regulation of mRNA metabolic and RNA splicing process (Figure 4C). Specifically,

GO analysis showed that the sGenes contained in the turquoise module weremainly enriched in splicing- and neurodevelopment-associated

pathways, including RNA splicing, regulation of RNA splicing, modulation of chemical synaptic transmission, regulation of trans-synaptic

signaling, axonal transport, axo-dendritic transport (Figure 4D; Table S5B). KEGG analysis showed that the sGenes contained in the turquoise

module were mainly enriched in the pathways related to spliceosome and dopaminergic synapse (Figure 4E; Table S5B), suggesting that the

sGenes have an important function in the AS regulation and synaptic transmission.
TWAS prioritize potential causal genes for Alzheimer

The most significant enrichment among Alzheimer-associated loci observed above (Figure 2D) suggested that some of these SNPs

could confer risk for Alzheimer’s disease by affecting AS. To further leverage these sQTLs data (using intron excision levels as a refer-

ence panel) identified in HIPPO to prioritize potential causal genes for Alzheimer, we performed a TWAS incorporating cis-sQTLs and

Alzheimer GWAS. After Bonferrroni correction, we identified 16 genes with intron associations whose imputed cis-regulated expression

is associated with Alzheimer (Figure 5A) (Table S6). Of note, APOC1 showed the most significant association, strongly suggesting that

APOC1 is a promising causal gene for Alzheimer. Our sQTL analysis showed that rs56131196 was associated with the splicing levels of

APOC1 (Pcorrected = 1.56 3 10�3) (i.e., differential intronic usage for chr19:45419582:45434257 stratified by rs56131196 genotypes) (Fig-

ure 5B), suggesting that APOC1 could causally confer Alzheimer risk by affecting AS in the human HIPPO brain. Other top significant

genes include PVR, ZNF138, ERCC1, CD2AP, KNSTRN, ANK3, STAG3, CRYL1, SLC12A9, SNRPC, HMGCLL1, LAMTOR4, CCDC18,

SLC39A13, and PTK2B. These significant genes represent promising candidate causal genes for Alzheimer. To identify novel risk regions

beyond the Alzheimer GWAS identification, we then examined the overlap between the 38 independent genome-wide significant Alz-

heimer GWAS loci and significant HIPPO TWAS associations. We observed seven GWAS loci harbor HIPPO TWAS associations (overlap

of TWAS significant loci (G500 kb) with GWAS significant loci), and nine additional Alzheimer risk loci where significant TWAS loci do

not overlap GWAS significant loci. Given the evidence that the HIPPO is associated with the development of Alzheimer’s disease, we

believed that these HIPPO sQTLs data would provide new perspectives on Alzheimer risk, especially given the sensitivity of AS regu-

lation to tissue source.
DISCUSSION

Our work provides the most comprehensive genome-wide sQTLs map of the HIPPO, a critical region in brain prominently implicated in the

pathogenesis of brain disorders, significantly expanding our understanding of AS regulation in the HIPPO brain. We have comprehensively

characterized properties and regulatory elements of the detected sQTL SNPs, enabling the incorporation of tissue specificity to previous

brain genetic variant interpretation and functional genomic analysis. By comparing sQTLs of the HIPPO and DLPFC region from the same

individuals, we found that approximately over 90% of significant sQTLs in HIPPO are distinct from DLPFC, indicating that sQTL detecting

in HIPPOwarrantsmore attention in future studies. By integrating sQTLs with GWAS data via TWAS, we identified novel putative mechanisms

detected in HIPPO brain datasets, demonstrating the distinct contribution of sQTLs to the genetic architecture underpinning brain disorders
6 iScience 26, 107958, October 20, 2023



Figure 4. Splicing co-expression networks in HIPPO

(A and B) (A) Network analysis dendrogram based on hierarchical clustering of sGenes by their topological overlap, identifies 14 modules, and (B) indicates the

number of differential sGenes enriched in each module, with the most enriched sGenes in the turquoise module.

(C–E) (C) GO analysis was performed on the sGenes of each module, and the first two most significant results were extracted (The p-value was corrected by

Benjamini-Hochberg). The turquoise cluster module is involved in RNA-splicing processes and various neurodegenerative disease pathways as described in

detail by (D) GO and (E) KEGG analyses.
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variation. These results collectively confirmed that sQTL SNPs identified in theHIPPO is a key data resource for deciphering the geneticmech-

anisms underlying complex brain disorders.

To further leverage these splicing to characterize Alzheimer loci with the specific brain region, we performed a TWAS analysis by inte-

grating cis-sQTLs and GWAS to identify potential risk genes whose change in splicing are associated with Alzheimer. Our analysis corrobo-

rated seven known Alzheimer genes, including APOC1,42 STAG3,43 CRYL1,44 SNRPC,45 LAMTOR4,46 SLC39A13,47 and PTK2B,48 and also

identified nine genes that have not previously been reported in suggestive Alzheimer loci. As a proof of principle, we highlight two of these

genes: ERCC1 and ANK3. ERCC1 is a protein coding gene, which is involved45 in the recognition and nucleotide excision repair pathway.49

Interestingly, age-relatedmotor neuron degeneration has been observed in Ercc1 (Delta/-) micewith impairedDNA repair systems.50 Consid-

ering that Alzheimer’s disease is the most important age-related neurodegenerative disorder, these results demonstrate that ERCC1 may

confer risk of Alzheimer by affecting the function of age-related motor neurons. ANK3 (ankyrin 3, node of Ranvier) encodes ankyrin 3 or G,

which functions as a scaffold linking plasma membrane proteins to the actin/b-spectrin cytoskeleton.51 Notably, ANK3 has been reported
iScience 26, 107958, October 20, 2023 7



Figure 5. TWAS in Alzheimer’s disease

(A) Manhattan plot of TWAS results from intron Alzheimer associations, highlighting the 16 significant gene. The red solid line represents Bonferroni corrected

p-value threshold (i.e., p = 1.13 3 10�5).

(B) The violin diagram shows association of rs56131196 with the PSI of APOC1 in our dataset (Pcorrected = 1.563 10�3 in our sQTL analysis). The distribution of PSI

abundances in a genotype class, that is, AA (N = 10), AG (N= 66), or GG (N = 156). The superimposed boxplot is shownwith horizontal black lines andwhite boxes

for median and quartile distances, respectively. Outliers are shown as black dots.
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to contribute significantly in the brain specific isoforms found in axons, particularly associated with the voltage-dependent sodium channel.52

Evidence from linkage studies suggests thatANK3 are involved in the genetic architecture of late-onset Alzheimer’s disease,53 indicating that

this gene is a particularly promising candidate for Alzheimer locus. Therefore, our results provide further support and guidance for future

experimental validation and serve to elucidate the role of these sQTL SNPs in the etiology of Alzheimer.

We also explored the potential function of allele-specific sQTL for geneApoE4 or other key susceptible genes of Alzheimer summarized by

Pasqualetti G et al.’s work.48 For geneApoE4, we found thatApoE4were not identified in our HIPPO sQTL analysis, possibly due to the use of

normal human rather than Alzheimer patient samples for sQTL analysis and sample size limitations. For other key susceptible genes (N= 32) of

Alzheimer, we found that several SNPs were significantly associated with the splicing levels of ZCWPW1, BIN1, CD2AP, CCELF1, HLA-DRB1,

IQCK, PTK2B, SSLC4A4, andWWOX (Figure S3), implying that these genes could causally confer Alzheimer risk by affecting AS in the human

HIPPO brain. However, we found that the remaining 23 Alzheimer key susceptibility genes were not identified in our HIPPO sQTL analysis.

Obtaining genotype and transcriptome sequencing data from HIPPO brain region samples of Alzheimer patients for sQTL analysis may

help to reveal the potential functions of these Alzheimer genes in the future work.

By comparing the enrichment patterns of brain disease-associated GWAS in sQTL between HIPPO and DLPFC brain regions, we found

that Alzheimer-associated variants were more significantly enriched in the HIPPO regions (Figure 3D). Our results suggest that the HIPPO

regionmay be implicated in the pathogenesis of Alzheimer’s disease. Indeed, there is growing evidence that many AS events are highly brain

tissue specific (i.e., highly heterogeneous).22,54 The DLPFC is a neocortical region that is the hub of cognitive circuits and is affected in Alz-

heimer. Interestingly, previous studies have reported that the HIPPO region was one of the earliest brain regions to be affected by the neuro-

pathology of Alzheimer’s disease, indicating a key role for HIPPO in Alzheimer’s disease pathology.55,56 In addition, Alzheimer’s disease is

also characterized by the pathological deposition of amyloid-b peptides in the HIPPO.57 These lines of evidence support that the HIPPO

may be an important and promising brain region for Alzheimer treatment.

For regulatory elements, we found that sQTL SNPs are significant enriched in H3K4me3 (p = 2.04 3 10�21, OR = 2.10, two-tail Fisher’Q

exact test), H3K9ac (p = 1.693 10�17, OR = 1.89, two-tail Fisher’s exact test) and H3K27ac (p = 1.193 10�18, OR = 1.91, two-tail Fisher’s exact

test) compared to non-sQTL SNPs after performing Bonferroni correction (Figure 2A). Increasing evidence indicates that H3K4me3 marks

plays an important role in AS regulation.28–30 It was previously reported that H3K4me3 histone modification was involved in AS regulation

through control of spliceosome recruitment. Interestingly, we also found that sQTL SNPs were significant enriched in 5’ UTRs sites (Figure 1C),

implying that 5’ UTRs aremore prone to AS, which is consistent with results reported in the literature.58 Growing evidence suggests that sQTL

SNPs occurring at 5’ UTR are involved in transcriptional activation, as the H3K4me3 marks are enriched in the 5’ end of gene bodies, which

normally includes the 50 UTRs.59 In addition, the sGenes contained in the turquoisemodule were also enriched in brain-related disorders (Fig-

ure 4E), especially in multiple neurodegenerative diseases (including Alzheimer and Parkinson), which is consistent with the results of enrich-

ment analyses of sQTL SNPs among disease-associated loci.

In summary, we performed a well-powered sQTL analysis in the HIPPO of human brain and further decoded these sQTL SNPs’ function

characteristics, regulatory elements and RBP enrichment, and associated brain disorders. Our results may advance the understanding of how

functional genetic variants confer brain disease risk by affecting AS regulation in specific tissues.
8 iScience 26, 107958, October 20, 2023
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Limitations of the study

Our studyalsohas several limitations. First, although the sample size (N=264)was sufficient toconfidentlydetect sQTL in theHIPPO,mostofbrain

disorders heritability remain unexplained. Additional significant sQTLsmay be foundwith very large sample sizes. Second, we limited the current

sQTLanalysis to only tissues froma singlebrain region (i.e., HIPPO), which contains amixtureofmultiple cell types. Since sQTLs are oftenoccur at

cell type-specificmanner, thismaymask the ability to detect cell-type-specific sQTLs, particularly affecting aminor cell population in the bulk tis-

sues. Future analyses of sQTLs using large-scale RNA-seq data at cell types or single cells resolutions will provide additional informative data

resource of genetically AS regulation in human brain. Third, our study identifiedmultiple statistically significant genetic variants affecting splicing

in theHIPPO, but further functional experimental validations are required to elucidate themolecularmechanisms of these significant sQTL SNPs.
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Panagiotaropoulou, G., Awasthi, S., Bigdeli,
T.B., Bryois, J., Chen, C.Y., Dennison, C.A.,
Hall, L.S., et al. (2022). Mapping genomic loci
implicates genes and synaptic biology in
schizophrenia. Nature 604, 502–508. https://
doi.org/10.1038/s41586-022-04434-5.

61. Mullins, N., Forstner, A.J., O’Connell, K.S.,
Coombes, B., Coleman, J.R.I., Qiao, Z., Als,
T.D., Bigdeli, T.B., Børte, S., Bryois, J., et al.
(2021). Genome-wide association study of
more than 40,000 bipolar disorder cases
provides new insights into the underlying
biology. Nat. Genet. 53, 817–829. https://doi.
org/10.1038/s41588-021-00857-4.

62. Howard, D.M., Adams, M.J., Clarke, T.K.,
Hafferty, J.D., Gibson, J., Shirali, M.,
Coleman, J.R.I., Hagenaars, S.P., Ward, J.,
Wigmore, E.M., et al. (2019). Genome-wide
meta-analysis of depression identifies 102
independent variants and highlights the
importance of the prefrontal brain regions.
Nat. Neurosci. 22, 343–352. https://doi.org/
10.1038/s41593-018-0326-7.

63. Wightman, D.P., Jansen, I.E., Savage, J.E.,
Shadrin, A.A., Bahrami, S., Holland, D.,
Rongve, A., Børte, S., Winsvold, B.S., Drange,
O.K., et al. (2021). A genome-wide
association study with 1,126,563 individuals
identifies new risk loci for Alzheimer’s
disease. Nat. Genet. 53, 1276–1282. https://
doi.org/10.1038/s41588-021-00921-z.

64. Demontis, D., Walters, G.B., Athanasiadis, G.,
Walters, R., Therrien, K., Nielsen, T.T.,
Farajzadeh, L., Voloudakis, G., Bendl, J.,
Zeng, B., et al. (2023). Genome-wide analyses
of ADHD identify 27 risk loci, refine the
genetic architecture and implicate several
cognitive domains. Nat. Genet. 55, 198–208.
https://doi.org/10.1038/s41588-022-01285-8.

65. van Rheenen, W., van der Spek, Bakker, M.K.,
van Vugt, J., Hop, P.J., Zwamborn, R.A.J., de
Klein, N., Westra, H.J., Bakker, O.B., Deelen,
P., et al. (2021). Common and rare variant
association analyses in amyotrophic lateral
sclerosis identify 15 risk loci with distinct
genetic architectures and neuron-specific
biology. Nat. Genet. 53, 1636–1648. https://
doi.org/10.1038/s41588-021-00973-1.

66. Jiang, L., Zheng, Z., Fang, H., and Yang, J.
(2021). A generalized linear mixed model
association tool for biobank-scale data. Nat.
Genet. 53, 1616–1621. https://doi.org/10.
1038/s41588-021-00954-4.

67. Van Deerlin, Sleiman, P.M., Martinez-Lage,
M., Chen-Plotkin, A., Wang, L.S., Graff-
Radford, N.R., Dickson, D.W., Rademakers,
R., Boeve, B.F., Grossman, M., et al. (2010).
Common variants at 7p21 are associated with
frontotemporal lobar degeneration with
TDP-43 inclusions. Nat. Genet. 42, 234–239.
https://doi.org/10.1038/ng.536.

68. Grove, J., Ripke, S., Als, T.D., Mattheisen, M.,
Walters, R.K., Won, H., Pallesen, J., Agerbo,
iScience 26, 107958, October 20, 2023 11

https://doi.org/10.1016/j.neuron.2020.01.042
https://doi.org/10.1016/j.neuron.2020.01.042
https://doi.org/10.1093/brain/awac167
https://doi.org/10.1093/brain/awac167
https://doi.org/10.1038/s41467-019-14198-8
https://doi.org/10.1038/s41467-019-14198-8
https://doi.org/10.3389/fnagi.2019.00059
https://doi.org/10.3389/fnagi.2019.00059
https://doi.org/10.1038/s41593-020-0624-8
https://doi.org/10.1038/ng.3406
https://doi.org/10.1038/ng.3406
https://doi.org/10.1007/BF01064929
https://doi.org/10.1007/BF01064929
https://doi.org/10.1016/j.neurobiolaging.2021.09.009
https://doi.org/10.1016/j.neurobiolaging.2021.09.009
https://doi.org/10.1038/s41380-018-0112-7
https://doi.org/10.18632/oncotarget.15296
https://doi.org/10.18632/oncotarget.15296
https://doi.org/10.3389/fimmu.2022.1037318
https://doi.org/10.3389/fimmu.2022.1037318
https://doi.org/10.1038/s41598-021-99352-3
https://doi.org/10.1038/s41598-021-99352-3
https://doi.org/10.1038/tp.2016.83
https://doi.org/10.1016/j.arr.2022.101723
https://doi.org/10.1016/j.arr.2022.101723
https://doi.org/10.1038/srep04186
https://doi.org/10.1038/srep04186
https://doi.org/10.1007/s00401-010-0715-9
https://doi.org/10.1016/j.molmed.2007.11.005
https://doi.org/10.1016/j.molmed.2007.11.005
https://doi.org/10.1093/hmg/ddt043
https://doi.org/10.1093/hmg/ddt043
https://doi.org/10.1002/ajmg.b.30509
https://doi.org/10.1126/science.aaa0355
https://doi.org/10.1126/science.aaa0355
https://doi.org/10.1016/s0896-6273(01)00476-7
https://doi.org/10.1016/s0896-6273(01)00476-7
https://doi.org/10.1186/s40478-022-01485-7
https://doi.org/10.1186/s40478-022-01485-7
https://doi.org/10.3390/ijms22020698
https://doi.org/10.3390/ijms22020698
https://doi.org/10.1093/nar/gkq267
https://doi.org/10.1093/nar/gkq267
https://doi.org/10.1038/s41598-020-68696-7
https://doi.org/10.1038/s41598-020-68696-7
https://doi.org/10.1038/s41586-022-04434-5
https://doi.org/10.1038/s41586-022-04434-5
https://doi.org/10.1038/s41588-021-00857-4
https://doi.org/10.1038/s41588-021-00857-4
https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/s41588-021-00921-z
https://doi.org/10.1038/s41588-021-00921-z
https://doi.org/10.1038/s41588-022-01285-8
https://doi.org/10.1038/s41588-021-00973-1
https://doi.org/10.1038/s41588-021-00973-1
https://doi.org/10.1038/s41588-021-00954-4
https://doi.org/10.1038/s41588-021-00954-4
https://doi.org/10.1038/ng.536


ll
OPEN ACCESS

iScience
Article
E., Andreassen, O.A., Anney, R., et al. (2019).
Identification of common genetic risk variants
for autism spectrum disorder. Nat. Genet. 51,
431–444. https://doi.org/10.1038/s41588-
019-0344-8.

69. Yu, G., Wang, L.G., Han, Y., and He, Q.Y.
(2012). clusterProfiler: an R package for
comparing biological themes among gene
clusters. OMICS A J. Integr. Biol. 16, 284–287.
https://doi.org/10.1089/omi.2011.0118.

70. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018).
fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, i884–i890.
https://doi.org/10.1093/bioinformatics/
bty560.

71. Dobin, A., Davis, C.A., Schlesinger, F.,
Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T.R. (2013).
STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15–21. https://doi.org/10.
1093/bioinformatics/bts635.

72. van de Geijn, B., McVicker, G., Gilad, Y., and
Pritchard, J.K. (2015). WASP: allele-specific
software for robust molecular quantitative
trait locus discovery. Nat. Methods 12, 1061–
1063. https://doi.org/10.1038/nmeth.3582.

73. Li, Y.I., Knowles, D.A., Humphrey, J., Barbeira,
A.N., Dickinson, S.P., Im, H.K., and Pritchard,
J.K. (2018). Annotation-free quantification of
RNA splicing using LeafCutter. Nat. Genet.
50, 151–158. https://doi.org/10.1038/s41588-
017-0004-9.

74. Ongen, H., Buil, A., Brown, A.A., Dermitzakis,
E.T., and Delaneau, O. (2016). Fast and
efficient QTL mapper for thousands of
molecular phenotypes. Bioinformatics 32,
1479–1485. https://doi.org/10.1093/
bioinformatics/btv722.

75. Quinlan, A.R., and Hall, I.M. (2010). BEDTools:
a flexible suite of utilities for comparing
genomic features. Bioinformatics 26,
841–842. https://doi.org/10.1093/
bioinformatics/btq033.

76. Purcell, S., Neale, B., Todd-Brown, K.,
Thomas, L., Ferreira, M.A.R., Bender, D.,
Maller, J., Sklar, P., de Bakker, P.I.W., Daly,
M.J., and Sham, P.C. (2007). PLINK: a tool set
for whole-genome association and
population-based linkage analyses. Am. J.
Hum. Genet. 81, 559–575. https://doi.org/10.
1086/519795.

77. Zhang, B., and Horvath, S. (2005). A general
framework for weighted gene co-expression
network analysis. Stat. Appl. Genet. Mol. Biol.
4, Article17. https://doi.org/10.2202/1544-
6115.1128.

78. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung,
W., Penninx, B.W.J.H., Jansen, R., de Geus,
E.J.C., Boomsma, D.I., Wright, F.A., et al.
(2016). Integrative approaches for large-scale
transcriptome-wide association studies. Nat.
12 iScience 26, 107958, October 20, 2023
Genet. 48, 245–252. https://doi.org/10.1038/
ng.3506.

79. Skene, N.G., and Grant, S.G.N. (2016).
Identification of Vulnerable Cell Types in
Major Brain Disorders Using Single Cell
Transcriptomes and Expression Weighted
Cell Type Enrichment. Front. Neurosci. 10, 16.
https://doi.org/10.3389/fnins.2016.00016.

80. Cingolani, P., Platts, A., Wang, L.L., Coon, M.,
Nguyen, T., Wang, L., Land, S.J., Lu, X., and
Ruden, D.M. (2012). A program for annotating
and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in
the genome of Drosophila melanogaster
strain w1118; iso-2; iso-3. Fly 6, 80–92. https://
doi.org/10.4161/fly.19695.

81. Yang, J., Lee, S.H., Goddard, M.E., and
Visscher, P.M. (2011). GCTA: a tool for
genome-wide complex trait analysis. Am. J.
Hum. Genet. 88, 76–82. https://doi.org/10.
1016/j.ajhg.2010.11.011.

82. 1000 Genomes Project Consortium,
Abecasis, G.R., Auton, A., Brooks, L.D.,
DePristo,M.A., Durbin, R.M., Handsaker, R.E.,
Kang, H.M., Marth, G.T., and McVean, G.A.
(2012). An integrated map of genetic
variation from 1,092 human genomes. Nature
491, 56–65. https://doi.org/10.1038/
nature11632.

83. McLaren, W., Pritchard, B., Rios, D., Chen, Y.,
Flicek, P., and Cunningham, F. (2010).
Deriving the consequences of genomic
variants with the Ensembl API and SNP Effect
Predictor. Bioinformatics 26, 2069–2070.
https://doi.org/10.1093/bioinformatics/
btq330.

84. ENCODE Project Consortium (2012). An
integrated encyclopedia of DNA elements in
the human genome. Nature 489, 57–74.
https://doi.org/10.1038/nature11247.

85. Mei, S., Qin, Q., Wu, Q., Sun, H., Zheng, R.,
Zang, C., Zhu, M., Wu, J., Shi, X., Taing, L.,
et al. (2017). Cistrome Data Browser: a data
portal for ChIP-Seq and chromatin
accessibility data in human and mouse.
Nucleic Acids Res. 45. D658-d662. https://
doi.org/10.1093/nar/gkw983.

86. Boyle, A.P., Hong, E.L., Hariharan, M., Cheng,
Y., Schaub, M.A., Kasowski, M., Karczewski,
K.J., Park, J., Hitz, B.C., Weng, S., et al. (2012).
Annotation of functional variation in personal
genomes using RegulomeDB. Genome Res.
22, 1790–1797. https://doi.org/10.1101/gr.
137323.112.

87. Yang, Y.C.T., Di, C., Hu, B., Zhou, M., Liu, Y.,
Song, N., Li, Y., Umetsu, J., and Lu, Z.J. (2015).
CLIPdb: a CLIP-seq database for protein-
RNA interactions. BMC Genom. 16, 51.
https://doi.org/10.1186/s12864-015-1273-2.

88. Kuhn, R.M., Haussler, D., and Kent, W.J.
(2013). The UCSC genome browser and
associated tools. Brief. Bioinform. 14,
144–161. https://doi.org/10.1093/bib/
bbs038.

89. Welter, D., MacArthur, J., Morales, J.,
Burdett, T., Hall, P., Junkins, H., Klemm, A.,
Flicek, P., Manolio, T., Hindorff, L., and
Parkinson, H. (2014). The NHGRI GWAS
Catalog, a curated resource of SNP-trait
associations. Nucleic Acids Res. 42, D1001–
D1006. https://doi.org/10.1093/nar/gkt1229.

90. Finucane, H.K., Bulik-Sullivan, B., Gusev, A.,
Trynka, G., Reshef, Y., Loh, P.R., Anttila, V., Xu,
H., Zang, C., Farh, K., et al. (2015). Partitioning
heritability by functional annotation using
genome-wide association summary statistics.
Nat. Genet. 47, 1228–1235. https://doi.org/
10.1038/ng.3404.

91. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K.,
Ripke, S., Yang, J., Schizophrenia Working
Group of the Psychiatric Genomics
Consortium, Patterson, N., Daly, M.J., Price,
A.L., and Neale, B.M. (2015). LD Score
regression distinguishes confounding from
polygenicity in genome-wide association
studies. Nat. Genet. 47, 291–295. https://doi.
org/10.1038/ng.3211.

92. International HapMap Consortium (2003).
The International HapMap Project. Nature
426, 789–796. https://doi.org/10.1038/
nature02168.

93. 1000 Genomes Project Consortium, Auton,
A., Brooks, L.D., Durbin, R.M., Garrison, E.P.,
Kang, H.M., Korbel, J.O., Marchini, J.L.,
McCarthy, S., McVean, G.A., and Abecasis,
G.R. (2015). A global reference for human
genetic variation. Nature 526, 68–74. https://
doi.org/10.1038/nature15393.

94. Zeisel, A., Muñoz-Manchado, A.B.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GWAS of SCZ Trubetskoy et al. 60 https://pgc.unc.edu/for-researchers/

download-results/

GWAS of BP Mullins et al.61 https://pgc.unc.edu/for-researchers/

download-results/

GWAS of DEP Howard et al.62 https://pgc.unc.edu/for-researchers/

download-results/

GWAS of ALZ Douglas et al.63 https://pgc.unc.edu/for-researchers/

download-results/

GWAS of ADHD Demontis et al. 64 https://pgc.unc.edu/for-researchers/

download-results/

GWAS of ALS Wouter et al.65 https://www.ebi.ac.uk/gwas/efotraits/

MONDO_0004976

GWAS of PD Jiang L et al.66 https://www.ebi.ac.uk/gwas/efotraits/

MONDO_0005180

GWAS of MS Jiang L et al.66 https://www.ebi.ac.uk/gwas/efotraits/

MONDO_0005301

GWAS of FTD Deerlin et al.67 https://gwas.mrcieu.ac.uk/datasets/ieu-b-43/

GWAS of Stroke Jiang L et al.66 https://www.ebi.ac.uk/gwas/efotraits/

EFO_0000712

GWAS of Autism Jakob et al.68 https://pgc.unc.edu/for-researchers/

download-results/

GWAS of Epilepsy Jiang L et al.66 https://www.ebi.ac.uk/gwas/efotraits/

EFO_0000474

Software and algorithms

R softwares R project https://www.r-project.org/

clusterProfiler R package Yu et al.69 https://mrcieu.github.io/TwoSampleMR

fastp Chen et al.70 https://github.com/OpenGene/fastp

STAR Dobin et al.71 https://github.com/alexdobin/STAR

WASP van de Geijn et al.72 https://github.com/bmvdgeijn/WASP

LeafCutter Li et al.73 https://github.com/davidaknowles/leafcutter

FastQTL Halit et al.74 https://github.com/francois-a/fastqtl

BEDtools Quinlan et al.75 https://github.com/arq5x/bedtools2

PLINK1.9 Purcell et al.76 https://www.cog-genomics.org/plink/1.9/

LDSC Bulik et al.40 https://github.com/bulik/ldsc

WGCNA R package Peter et al.77 http://www.genetics.ucla.edu/labs/horvath/

CoexpressionNetwork/Rpackages/WGCNA

FUSION Gusev et al.78 https://github.com/gusevlab/fusion_twas

EWCE Nathan et al.79 https://github.com/NathanSkene/EWCE

SnpEff Pablo et al.80 https://pcingola.github.io/SnpEff/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact: Prof, Junfeng Xia

(jfxia@ahu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper does not report original code.
� Data reported in this paper will be shared by the lead contact upon request. Any additional information required to reanalyze the data

reported in this paper is available from the corresponding author upon reasonable request.

METHOD DETAILS

RNA-seq data of the HIPPO tissue

The RNA-seq FASTQ files for the HIPPO region of human brain were downloaded from BrainSeq225 database (http://eqtl.brainseq.org/

phase2/) via Globus file transfer tool. Participants with no prior history of neurological and/or neuropsychiatric conditions were included in

the study, and the final number of individuals included in this study was N = 264 (The detailed ancestry distribution is shown in Figure S1).

Briefly, total RNAwas extracted by using RNeasy Lipid TissueMini Kit (QIAGEN)]. Paired-end sequencing libraries preparationwas performed

using the TruSeq Stranded Total RNA Library kit (Illumina), after which the libraries were sequenced using Illumina HiSeq 3000 platform. The

procedures for sample preparation, RNA sequencing, quality check and data processing have been described in detail in the original study.25

Downloaded FASTQ files for mapped reads from each individual were pre-processed for quality control with fastp70 and then converted into

BAM files by using STAR.71

SNP genotyping data

Additional quality-controlledDNAgenotyping data for the sameHIPPO individuals (N= 264) were also obtained from the BrainSeq2 resource

dataset. The genotyping of DNA samples was performed on the Illumina platform (build hg19/GRCh37). The human postmortem brain tissue

was obtained by autopsy primarily from the Offices of the Chief Medical Examiner of the District of Columbia, and the National Institute of

Child Health and Human Development Brain and Tissue Bank for Developmental Disorders. After imputation and quality control (SNPs with

MAF >5% and Hardy–Weinberg p > 1 3 10�6) steps, totaling 7,023,860 high-quality variants remained in this dataset. More detailed infor-

mation about quality assessment, genotyping analysis, and SNPs identification can be found in the originally literature.25 Of these remaining

SNPs, we extracted all SNPs that are within G100 kb of the identified AS events and used them for cis-sQTL mapping.

Detection and quantification of AS events

To comprehensively perform splicing analyses of RNA-seq data from HIPPO tissue, we used the LeafCutter algorithm73 to calculate

intron excision ratios, which represents the proportion of usage of an intron relative to other introns in the same cluster. The ‘percent-

age spliced-in’ value (PSI) was calculated as a quantification of the intron excision. Before running LeafCutter, the alignment and quan-

tification of RNA-seq reads (i.e., converted BAM files) were processed using STAR71 and reads exhibiting potential mapping bias were

removed with WASP.72 We then ran LeafCutter with default parameter settings to perform intron clustering, which allows maximum in-

trons with length up to 500 kb. By using prepare_genetype_table.py script in LeafCutter, intron excision ratios were calculated and in-

trons used in less than 40% of individuals or with almost no variation were filtered out. After normalization and quantile standardization

of intron excision rates, the final splicing expression matrix (i.e., PSI matrix) was obtained, which could be used as the standard input

data for FastQTL.74

Splicing QTL mapping

To explore significant associations between SNP dosages and PSI of AS, we performed cis-sQTL mapping (within 100 kb of intron clusters)

using linear regression implemented in the FastQTL software.74 Considering the influence of genetic, biological, and technical factors, we

conducted covariance correction analysis to control potential confounding variables. For the selection of covariates, we first employed the

first five principal components derived using GCTA81 of the genotype matrix to account for the influence of genetic ancestry, as well as the

first 10 principal components of the PSI phenotype matrix to regress out the effect of known/hidden factors. The principal components

analysis was then conducted to regress out the technical and biological covariates such as age, sex and RNA integrity number (RIN).

Furthermore, we ran the permute comparison model in FastQTL and set 1,000–100,000 adaptive permutes to calculate the p-value (i.e.,

permutation p-value) for each significant sQTL SNP. The calculated Beta-approximated empirical p-values were corrected using the

Benjamini-Hochberg correction to account for the multiple tests, and we detected all significant sQTLs (FDR <0.05) corresponding to

AS events.
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sQTL and non-sQTL datasets generating

To further characterize the sQTL SNPs, we generated two sets of sQTL and non-sQTL SNPs for comparative analysis by screening Benjamini-

Hochberg corrected p-values and pruning SNPs. Specifically, we first selected the most significant SNP (i.e., the most representative sQTL

SNP for each AS event) among the sQTL SNPs after correcting the p values. And the SNPs screened above with linkage disequilibrium

(LD) were pruned using PLINK software (version 1.9)76 with the parameters ‘‘–indep-pairwise 50 5 0.5’’, which represent window size, shift

step and r2 threshold, respectively. The haplotype of 1000 Genome Project Phase 3 (EUR)82 were used as the reference genotypes for LD-

based pruning in PLINK. For the dataset of sQTL SNPs, we extracted a total of 6,966 SNPs that contributed to AS regulation independently

of each other after screening themost significant SNPs among the sQTL SNPswith correctedp value <0.05 and LDpruning. For the controlled

dataset of non-sQTL SNPs, we obtained a total of 124,801 SNPs that did not contribute to AS regulation and independent of one another

through screening the most significant SNPs among the sQTL SNPs with uncorrected p value >0.05, and LD pruning with the same setting.

Overall, we generated 6,966 sQTL SNPs and 124,801 non-sQTL SNPs strongly independent of each other for downstream analysis, including

functional annotation and functional enrichment analysis.
Functional annotation of sQTL and non-sQTL SNPs

For sQTL and non-sQTL SNPs, we functionally annotated these SNPs using SnpEff v5.1.80 Information on SnpEff annotations was gathered

using MyVariant.info (http://myvariant.info/) and VeP (Variant Effect Predictor).83 Based on the annotation information, the variants (including

sQTL and non-sQTL SNPs) were classified into 9 categories, and overlapping functional categories were prioritized as: synonymous >5’ UTR

>3’ UTR > intergenic > intron > splice region (defined as the variant within 1–3 bases of exon and 3–8 bases of intron from the nearest intron–

exon boundary) > non-coding exon > splice acceptor > splice donor. Based on the different functional classifications of sQTL SNPs, we then

performed enrichment analysis for each functional class of sQTL SNPs using Fisher’s exact test for 2 3 2 table (i.e., the rows listed as SNPs

"belonged" and "not belonged" to the specific classification, and columns listed as sQTL SNPs and non-sQTL SNPs).
Functional enrichment of sQTL SNPs among genetic regulatory elements and splicing factor binding sites

To investigate the functional enrichment of sQTL SNPs in various regulatory elements in HIPPO tissue, we downloaded the histones anno-

tation information with BED format (including monomethylated histone H3 lysine 4 (H3K4me1), trimethylated histone H3 lysine 4

(H3K4me3), acetylated histone H3 lysine 9 (H3K9ac), acetylated histone H3 lysine 27 (H3K27ac) and DNase I hypersensitive sites (DHS))

from the Encyclopedia of DNA Elements project (ENCODE portal84) and CistromeDB85 database. BEDTools75 was used to analyze whether

SNPs are included in these regulatory elements. In addition to the histones, transcription factor (TF) is another important transcriptional regu-

lator involved in transcriptional regulation. To determine the effect of SNPs on gene transcriptional regulation by TF, we scored these variants

using RegulomeDB86 v2.0 (http://www.regulomedb.org), which allowed us to focus on non-coding variants that may directly affect TF binding

(i.e., categories 1 and 2 defined by RegulomeDB).

Considering that AS events are largely regulated by RNA binding proteins (RBP), we also downloaded publicly available human RBP bind-

ing sites data (bed format files and built hg38) from CLIPdb database.87 We utilized liftOver88 to convert the coordinates of sQTL SNPs from

hg19 to hg38 and used BEDTools to assess the enrichment of sQTL SNPs on RBP binding site. Ultimately, the enrichment analyses of sQTL

SNPs among genetic regulatory elements and RBP binding sites were conducted by Fisher’s exact test with 23 2 table (i.e., the rows listed as

SNPs within and not within the regulatory element and RBP binding sites, and columns listed as sQTL SNPs and non-sQTL SNPs).
Functional enrichment of sQTLs among brain disease-associated loci

SNPs in high LDwith the sQTL SNPs (r2 > 0.8) were calculated with PLINK software using the 1000 Genomes Project reference data.We down-

loaded GWAS variants information from the GWAS Catalog v.1.0.289 (only SNPs with P values < 1 3 10-5 were included in this list) and then

used these GWAS variants information to annotate high LD SNPs. BEDTools was used to determine whether the SNPs obtained above falls

within disease-associated loci. Moreover, we performed functional enrichment analysis of sQTLs among brain disease-associated loci by

Fisher’s exact test with 2 3 2 table (i.e., the rows listed as SNPs within and not within the brain disease-associated loci, and columns listed

as sQTL SNPs and non-sQTL SNPs). We conducted enrichment analyses for the following 12 brain disorders: Alzheimer, amyotrophic lateral

sclerosis, Parkinson, frontotemporal dementia, epilepsy, autism, schizophrenia, bipolar disorder, depression, attention deficit hyperactivity

disorder, multiple sclerosis, and stroke.
DLPFC and HIPPO tissue comparison

To compare effect sizes consistently between DPPFC and HIPPO brain regions, we also obtained RNA-seq data in the BrainSeq2 for DLPFC

with the same samples as HIPPO, and the related data processing can be found in the original publication.25 The RNA-seq data processing

procedure (including quality control, PSI calculating and sQTL detecting) of DLPFC is the same as that of HIPPO. For SNPs corresponding to

multiple splicing events at a single mutation site, we selected the SNP with the smallest P value. Eventually, we identified 8,423 sQTL SNPs in

DLPFC for subsequent comparative analysis, including partitioned heritability.
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LD Score software v1.0.190,91 was used to calculate partitioned heritability to identify enrichment of GWAS summary statistics in DLPFC and

HIPPO brain regions. The sQTL annotations from both brain regions were created by using a window size of 500 bp (G250 bp) around each

sQTL SNPs, resulting in 11,157 HIPPO sQTL annotations (Table S1) and 13,383 DLPFC sQTL annotations (Table S2). The annotation files were

created by tagging all HapMap392 SNPs that fell within the sQTL annotations. By using 1000 Genomes Phase 3 (EUR)93 as LD reference panel,

we calculated LD-scores with an LD window of 1 cM. The enrichment of each annotation was calculated by dividing the proportion of heri-

tability explained by each annotation by the proportion of SNPs in the genome that fell into that annotation category. The sQTLs in DLPFC

and HIPPO tissue were examined separately for enrichment in genetic variants associated with 12 brain disorders mentioned in Section func-

tional enrichment of sQTLs among brain disease-associated loci.
Expression-weighted cell type enrichment analysis (EWCE)

To explore sQTLs-relevant cell types, we employed R package to perform cell type enrichment analysis for sQTL SNPs sets. We downloaded

single-cell RNA-seq gene expression data of mouse somatosensory cortex and hippocampal CA1 region from Zeisel et al.,94 including 9 cell

types and 47 cell subclasses. The EWCER-package79 was used to investigate cell-type expression specificity of identified sQTL-related genes,

and analysis results were considered to be significant at P < 0.05. Further details on the principles, model algorithm implementation of the

EWCE analysis can be found in the publication.79
Weighted gene co-expression network analysis (WGCNA)

We mapped intron clusters (obtained from the LeafCutter) to sGenes based on the hg19 reference genome annotation downloaded from

GENCODE.95 The individual genes corresponding to multiple probe sets were merged, resulting in a final splicing matrix of 15,277 genes.

Network analysis was performed by a robust consensus WGCNA (rWGCNA)77 to cluster sGenes into specific modules based on biased in-

termediate correlations among gene expression patterns. A soft-threshold power of 5 was chosen to achieve approximate scale-free topol-

ogy of the network (r2 > 0.9), and each co-expression network used the same estimated power parameter. Gene modules were defined by

using the topological overlap dendrogram with specific module cutting parameters (deepSplit = 2, minimum module size = 30, merge

threshold = 0.25), and sex and age were selected as phenotypes. For each module of genes, we performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using the clusterProfiler R package.69 The calculated P values

were corrected with Benjamini-Hochberg correction and top two significant terms are reported.
TWAS analysis

We performed TWAS analysis using the FUSION package (http://gusevlab.org/projects/fusion/) by integrating GWAS summary statistics of

Alzheimers disease63 and PSI in HIPPObrain tissue. The SNP-based predictive weights of each intron in HIPPOwere calculated by the compu-

tational weight pipeline described in FUSION, which represents the correlation between SNPs and AS regulation in the reference panel.

Furthermore, TWAS was performed using the FUSION software78 with several regularized linear models (including Elastic Net, LASSO,

and BLUP) to evaluate the imputation of the expressions.More details of the TWAS analysis can be found in our previous study.96 The absolute

value of the Z-score calculated by TWAS reflects the strength of the association between the intron usage (i.e., AS events) of interest and the

disease. Themultiple correction was applied to the TWAS analysis results, and the significance level was set at 1.133 10�5 (Bonferroni correc-

tion 0.05/4,420).
Multiple comparison

To avoid the false positive and false negative results, the Bonferroni correction and Benjamini-Hochberg correction for multiple testing were

applied to the analysis results in our study. For all enrichment analysis and TWAS analysis, the P-value adjustments were performed using

Bonferroni correction method. For sQTL mapping, EWCE and WGCNA analysis, the P-value was further corrected with Benjamini-

Hochberg method.
QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analyses were performed as described in the method details section of the STAR methods.
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