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Abstract: Phenolic compounds are a widespread group of secondary metabolites found in all plants,
representing the most desirable antioxidants due to their potential to be used as additives in the food
industry (inhibition of lipid oxidation), and in cosmetology and medicine (protection against oxidative
stress). In recent years, demand for the identification of edible sources rich in phenolic antioxidants,
as well as the development of new natural plant products to be used as dietary supplements or
pharmaceuticals, has been a great preoccupation. At present, from the “circular economy” perspective,
there is an increased interest to use agricultural waste resources to produce high-value compounds.
Vaccinium leaves and stems are considered essentially an agro-waste of the berry industry. Scientific
studies have shown that phenolic compounds were found in a markedly higher content in the
leaves and stems of Vaccinium plants than in the fruits, in agreement with the strongest biological
and antioxidant activities displayed by these aerial parts compared to fruits. This paper aims to
review the current state of the art regarding the phenolic antioxidants from leaves and stems of two
wild Vaccinium species, bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.), as
promising natural resources with pharmaceutical and biological activity.

Keywords: polyphenols; antioxidants; Vaccinium; leaves; stems; natural resources;
pharmaceutical products

1. Introduction

The interest in phenolic compounds has grown over recent years, particularly because they are
excellent antioxidants. Consumption of antioxidants has shown its efficiency in the prevention of
cancer, cardiovascular diseases, osteoporosis, obesity, diabetes, and skin aging [1]. The antioxidant
properties of plant phenolic compounds are relevant in the field of food (inhibition of lipid oxidation),
physiology (protection against oxidative stress), and cosmetology. They reflect the UV filter and
reducing properties of these compounds and their ability to interact with metal ions and proteins [2].
In particular, phenolic compounds provide antioxidant activity by directly reducing reactive oxygen
species (ROS), inhibiting enzymes involved in oxidative stress, binding metal ions responsible for the
production of ROS, and stimulating endogenous antioxidant defense systems [3].
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The quality and quantity of phenolic compounds in plants are generally influenced by the stage of
growth, the parts of the plant to be used, the environmental growing conditions (temperature, sunlight,
soil nutrients, the latitude and altitude of the location where the plants are growing, geographical
locations) and genetic factors [4–8]. As described by Jovančević et al. [9], the total phenolic content
of bilberry harvested from localities exposed to the sun was higher compared with plants grown
in shadow. In the same study, it was shown that at an altitude higher than 1500 m, the amount of
total phenolics is higher. Scientific studies have shown that Vaccinium species are excellent sources
of phenolic compounds that are recognized for their bioactive value. Bilberry (Vaccinium myrtillus
L.) and lingonberry (Vaccinium vitis-idaea L.) are the most significant wild species of the Vaccinium
genus whose aerial parts (leaves and stems) are known as natural sources of food, beverages, dietary
supplements, and pharmaceutical products due to their richness in nutritional and bioactive phenolic
compounds [10–14]. In addition, Vaccinium berries are now the main plant parts used commercially,
whereas their leaves and stems are considered essentially a waste byproduct of the berry industry [11].
At the same time, comparative studies on the phenolic composition of bilberry and lingonberry showed
that phenolic compounds were found in a markedly higher content in the leaves and stems than in the
fruits, in agreement with the strongest antioxidant capacity displayed by leaves and stems compared
to fruits [10,15]. Furthermore, leaf and stem extracts of bilberry and lingonberry were found to protect
dietary lipids from oxidation in an in vitro model of gastric digestion [16]. Increased attention for
these raw materials is associated with their phenolic composition, antioxidant activity, and potential
health-related benefits. The high phenolic content found in leaves and stems of Vaccinium plants is
thought to be linked to their biological functions.

This review reports a comprehensive study, leading to the pharmaceutical and biological activities
of phenolic secondary metabolites isolated from the leaves and stems of Vaccinium plants, with focus
on the wild species bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.).

2. Phenolic Composition of Aerial Parts of Vaccinium myrtillus L. and Vaccinium vitis-idaea L.

The main classes of phenolic compounds present in the leaves and stems of Vaccinium myrtillus L.
and Vaccinium vitis-idaea L. are phenolic acids (mainly chlorogenic acid), flavonoids, flavonol glycosides,
and (epi)catechin monomers and oligomers [6,10,12,14,15,17,18], all known to be powerful antioxidants
that act by directly trapping ROS, chelating transition metal ions, and inhibiting enzymes involved in
the oxidative stress [19,20]. The recent studies conducted by Bujor et al. [10,15] showed that phenolic
compounds were found in significantly higher contents in the leaves and stems than in the fruits. In
Vaccinium myrtillus L. leaves, caffeic acid derivatives were the most representative group of phenolic
compounds, with levels ranging between 67 and 79% of the dry extract (DE) weight, whereas in their
stems, flavanol oligomers were the major group, representing between 54 and 62% of the total phenolic
content [10]. As far as Vaccinium vitis-idaea L. is concerned, in leaves like in stems, flavanol oligomers
were found to be the most abundant class of phenolic compounds, with relative levels ranging from 36
to 48% and 47 to 50%, respectively.

A summary of the studies of literature regarding the various phenolic compounds identified in
Vaccinium myrtillus L. and Vaccinium vitis-idaea L. aerial parts is shown in Table 1.
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Table 1. Phenolic compounds identified in aerial parts of Vaccinium plants.

Class Phenolic Compounds V. myrtillus V. vitis-idaea
References

Leaves Stems Leaves Stems

Catechins

(+)-catechin x x x x [10,12,14,15,
18,21,22]

(−)-epicatechin x x x x [10,12,14,15,
18,21]

gallocatechin x x - x [10,14,15]
epigallocatechin x x - x

Cinchonains
cinchonain I x x x x [10,12,14]
cinchonain II x x x x

Proanthocyanidins

B-type dimer x x x x [10,12,14,15,
18,21]B-type trimer x x x x

B-type tetramer x x x x [12]
B-type pentamer x x - -

A- type dimer x x x x [8,10,12,14,15,
18,21]

A-type trimer x x x x
[10,12,14,15,

18,21]procyanidin A2 x x x x

procyanidin B1 x x x x

procyanidin B2 x x x x

Arbutin
derivatives

arbutin - - x x [12,15,18]

caffeoyl acetyl arbutin - - x - [12,18]

caffeoyl arbutin - - x - [12,14,15,18]

acetyl arbutin - - x x [12,15,18]

Phenolic acids

3,4-dihydroxybenzoic acid x x x x

[10,12,14,15,
18]

p-coumaroyl quinic acid isomers x x x x

p-coumaroyl malonic acid
p-coumaroyl derivatives x x x x

p-coumaroyl glucose x x x x

coumaroyl iridoid x x - -

p-coumaric acid x - x -

[14]feruloyl quinic acid isomer x - x -

caffeoyl quinic acid isomers x - x -

caffeic acid ethyl ester x - x -

caffeic acid hexoside x - x -

Flavonols

quercetin-3-O-(4”-HMG)-α-rhamnoside x x x x

[10,12,14,15,
18,21]

quercetin-3-O-galactoside x x x x

quercetin-3-O-glucoside x x x x

quercetin-3-O-glucuronide x x x x

quercetin-3-O-arabinoside x x x x

quercetin-3-O-α-rhamnoside x x x x

quercetin-3-O-rutinoside x x x x

quercetin - - x x [14,15]

kaempferol x - x - [14]

kaempferol-hexoside x - x -
[14,21]

kaempferol-(HMG)-rhamnoside x - x -

kaempferol-O-pentoside x - x -

kaempferol-3-glucuronide x - - - [18]

Lignans Lyoniside
(9-O-β-D-xylopyranosyl(+)lyoniresinol) - x - - [23]

x, present; -, not present.
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3. Extraction and Separation of Vaccinium Phenolic Compounds

Due to the structural diversity and complexity of the phenolic compound, extraction is the first
and the most important step in the separation of these compounds. The most common liquid/liquid
and solid/liquid extractions are frequently employed to separate phenolic compounds. The phenolic
nature of polyphenols makes them relatively hydrophilic, thus free phenolic compounds, including
aglycones, glycosides, and oligomers, are extracted using water, polar organic solvents such as ethyl
acetate, methanol, ethanol, acetonitrile, acetone, and their mixture with water or non-polar solvents
(chloroform, diethyl ether) [24].

At present, regarding the overall environmental impact of industrial extraction, the concept of green
extraction has been introduced to protect both the environment and consumers, and, in the meantime,
to enhance the competition of industries to be more ecological (the use of co-products, biodegradability),
economical (less energy and solvent consumption), and innovative [25]. In agreement with this green
extraction approach, unconventional extraction methods such as microwave, ultrasound-assisted
extractions, and techniques based on the use of compressed fluids as extracting agents, such as
subcritical water extraction (SWE), supercritical fluid extraction (SFE), pressurized fluid extraction
(PFE), or accelerated solvent extraction (ASE), are applied to actually separate phenolic compounds [1,
26–32]. Generally, the most common extraction methods for Vaccinium phenolic compounds use
methanol [9,14,21,33] or acetone [13,18,34–36] as extraction agents of bilberry/lingonberry phenolic
compounds, but in terms of the utilization for the food and cosmetic industries, ethanol and water are
preferred [12,24,32,37,38].

For the quantification and characterization of phenolic compounds from plant extracts, different
spectrophotometric and chromatographic methods have been developed. As a spectrophotometric
method, Folin–Ciocalteu assay is widely used for determining total phenolics content, vanillin and
proanthocyanidin assays have been used to estimate total proanthocyanidins, pH differential methods
are used for the quantification of total anthocyanins, and total flavonoid contents can be determined
using a colorimetric method based on the complexation of phenolic compounds with Al(III) [24]. Among
them, the Folin-Ciocalteu method is the most commonly used. The mentioned spectrophotometric
assays give an estimation of the total phenolic contents, while various chromatographic techniques are
employed for separation, identification, and quantification of individual phenolic compounds [39].

To identify phenolic compounds, the most common technique is high-performance liquid
chromatography (HPLC). The HPLC method is also used for the quantitative analysis of phenolic
metabolites from different plant extracts [40–46]. Identification and analysis of phenolic compounds
are usually achieved by using a combination of UV–visible spectrophotometry (diode array
detector—DAD), mass spectrometry (LC–MS), and nuclear magnetic resonance (NMR) [35,47–49].

4. Potential Pharmaceutical and Biological Activity of Phenolic Vaccinium Leaf and Stem Extracts

Bilberry leaves are used as herbal tea and have also been shown to exhibit antibacterial and
antioxidant activity [50]. Similarly to bilberry, lingonberry has different biological properties such as
antioxidant, antimicrobial, antiadhesive, and anti-inflammatory properties. These benefits are largely
attributed to the high content of phenolic compounds in bilberry and lingonberry, compounds that
are recognized to have multiple biological activities. In many research papers, it was shown that the
antioxidant activity of phenolic compounds is correlated with their health benefits [51–53]. Regarding
this approach of action of polyphenols as antioxidants in humans, Dangles [3] clarified very well that
the cardioprotective effects of phenolic compounds involve their anti-inflammatory rather than their
antioxidant properties. Additionally, the issue of limited bioavailability of phenolic compounds and
their in vivo metabolism must be taken into consideration. At the same time, in the case of complex
mixtures, such as plant extracts, other interfering constituents and non-phenolic antioxidants (vitamins
and transition metals) may also be partly responsible for their activities.
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4.1. Antioxidant Activity of Phenolic Compounds and Vaccinium Extracts

There are three important systems where phenolic compounds can express their antioxidant
activity: in plants, in foods, and in humans. The antioxidant properties of these compounds are of
particular interest for foods through the inhibition of lipid oxidation, while the protection against
oxidative stress is central in plant and human physiology. These properties reflect the reducing
properties of phenolic compounds and their ability to interact with metal ions and proteins [2]. In
particular, phenolic compounds exert their antioxidant activity by direct scavenging of reactive oxygen
species (ROS), inhibition of enzymes involved in oxidative stress, regeneration of other antioxidants
(α-tocopherol), chelation of metal ions that are responsible for ROS production, and, finally, stimulation
of endogenous antioxidant defense systems.

ROS are generated as a result of partial reduction of oxygen, which leads to the formation of radical
oxygen species such as O2� (anion superoxide), HO� (hydroxyl radical), NO� (nitric oxide), as well as
RO� (oxyl) and ROO� (peroxyl) radicals that are generated during lipid peroxidation (specifically
from polyunsaturated fatty acid (PUFA) oxidation) [2,54]. Other reactive species, such as H2O2

(hydrogen peroxide), 1O2 (singlet oxygen), O3 (ozone), ONOO− (peroxynitrite), HOCl (hypochlorous
acid), and HOBr (hypobromous acid), are also ROS that can cause biological damage. Although they
are nonradical oxygen species, they are oxidizing agents and/or are easily converted into radicals [55].

The most popular methods for evaluation of the antioxidant activity of phenolic extracts from
Vaccinium plants are the Folin–Ciocalteu method, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical
scavenging method, oxygen radical absorbance capacity (ORAC), cupric ion reducing antioxidant
capacity (CUPRAC), ferric ion reducing antioxidant power (FRAP), and Trolox equivalent antioxidant
capacity (TEAC) assays [49,50,56–58]. The Folin–Ciocalteu method, which measures the ability of a
sample to reduce transition metal ions, such as in the complex between sodium phosphomolybdate
and phosphotungstate, gives access to the total phenolic content (TPC) in plant extracts using gallic
acid as a standard. Since its mechanism is an oxidation/reduction reaction, the Folin–Ciocalteu
method can be considered also a method for quantification of the antioxidant capacity. As for the
DPPH (2,2-diphenyl-1-picrylhydrazyl) test, it relies on the ability of reducing molecules to transfer
an electron or a hydrogen atom to the nitrogen-centered DPPH radical. In the ORAC assay, the
peroxyl radical reacts with a fluorescent probe to form a nonfluorescent product, which is quantitated
by fluorescence [59,60]. The CUPRAC, FRAP, and TEAC methods are electron transfer -based
assays, which changes color when bis(neocuproine)Cu2+Cl2, Fe3+(2,4,6-tripyridyl-s-triazine)2Cl3,
and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS·+) probes are reduced,
respectively [1].

Regarding the action of leaves and stems of bilberry and lingonberry as natural antioxidant
systems, it has been demonstrated that they are not only rich in phenolic compounds, but also present
a significant antioxidant activity highlighted through their capacity to reduce the DPPH radical and
transition metal ions in the Folin–Ciocalteu test, and to have a protective effect towards polyunsaturated
dietary lipids in the early step of gastric digestion [16]. In the same study, antioxidant activity (DPPH
and Folin–Ciocalteu tests) of leaves and stems of bilberry and lingonberry strongly correlated with the
phenolic content.

The antioxidant potential of bilberry leaves (79.30 and 59.58 mM TE/100 g DM in ABTS and FRAP
tests) is also stronger than that of fruits (35.34 and 26.81 mM TE/100 g DM in ABTS and FRAP tests as
well) [49]. Other researchers investigated the antioxidant activity of water, ethanol, and ethyl acetate
extracts from fruits and leaves of bilberry and found that the water extract from leaves of V. myrtillus L.
has intense antioxidant activity, which is in correlation with the high concentration of total phenols [50].
The antioxidant capacity determined by the ABTS, FRAP, and FIC (ferrous ions chelating) methods
of different cultivars and lower taxa of lingonberry leaves extracts were compared, and showed that
“Kostromskaja rozovaja” and “Rubin” cultivars, as well as V. vitis-idaea var. leucocarpum, possessed the
greatest reducing, radical scavenging, and chelating activities [61].
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4.2. Cardioprotective Activity

Atherosclerosis, a chronic inflammatory disorder associated with oxidative processes, is the major
cause of cardiovascular disease (CVD), including myocardial infarction (MI), heart failure, stroke, and
claudication [62]. Other important risk factors of CVD comprise obesity, diabetes, hypertension, high
levels of lipids, and uric acid [63].

A study on apolipoprotein E-deficient (apo E−/−) mice model of atherosclerosis exhibited that
the dietary supplementation with bilberry anthocyanin-rich extract (Antho 50 from FERLUX S.A,
Cournon d’Auvergne, France) containing 52% of pure anthocyanins for 2 weeks reduced plasmatic total
cholesterol (−20%) and hepatic triglyceride levels (−30% in the liver), whereas the plasma antioxidant
capacity remained unchanged [64]. In a following study, these bilberry extracts showed action on the
modulation of gene expression involved in angiogenesis in the aortas of apo E−/−mice [65].

The potential beneficial effects of bilberry have also been studied on the development of obesity
in mice fed with a high-fat diet (HFD) [66]. Mice fed with 5% or 10% (w/w) of whole bilberries in
HFD for 3 months had lower glucose and blood pressure levels compared to mice fed HFD alone.
Also, the addition of bilberries to HFD was also found to reduce the levels of several parameters of
inflammation. The levels of insulin were not affected by the addition of bilberries to HFD. Regarding
lingonberry, its fruit juice moderately decreased low-grade inflammation caused by a high-salt diet
(a risk for cardiovascular disease) in young rats [67].

Human studies were also reported regarding the cardioprotective activity of bilberry leaves [68].
In a human study of 35 volunteers, Erlund [69] investigated the effects of daily consumption of mixed
bilberries (100 g) and nectar containing 50 g crushed lingonberries on well-established risk factors of
CVD, such as platelet function, HDL cholesterol, and blood pressure for 2 months. Additionally, the
subjects consumed blackcurrant or strawberry puree and cold-pressed chokeberry and raspberry juice
on alternating days during the study. No changes were seen in plasma biomarkers of platelet activation,
coagulation, or fibrinolysis, but the systolic blood pressure was significantly decreased, and the serum
HDL cholesterol concentrations increased. In a recent study, intake of bilberry in conjunction with
wholegrain and fish caused significant changes in lipid metabolites in subjects with risk of coronary
heart [70].

Cardioprotective actions of products (extracts, juice) of other Vaccinium species have been also
reported. For example, in a placebo-controlled, double-blind, parallel-arm, human study of 56 healthy
adults, Novotny et al. [71] demonstrated that low-calorie cranberry juice, rich in phenolic compounds
(173 mg/240 mL juice), lowered factors of cardiovascular disease, including serum triglycerides, serum
C-reactive protein, glucose, insulin resistance, and diastolic blood pressure.

4.3. Anti-Cancer Activity

Several studies have investigated the effect of bilberry and lingonberry products on cancers. Cell
lines, in vitro model systems, and animals or human subjects have been used to test their anti-cancer
activity through its antiproliferative and apoptotic effects.

Procyanidin-rich extract (almost A-type and B-type dimers) from lingonberry [72] and flavonoids
and phenolic acid fractions from bilberry fruits [73] are effective in preventing the proliferation of
human cervical and colon cancer cells in vitro. The aqueous extract of bilberry press residue after juice
production has also shown a stronger inhibitory effect on cell proliferation of three colon cancer cell lines
(Caco-2, HT-29, and HCT 116) [38]. This extract was also found to contain the highest total phenolic
content (1447 mg gallic acid equivalent (GAE)/100 g of press residue) and total monomeric anthocyanins
(458 mg/100 g of press residue), and a correlation has been found between the phenolic concentration
of extract and its antiproliferative effect—but it is possible that other compounds (e.g., vitamins)
not quantified in this study may also contribute to the antiproliferative effect of bilberry extract.
Recently, in a research article published in Scientific Reports, anthocyanin bilberry extract Antho 50
was studied for its apoptotic effect in chronic lymphocytic leukemia cells [74]. This effect was induced
through the generation of ROS and was attributed to activation of caspase 3 and down-regulation of
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UHRF1 and Bcl-2. In one study, other researchers have proven the inhibitory effect of lingonberry
methanolic extract and of its anthocyanin-rich and phenolic-rich fractions against apoptosis induced
by ischemia-reperfusion [75].

Regarding the carcinogenicity of Vaccinium extracts, special attention must be paid to the potential
herb–drug interactions that can occur with these extracts and to their toxicity [76]. Relevant experimental
studies in these fields are lacking. Nevertheless, a case report was published by Aktas et al. (2011) [77]
about the putative risk of bleeding on concomitant intake of bilberry extract and anticoagulants such as
warfarin. Unfortunately, there were not enough data to prove the effect of bilberry on anticoagulants
and antiplatelet agents.

4.4. Antidiabetic Activity

Hypoglycemia and hyperglycemia are the most common symptoms of diabetes. It is well known
that obesity is another important risk factor for the occurrence of type 2 diabetes. Non-alcoholic
steatohepatitis (NASH), which represents the accumulation of lipids in the liver, is the highest prediction
factor for the occurrence of type 2 diabetes. With reference to the symptoms of diabetes, bilberry and
lingonberry products have shown positive effects.

In a human study, dietary supplementation of 31 slightly overweight women with a mixture of
lingonberry and bilberry berry products and other berries (163 g of berries daily) for 20 weeks showed
a decrease by 23% of alanine aminotransferase level, which is known as a common liver disease marker
and an important risk factor of diabetes [78]. No differences were seen in plasma antioxidant capacity
measured as ORAC and inflammation marker hs-CRP.

A study conducted in Japan with type 2 diabetic mice found that dietary anthocyanin-rich bilberry
extract ameliorates hyperglycemia and insulin sensitivity, and that the effects were due to activation
of AMP-activated protein kinase [79]. A standardized bilberry extract Mirtoselect, containing 36%
anthocyanins, attenuated hepatic steatosis induced in mice fed a Western-type diet supplemented
with 1% cholesterol for 20 weeks [80]. The decrease of macro- and microvesicular hepatocellular lipid
accumulation, no increase of hepatic triglyceride levels and reduction of hepatic cholesteryl ester
content, hepatic inflammation, and hepatic fibrosis were observed in Mirtoselect-treated mice. In an
in vivo human study, the incorporation of commercial lingonberry powder in fat-free yogurt meal
supplemented with glucose attenuated the glycemic response of the sugars present in the berries, and
it was indicated that the fibers and/or polyphenols present in lingonberries are responsible for this
effect [81].

4.5. Vision Improvement Properties

For several decades, the consumption of bilberry has been associated with the improvement of
human vision in reduced light. A review of 30 clinical trials regarding the action of anthocyanoside-rich
extracts of Vaccinium myrtillus has been published in order to clarify the positive or negative effects
of bilberry on night vision [82]. The results of the studies discussed in this review are somewhat
contradictory. Of the studies reviewed, from 12 placebo-controlled trials, 4 randomized controlled
trials showed no significant effects on vision in reduced-light conditions. It was suggested that the
negative outcome is confounded by several factors, including dose, possible geographical variations in
anthocyanoside composition, and choice of subject. The fifth randomized controlled trial and seven
non-randomized trials reported positive effects on vision improvement in reduced light.

Nevertheless, according to the most recent research, beneficial effects of bilberry and lingonberry
in vision improvement were evidenced in cell-based in vitro studies. For example, bilberry extract and
lingonberry extract and their phenolic constituents (cyanidin, delphinidin, malvidin, trans-resveratrol,
and procyanidin B2) appear to exert protective effects against retinal damage induced by blue
light-emitting diode (LED) light via inhibition of ROS production and activation of pro-apoptotic
proteins [83]. Another study by Song et al. [84] showed that a bilberry extract containing 25% total
anthocyanins could promote physiological renewal and homeostasis of human corneal limbal epithelial
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cells (HCLEC). In a study of 23 patients with asymptomatic ocular hypertension, 24 weeks of dietary
supplementation with Mirtogenol®, a combination of two phenolic extracts from bilberry (Mirtoselect®)
(standardized to 36% anthocyanins) and French maritime pine bark (Pycnogenol®) (standardized to
70% procyanidins), was reported to lower the intraocular pressure up to 24% and improve the diastolic
ocular blood flow [85].

4.6. Antimicrobial Activity

Several studies demonstrated the antimicrobial activity of Vaccinium myrtillus L. and Vaccinium
vitis idaea L. Antimicrobial effects of bilberry and lingonberry phenolic extracts from fruits and leaves
have been shown especially in the prevention of urinary tract infections [86]. In vitro, lingonberry
fruit extracts containing mainly type-A proanthocyanidins may be bactericidal against Staphylococcus
aureus or inhibit the hemagglutination of Escherichia coli [13]. Similar antimicrobial effect of flavonol
glycosides, anthocyanins, procyanidins, and flavan-3-ols fractions purified from lingonberry juice was
reported against two other pathogens, Streptococcus mutans and Fusobacterium nucleatum [87]. Other
researchers investigated the antibacterial activity of water, ethanol, and ethyl acetate extracts from
fruits and leaves of bilberry on strains of Escherichia coli, Enterococcus faecalis, and Proteus vulgaris, and
found that all extracts were more effective against E. faecalis and P. vulgaris [50].

5. Conclusions

This synthesis provides information on the potential of the use of leaves and stems of Vaccinium
myrtillus L. and Vaccinium vitis-idaea L. as a promising source of phenolic compounds, so they are suitable
for valorization as valuable feedstocks for the production of functional foods or pharmaceuticals with
nutritional properties and biological activity against diet-related oxidative stress. To date, most works
have focused on the study of the berries of Vaccinium species, but on leaves and stems, only sometimes.
However, good knowledge of the phenolic compound distribution in the various Vaccinium plant
tissues can play a key role in guiding their fields of use, and more knowledge is necessary on the
biological activity of leaves and stems. The phenolic qualitative analysis of the leaves and stems of
Vaccinium myrtillus L. and Vaccinium vitis-idaea L. first helped to understanding their high activity as
antioxidant sources. In human health, this knowledge is of further interest, since an extract enriched
in a particular sub-class of phenolic compounds may be selected for a desired biological activity.
Moreover, toxicological studies on Vaccinium plants are limited and is necessary to be assessed in order
to prevent adverse effects and interactions.
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39. Vladimir-Knežević, S.; Blažeković, B.; Štefan, M.B.; Babac, M. Plant polyphenols as antioxidants influencing
the human health. In Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health;
Venketeshwer, R., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 155–180. [CrossRef]

40. Može, Š.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Poklar Ulrih, N.; Abram, V. Phenolics in slovenian
bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59,
6998–7004. [CrossRef]

41. Díaz-García, M.C.; Obón, J.M.; Castellar, M.R.; Collado, J.; Alacid, M. Quantification by UHPLC of total
individual polyphenols in fruit juices. Food Chem. 2013, 138, 938–949. [CrossRef]

42. Juadjur, A.; Mohn, C.; Schantz, M.; Baum, M.; Winterhalter, P.; Richling, E. Fractionation of an anthocyanin-rich
bilberry extract and in vitro antioxidative activity testing. Food Chem. 2015, 167, 418–424. [CrossRef]

43. Mane, C.; Loonis, M.; Juhel, C.; Dufour, C.; Malien-Aubert, C. Food grade lingonberry extract: Polyphenolic
composition and in vivo protective effect against oxidative stress. J. Agric. Food Chem. 2011, 59, 3330–3339.
[CrossRef] [PubMed]

44. Andersen, O.M. Chromatografic separation of anthocyanins in Cowberry (Lingonberry) Vaccinium vites-idaea
L. J. Food Sci. 1985, 50, 1230–1231. [CrossRef]

http://dx.doi.org/10.1016/j.foodchem.2010.12.026
http://www.ncbi.nlm.nih.gov/pubmed/25213963
http://dx.doi.org/10.3390/ijms13078615
http://dx.doi.org/10.3390/molecules21070901
http://dx.doi.org/10.1002/elps.201700431
http://dx.doi.org/10.5740/jaoacint.19-0128
http://dx.doi.org/10.1016/j.ultsonch.2014.07.013
http://dx.doi.org/10.1016/j.trac.2012.12.008
http://dx.doi.org/10.1016/j.foodchem.2010.05.061
http://www.ncbi.nlm.nih.gov/pubmed/19702172
http://dx.doi.org/10.1021/jf020728u
http://www.ncbi.nlm.nih.gov/pubmed/12517117
http://dx.doi.org/10.1021/jf303100q
http://dx.doi.org/10.1016/j.jff.2011.10.007
http://dx.doi.org/10.1016/j.lwt.2013.05.031
http://dx.doi.org/10.5772/27843
http://dx.doi.org/10.1021/jf200765n
http://dx.doi.org/10.1016/j.foodchem.2012.11.061
http://dx.doi.org/10.1016/j.foodchem.2014.07.004
http://dx.doi.org/10.1021/jf103965b
http://www.ncbi.nlm.nih.gov/pubmed/21375302
http://dx.doi.org/10.1111/j.1365-2621.1985.tb10449.x


Antioxidants 2019, 8, 649 11 of 13

45. Müller, D.; Schantz, M.; Richling, E. High performance liquid chromatography analysis of anthocyanins in
bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. J. Food
Sci. 2012, 77, C340–C345.

46. Prencipe, F.P.; Bruni, R.; Guerrini, A.; Rossi, D.; Benvenuti, S.; Pellati, F. Metabolite profiling of polyphenols
in Vaccinium berries and determination of their chemopreventive properties. J. Pharm. Biomed. Anal. 2014,
89, 257–267. [CrossRef] [PubMed]

47. Fulcrand, H.; Mané, C.; Preys, S.; Mazerolles, G.; Bouchut, C.; Mazauric, J.-P.; Souquet, J.-M.; Meudec, E.;
Li, Y.; Cole, R.B.; et al. Direct mass spectrometry approaches to characterize polyphenol composition of
complex samples. Phytochemistry 2008, 69, 3131–3138. [CrossRef] [PubMed]

48. Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [CrossRef]
49. Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected

edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [CrossRef]
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