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A B S T R A C T   

Influential nodes identification technology is one of the important topics which has been widely 
applied to logistics node location, social information dissemination, transportation network 
carrying, biological virus dissemination, power network anti-destruction, etc. At present, a large 
number of influential nodes identification methods have been studied, but the algorithms that are 
simple to execute, have high accuracy and can be better applied to real networks are still the focus 
of research. Therefore, due to the advantages of simple to execute in voting mechanism, a novel 
algorithm based on adaptive adjustment of voting ability (AAVA) to identify the influential nodes 
is presented by considering the local attributes of node and the voting contribution of its neighbor 
nodes, to solve the problem of low accuracy and discrimination of the existing algorithms. This 
proposed algorithm uses the similarity between the voting node and the voted node to dynami-
cally adjust its voting ability without setting any parameters, so that a node can contribute 
different voting abilities to different neighbor nodes. To verify the performance of AAVA algo-
rithm, the running results of 13 algorithms are analyzed and compared on 10 different networks 
with the SIR model as a reference. The experimental results show that the influential nodes 
identified by AAVA have high consistency with SIR model in Top-10 nodes and Kendall corre-
lation, and have better infection effect of the network. Therefore, it is proved that AAV algorithm 
has high accuracy and effectiveness, and can be applied to real complex networks of different 
types and sizes.   

1. Introduction 

The influential nodes identification technology has attracted extensive attention recently. It is critical for the study of functional 
characteristics and practical application of a network [1,2]. The transmission, control, security, invulnerability and aggressiveness of 
the network can be studied by identifying the influential nodes [3–5]. At present, influential nodes identification research has played a 
role that cannot be ignored in the construction of emergency logistics networks, social network communication, transportation 
network bearings, biological virus network prevention and control and power network anti-destruction [6–11]. In logistics network, a 
group of influential communication nodes are selected as the influential nodes of emergency guarantees, which can ensure the fast and 
efficient transportation of emergency materials [12]. In real social networks, selecting influential communication nodes can speed up 
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the dissemination of information, quickly locate the key communicators in social networks, and control the spread of rumors [13,14]. 
In infrastructure carrying networks such as urban transportation networks, railway transport networks, aviation networks and 
communication networks, the network guarantee strategy can be provided for managers by identifying the critical degree of network 
nodes [15,16]. In biological virus prevention and control network, finding the key transmission nodes can effectively prevent and 
control disease transmission at the initial stage and effectively reduce the epidemic transmission capacity [17,18]. In power network, 
finding and protecting the key transmission line nodes in the power network improves the overall robustness and increases the 
invulnerability of the power network [19]. This implies that research on the identification of influential nodes can contribute to 
feasible decisions for the safe and efficient operation of real networks. 

In the theoretical research of complex network influential nodes identification, various methods are proposed and can be mainly 
divided as following.  

(1) Neighbor-based sorting method. The algorithm identifies the influential nodes by evaluating the number of its neighbors. Its 
main algorithms include degree centrality [20], semilocal centrality [21] and so on;  

(2) Path-based sorting method. The algorithm sorts the information flow through the shortest path by examining the control ability 
of the nodes to the information flow in the network. Its main algorithms include proximity centrality [22], betweeness centrality 
[23] and so on;  

(3) Node position-based sorting method. The algorithm measures the overall network structure and judges the criticality of nodes 
according to their positions. Its main algorithms include the K-shell decomposition method [24] and so on;  

(4) Feature vector-based sorting method. The algorithm regards all nodes as equally important and only considers the neighbors 
number and their positions to judge the importance. It measures the number and the influence of the neighbor nodes. Its main 
algorithms include PageRank [25], eigenvector centrality [26], HITS algorithm [27] and so on. 

According to the research on the latest algorithms, a voting method come from the idea of real voting in social network to identify 
the influential nodes [28,29,30,31,32]. Compared with nonvoting algorithm, voting algorithms are easy to perform, and the voting 
results can effectively describe the degree of nodes. In addition, the voting ability of neighbor nodes is reduced after voting to balance 

Fig. 1. Voting process diagram of AAVA algorithm.  
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the distribution of influential nodes and to reduce the overlap of influence areas around influential nodes. Thus, it can effectively 
achieve maximum information dissemination through the selection of several influential nodes. Accordingly, a novel identification 
method based on adaptive adjustment of voting ability (AAVA) is proposed by aiming at the problems of the low discrimination and 
accuracy in the recent algorithms. AAVA algorithm can effectively distinguish the influence of node by measuring the self-influence of 
its local attributes and the voting contribution of neighbor nodes. It uses the similarity between the voting node and the voted node to 
dynamically adjust its voting ability without setting any parameters, so that the node can contribute different voting abilities to its 
neighbor nodes. A toy network is taken as an example, which describes the basic idea and voting process of AAVA algorithm. The 
algorithm is executed in rounds, as shown in Fig. 1. 

As shown in Fig. 1(a), after network initialization, each node calculates the self-influence sav based on its local attribute, and the 
voting score is 0 and obtains (sav, 0). After voting starts, as shown in Fig. 1(b), each node calculates the contribution of voting ability for 
its neighbor nodes. When node 4 receives the voting ability from its neighbors, it also calculates the voting ability for different 
neighbors and votes for them. After the voting is completed, each node calculates its own voting score according to its self-influence 
and the voting ability of all neighbors, then, select the node with the maximum voting score as the influential node, as shown in Fig. 1 
(c), node 4 was successfully selected as the influential node in this round because it has the maximum voting score. After the first round 
of voting, as shown in Fig. 1 (d), the self-influence and voting score of node 4 are both 0, and node 4 will no longer participate in node 
voting. At the same time, the neighbor nodes within two hops of node 4 adjust their voting ability by calculating the adaptive 
adjustment coefficient, and then update the voting score to enter the next round of influential node voting. For the detailed calculation, 
process of the algorithm, see section 3. 

2. Relater works 

In this section, we summarize typical voting algorithms in recent years and analyze their shortcomings. In the recent years, a variety 
of new representative algorithms have appeared based on research on the above-mentioned classical algorithms, for example: the 
algorithms based on the idea of voting method [28,29,33,34], gravity model [30,35], node propagation ability [36,37], information 
entropy [31,38,39] and other method are proposed. In 2016, the VoteRank algorithm [28] is proposed by introducing the voting 
mechanism, and the node calculates the voting score by obtaining the neighbor’s votes and then finally selecting the influential node 
with the maximum score. In VoteRank, the voting ability of node has the same value, which is equal to 1. It’s simple to design and easy 
to implement and takes into account the voting ability of the neighbor nodes. However, it has a low discrimination for nodes, and the 
coefficient of voting ability adjustment is fixed and cannot be adjusted automatically. In 2019, Sun Hong-liang et al. proposed a voting 
method in weighted networks-WVoteRank [33]. It increases the consideration of the neighbor number and link weights for the voting 
score. After voting, the voting ability of neighboring nodes in one hop and two hops of selected node are weakened uniformly. In the 
WVoteRank algorithm, the weakening coefficient is the same in the whole network, which is related to the reciprocal of the average 
degree in network. In 2020, Sanjay Kumar et al. proposed a neighbor core value-based voting algorithm, NCVoteRank [29]. In 2021, 
Liu Peng-feng et al. proposed VoteRank Plus algorithm [34], which considers the different proximities between nodes and the fact that 
nodes may vote differently from their neighbors. When voting is completed, the algorithm weakens the voting ability within two-hop 
neighbors to distribute the influential nodes properly, but it still needs to improve the discrimination of influential nodes. In 2022, 
Ramya D. Shetty proposed global structure influence-GSI algorithm [35], which consider the global and local attributes of nodes by 
using COVID-19 as a case. In 2019, Shuang Xuet al. Proposed SpectralRank (SR)algorithm [36], which measures the nodes’ propa-
gation capability by considering the nature of spread dynamics. In 2020, Guo et al. proposed a votinng method based on Information 
Entropy-EnRenew algorithm [39], which uses the information entropy formula to obtain the voting score, the probability in infor-
mation entropy is calculated by taking the proportion of the degree value of the neighbor nodes. In 2017, Fan Yang et al. proposed an 
ELKSS algorithm, which extends the local K-shell and centrality [32]. This algorithm considers the K-shell values of neighbor nodes and 
extends the local K-shell sum of the neighbor nodes. In 2019, Zhongjing Yu et al. proposed a ProfitLeader (PL) algorithm [40], which 
calculates the profitability of nodes to describe the importance of nodes. In 2020, Zhao Jie et al. measured the global importance (GIN) 
of each node based on a quantitative model [41]. The significance of the node in GIN is calculated by own importance and connected 
node, which takes into account the node degree and distance to neighbor node. 

In summary, the above mentioned voting and non-voting algorithms can effectively identify the influence nodes, based on the 
advantages and disadvantages of the above algorithm, the research motivations of this paper are as follows.  

(1) Explore an algorithm with high accuracy and discrimination of node importance recognition. By using the advantages of simple 
and easy execution of the voting algorithm, the influence of the node itself and the voting contribution of the neighbor nodes are 
considered comprehensively.  

(2) In combination with the fact that nodes in the real complex network have different voting preferences for different neighbor 
nodes, the relationship between nodes is reasonably utilized to achieve different voting abilities when voting for different 
neighbor nodes.  

(3) In order to balance the distribution of influential nodes in the whole network, after the voting, nodes should adjust their voting 
ability according to the situation of the selected influential nodes of their neighbors, and realize the dynamic update of voting 
ability and avoid setting parameters. 

In this paper, we propose a novel voting method AAVA algorithm by combining the above problems and considering the effec-
tiveness and complexity of the algorithm. The specific description is shown in Section III. The main contributions include the following. 
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(1) The proposed AAVA algorithm integrates the self-influence of nodes and the voting contribution of neighbors. When calculating 
the voting score, the voting contribution of neighbors is not only measured, but also the self-influence of node is compre-
hensively evaluated by integrating their local attributes, which can solve the shortcoming of the voting algorithms of coarse- 
graining and improve the accuracy of ranking results.  

(2) The voting contribution of neighbor is determined by its voting ability, which integrates the degree value and the voting 
probability between nodes, through the use of the normalized similarity coefficient to present the voting probability for 
neighbor nodes, which can effectively reflect the different contributions for different neighbor nodes.  

(3) After the voting process, the similarity relationship between selected node and its neighbor nodes within two-hop is used to 
realize the adaptive adjustment of the voting ability of neighbor nodes, without setting or adjusting any parameters, so as to 
increase the applicability of the algorithm in complex networks.  

(4) Through the comparison of experimental results, the AAVA algorithm is superior to several classical routing algorithms and the 
recent new algorithms in accuracy, effectiveness and the results of the top-10 nodes. 

The remaining content is organized: Section 3 describes AAVA algorithm in detail, focusing on the idea of the algorithm and the 
voting process of the specific work; Section 4 carries out simulation experiments on different datasets between AAVA algorithm and 
several classical algorithms and the voting algorithms, then analyzes and discusses the results; Section 5 concludes the main contri-
butions of this research. 

3. The proposed method 

A method based on adaptive adjustment of voting ability is proposed, the importance of a node is represented by its voting score, 
which is composed of two aspects. The first aspect is the self-influence of the node, each node calculates the neighbors number and 
degrees according to its local attribute. The larger the number and degrees of neighbors, and the more powerful the self-influence of the 
node. The second aspect is the voting contribution of neighbor nodes. Meanwhile, the proposed algorithm introduces into the Jaccard 
similarity [40] between the voting node and voted node to realize the contribution of voting ability can be adjusted adaptively for each 
neighbor. After voting, the adaptive adjustment coefficient is calculated to reduce the voting ability of the two-hop neighbors of the 
selected node. Therefore, AAVA algorithm considers the self-influence of nodes to solve the problem of low differentiation of ranking 
values, and it can make use of the similarity to realize different voting probabilities for different neighbor nodes in the voting process, 
meanwhile, the neighbor nodes of the elected node can realize the adaptive adjustment of their voting ability by using the similarity, 
which avoids the problem that the probability of important neighbor nodes being elected in the next round is too small, so as to ensure 
the accuracy and effectiveness of the ranking results. The definitions and an example of AAVA algorithm are made in this section. 

3.1. Preliminaries 

Assume an undirected and powerless network G=(V,E), and determine the tuple of node v as (sav,vsv), where sav represents the self- 
influence and vsv represents the voting score of node v. Γ(v) is defined as the neighbors set of v, node u is the neighbor of node v. 

Definition 1 (Self-influence): DC(u) and DCmax represent the degree and maximum degree value in network, respectively. The self- 
influence of a node sav is closely related to its own local attribute, which is calculated as: 

sav= |Γ(v)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

∗

∑

u∈Γ(v)
DC(u)

DC max
(1) 

Definition 2 (Similarity): There has a certain tendency between nodes when voting, the tendency between nodes is calculated by 
the Jaccard similarity, which is calculated as: 

J(u, v)=
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

(2) 

Definition 3 (Voting probability): The voting probability of each node voting for different neighbor nodes is different, and the 
calculation of voting probability is obtained by similarity. The voting probability vp (u, v) of node u for node v is defined as the ratio of J 
(u, v) to the sum of the similarities of node u and its neighbors Γ(u). The more similar node v is to its neighbor u, the greater the voting 
probability of node u for node v. The voting probability that node u will vote for node v is calculated as: 

vp(u, v)=
J(u, v)

∑

ω∈Γ(u)
J(u,ω) (3) 

Definition 4 (Contribution of voting ability): The voting contribution of neighbor node is related to its voting ability. The 
contribution of voting ability of node u is calculated by its local attribute and the voting probability for node v: 

va(u, v)=

∑

u∈Γ(v)
DC(u)

DC max
∗ vp(u, v) (4) 
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Definition 5 (Voting score): The voting score is related to its self-influence and the contribution of voting ability of all neighbor 
nodes, which is calculated as: 

vsv= sav +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

u∈Γ(v)

va(u, v)
√

(5) 

Definition 6 (Adjustment of voting ability): Node v is defined as the influential node. Node u is defined as the neighbor within two- 
hop of node v. The adaptive adjustment coefficient of voting ability of node u is λu, which mainly calculates the Jaccard similarity J (u, 
v) according to definition 2. The voting ability of node u for its neighbor w is adjusted as: 

{
va(u,w) = λu ∗ va(u,w)

λu = 1 − J(u, v) (6)  

3.2. Process description of AAVA algorithm 

AAVA algorithm measures the self-influence and the voting ability of neighbor nodes in voting process comprehensively. AAVA 
algorithm consists four stages in its execution.  

(1) Initialization stage. Initialize the self-influence and voting score of each nodes. The initial values of sav and vsv in node v (sav, vsv) 
are (0,0).  

(2) Voting stage. When entering the voting election, node v integrates the similarity and the voting probability to calculate the 
voting ability va (v,u) for its neighbor node u. Then, the node that has the maximum voting score vsv is selected as the influential 
node.  

(3) Voting ability update stage. The self-influence and voting score of the selected node v are updated to 0, and the neighbor nodes 
within the two hops of node v will adjust and update the voting ability adaptively.  

(4) Iterative cycle stage. After the voting ability update is completed, the network will enter a new round of voting. Only one 
influential node was selected in each round, the iteration of the algorithm stops until the preset number of influential nodes is 
reached. 

The implementation process of AAVA.  

Algorithm AAVA 
Input: G=(V, E); 
Output: 
1: Influence values of all ranked nodes; 
2: calculate degree value DC of all nodes; 
3: calculate the maximum degree DCmax; 
4: for each node v in the set V do 
5: use Formula (1) to calculate self-influence sav; 
6: for each node u in the neighbor set Γ(v) do 
7: calculate degree value DC(u) of node u; 
8: use Formula (2) to calculate similarity between nodes v and u; 
9: use Formula (3) to calculate voting probability vp (u,v); 
10: use Formula (4) to calculate voting ability va (u,v); 
11: endfor 
12: use Formula (5) to calculate voting score vsv; 
13: endfor 
14: select maximum (vss) and add the corresponding node s to rank; 
15: while (rank≤|V|) 
16: for each node u in the neighbor set Γ(s) of the selected node s do 
17: for each node w in the neighbor set of Γ(u); 
18: X = Γ(s)∪Γ(u); 
19: endfor 
20: endfor 
21: for each node v in the set X do 
22: use Formula (6) to adjust and update the voting ability; 
23: for each node u in the neighbor set Γ(v) do 
24: use Formula (5) to calculate voting score vsu; 
25: endfor 
26: endfor 
27: select maximum (vss) and add the corresponding node s to rank; 
28: endwhile 
29: return rank  
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3.3. Complexity analysis 

After network initialization, in the first cycle, the self-influence, voting probability, voting ability and score are calculated ac-
cording to Eqs. (1)–(5), and complexity is O (n˂k >), where n represents the nodes number and <k> represents the average degree. 
Then, the voting ability and voting score of nodes are updated through the second cycle, in which the first inner cycle calculates the set 
X of one-hop and two-hop neighbor nodes of the selected node, and the complexity is O (<k > 2). In the second inner cycle, the voting 
ability and voting score is updated according to Eqs. (6) and (5), and the complexity is O (x<k > 2), where x ≤ 2<k>. Finally, the 
influential nodes are elected, and the complexity is O (2n<k > 2). Thus, the time complexity of AAVA algorithm is O (n<k > 2+2n 
(x<k > 2), which is equivalent to O (n<k > 2). 

3.4. Example of AAVA algorithm 

Node 4 is taken as an example in Fig. 1. The neighbors of node 4 have 6 nodes, which are node 1, 2, 3, 5, 9 and 10, and as shown in 
Fig. 2. 

The detailed process of AAVA is calculated as.  

(1) Calculate the self-influence: in Fig. 1(a), after the network is initialized, nodes calculate self-influence according to Eq. (1), and 
the voting score is 0. They are (sa1,vs1)=(1,0), (sa2,vs2)=(1,0), (sa3,vs3)=(1,0), (sa4,vs4)= (16.98,0), (sa5,vs5)= (15,0), (sa9,vs9)=
(15,0), and (sa10,vs10)=(11.2,0).  

(2) Calculate the voting contribution of neighbors: in Fig. 1 (b), according to Eqs. (2) and (3), the 6 neighbor nodes calculated the 
probability of voting for node 4 as follows: vp (1,4) = 1, vp (2,4) = 1, vp (3,4) = 1, vp (5,4) = 0.17, vp (9,4) = 0.17, vp (10,4) =
0.25. The voting ability of each neighbor for node 4 can be obtained according to Eq. (4), that is, va (1,4) = 1, va (2,4) = 1, va 
(3,4) = 1, va (5,4) = 0.51, va (9,4) = 0.51, va (10,4) = 0.71.  

(3) Calculate the voting scores: in Fig. 1(c), combined with the self-influence of node 4 and the voting contribution of its neighbors, 
its voting score vs4 is calculated according to Eq. (5), namely: 

vs4= 16.98 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1 + 1 + 0.51 + 0.51 + 0.71

√
≈ 19.2 

Combined with all the voting score, node 4 is the highest in the toy network, so node 4 is selected as the influential node 
successfully. 

Fig. 2. Take node 4 as an example in the whole network.  

Table 1 
Node ranking results and values of three algorithms and SIR.  

VoteRank VoteRank value VoteRank Plus VoteRank Plus value AAVA AAVA value SIR SIR value 

4 6 4 2.506 4 19.176 4 1.733 
5 3.214 5 0.845 5 16.562 5 1.686 
9 1.429 9 0.379 9 16.278 9 1.635 
1 0 10 0.140 10 11.988 10 1.534 
2 0 1 0 7 3.333 7 1.301 
3 0 2 0 1 1.0 1 1.177 
6 0 3 0 2 1.0 3 1.169 
7 0 6 0 3 1.0 6 1.168 
8 0 7 0 6 0.833 11 1.16 
10 0 8 0 8 0.833 2 1.143 
11 0 11 0 11 0.667 8 1.128  

G. Wang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e16112

7

(4) Adjust the voting ability of selected node within two hops: in Fig. 1(d), both the voting ability and voting score of node 4 are set 
to 0, and no longer join in the subsequent voting. As one-hop neighbors of node 4, nodes 1, 2, 3, 5, 9, and 10 weaken their voting 
ability by Eq. (6) and the adaptive adjustment coefficient are λ1 = 0.71, λ2 = 0.71, λ3 = 0.71, λ5 = 0.56, λ9 = 0.56 and λ10 = 0.49, 
respectively. At the same time, as two-hop neighbors of node 4, nodes 6, 7, 8, and 11 also weaken their voting ability according 
to Eq. (6), which are updated as λ6 = 0.91, λ7 = 0.75, λ8 = 0.91 and λ11 = 0.87, respectively. After that, the network moves into 
the next round of voting. 

After 11 rounds of execution of the network in Fig. 1, according to AAVA algorithm process, the ranking of the critical degree of the 
network nodes and the voting score are obtained according to the voting score of each round. The two compared algorithms of 
VoteRank and VoteRank Plus are running to get the value of voting score of each node. Table 1 shows the ranking results and voting 
score statistics of the nodes of AAVA algorithm, VoteRank algorithm and VoteRank Plus algorithm, as well as the ranking of node 
influence and weight values in the SIR model. In particular, among the voting score of nodes 1, 6, 7 and 11, from the red and blue data 
in Table 1. 

We have color-coded the nodes whose ranking results are consistent with SIR model, from Table 1 we can see that VoteRank al-
gorithm has 3 nodes in the same ranking order as SIR model, and both AAVA and VoteRank Plus algorithm has 6 nodes in the same 
order. Meanwhile, we can obtain that the VoteRank and VoteRank Plus algorithms cannot effectively distinguish their degree because 
the voting score of these nodes is 0, the ranking values in VoteRank algorithm are 0 from the 4th node to the 11th node, and the ranking 
values in VoteRank Plus algorithm are 0 from the 5th node to the 11th node. However, the ranking values of AAVA are clearly 
differentiated, that because AAVA algorithm not only considers the voting of neighbor nodes, but also increases the judgment of the 
self-influence of node, it can effectively avoid the situation where the node voting score is 0. Therefore, AAVA algorithm can better 
solve the problem of low differentiation of ranking values while maintaining accurate ranking results of nodes. 

4. Experimental evaluation 

We select ten representative real networks in the public website to compare AAVA algorithm with the voting algorithms and 
classical algorithms, including DC [20], CC [22], BC [23], K-shell [24], PR [25], EC [26] and the new algorithms, including VoteRank 
[28], VoteRank Plus [34], GSI [35], ELKSS [32], PL [40] and GIN [41]. All trials in this experiment are running Python on a Windows 
10 operating system. The hardware configuration is 8G RAM, Intel Core i7 processor, and 256G SSD hard disk. 

4.1. Data description 

Ten representative networks are selected to verify the accuracy and effectiveness of AAVA in this experiment. Karate: A social 
network represents the friendship of American karate club. Dolphin: A social network represents the interactive relationship among 
bottlenose dolphins. Football: A real social network based on the American Football League. Email: A communication network 
represents the mail exchanges among users in a Spain university. Euroroad: A European electronic road network structure. 
Friendships: A social network built on the basis of friendships on website. Hamster: A social network built on the user relationships on 
Hamster. Facebook: A social network based on the friendship between users on Facebook. Powergrid: A grid network based on grid 
equipment and power supply lines in US. Ca-astroph: A collaborative network based on the scientific collaborative relationship be-
tween the authors of the astrophysics category. The topological statistics of the ten real networks are shown in Table 2. 

In Table 2, daverage represents the average degree, dmax represents the maximum degree, <CC> represents the average clustering 
coefficient, |V| represents the nodes number, |E| represents the edges number. 

4.2. Evaluation indicators 

In the simulation experiment, the SIR propagation model [42] is used to evaluate the performance of AAVA algorithm and the 
comparison algorithms. In SIR model, the susceptible node (S) refers to the uninfected node, which is easily infected by the infected 
node (I); the recovery node (R) refers to the infected node that has recovered and is no longer infected. Initially, a specified number of 

Table 2 
The topological statistics of ten real networks.  

DataSets daverage dmax <CC> |V| |E| 

Karate 4.588 17 0.588 34 78 
Dolphins 5.129 12 0.303 62 159 
Football 10.6 12 0.403 115 616 
E-mail 9.622 71 0.254 1133 5451 
Euroroad 2.414 5 0.02 1174 1417 
Friendships 13.492 272 0.167 1858 12,534 
Hamster 13.31 273 0.231 2426 16,631 
Facebook 2.064 769 0.803 2888 2981 
Powergrid 2.669 19 0.107 4941 6594 
Ca-astroph 21.102 236 0.677 18,771 198,050  
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infected nodes are selected, at each time step, infected node I infects the S node with probability α, and each node I transmits to the 
recovery node R with probability β. The influence of each node is ranked by calculating the infected nodes number. 

Based on the SIR Model, firstly, we will calculate the correlation of Kendall coefficient [43] and the top-10 nodes to study the effect 
of node sorting results, so as to verify the accuracy of the algorithms. Secondly, we will calculate the total infection nodes number F(t) 
of all nodes and the top-10 nodes at time t [28,34], so as to analyze the infection ability in the whole network and verify the effec-
tiveness of the algorithms. 

Fig. 3. The Kendall τ values of 13 algorithms on 10 networks are compared with the infection probability α = [ 0.01, 0.1].  
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(1) Kendall τ 

Based on SIR model, we selected different infection probabilities α to evaluate the effectiveness of AAVA algorithm, the range of α is 
set to [0.01–0.1]. Fig. 3 shows the value line of Kendall τ between AAVA and other 11 compared algorithms on the ten representative 
networks with different infection probabilities. 

The Kendall τ value in Fig. 3 to verify the accuracy of the algorithms. Clearly, the effect of AAVA algorithm is better in each kind of 
network, and the overall effect is the best in the Karate (Fig. 3(a)), Dolphins (Fig. 3(b)), Football (Fig. 3(c)), Euroroad (Fig. 3(e)), 
Facebook (Fig. 3(h)) and Powergrid (Fig. 3(i)) networks. Although the compared result of AAVA algorithm isn’t the best on the E-mail 
(Fig. 3(d)) and Hamster (Fig. 3(g)) networks, the value of Kendall τ of AAVA algorithm is still the highest at some probabilities. In the E- 
mail network, the effect of AAVA algorithm is the highest when the infection probability is between 0.01 and 0.04. In Hamster 
network, AAVA algorithm is higher than the other comparison algorithms from 0.08. In the Friendship (Fig. 3(f)) and Ca-astroph (Fig. 3 
(j)) networks, the Kendall value of AAVA algorithm is on the rise since the infection probability is 0.03 and is higher than that of the 
other comparison algorithms from 0.05. Among all the comparison algorithms, VoteRank and VoteRank Plus algorithms using the 
voting method, we can see that the Kendall value is negative in Friendships and Hamster networks and in a low level of the other eight 
networks. This is due to the VoteRank and VoteRank Plus algorithms suppress the voting ability of the neighbor nodes of the elected 
node, the important neighbor nodes also will have a small election probability. Therefore, they are not good at sorting all the nodes 
across the network. In contrast, AAVA algorithm improves the differentiation of voting scores because it measures the self-influence of 
nodes and the voting ability of its neighbors, so it can better identify the influential nodes and rank them accurately.  

(2) Propagation capability 

According to the running results in the algorithm, a node sequence is sorted by the influential values from high to low. Based on SIR, 
the corresponding average value of the infected nodes in SIR is assigned to influential values of the node sequence, and then the 
corresponding value of the node is drawn into a curve according to the order of the node sequence. This curve represents the prop-
agation capability of each node under the SIR model, the ideal running result of the curve should show a steady downward trend, the 
smoother the curve of the results is, the more consistent sequence with SIR, and the more efficient the algorithm is. In this experiment, 
the infection and recovery probability is 0.1 and 1, respectively. Among the 10 networks, the number of iterations is set to 1000 except 
the Ca-astroph network, because Ca-astroph is a large scale network and should run a long time, therefore, its iterations of simulation is 

Fig. 3. (continued). 
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Fig. 4. The propagation capability of 13 algorithms on 10 networks are compared based on SIR model. F(t) represents the values of propaga-
tion capability. 
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Fig. 4. (continued). 
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set to 100. 
Because the small nodes number of the Karate, Dolphins and Football networks, the result of F(t) will be displayed in linear form in 

these networks, while the result will be displayed in log10 form in the other 7 networks which have more nodes, to focus on the more 
influential nodes. As we can see from Fig. 4, the data change of AAVA algorithm in the Karate (Fig. 4(a)), Dolphins (Fig. 4(b)), Euroroad 
(Fig. 4(e)), Friendships (Fig. 4(f)), Hamster (Fig. 4(g)), Powergrid (Fig. 4(i)) and Ca-astroph (Fig. 4(j)) networks is small, the curve of 
AAVA algorithm has the smoothest downward trend and fewer quivering burrs, so its effect is the best. In the E-mail network (Fig. 4 
(d)), the infection effect of AAVA algorithm has no obvious advantage compared with the ELKSS algorithm, although the curve of 
AAVA algorithm has a few burrs, the amplitude of burrs are not very dramatic, the infection effect of AAVA algorithm is obviously 
better than others. In the Football network, due to the large difference in the value of nodes, the curve change of all algorithms has little 
difference. In the Football network (Fig. 4(c)), the infection effects of the AAVA and PL algorithms are the best because they have 
smoother curves and fewer burrs, thus the effects of these two algorithms are better than those of the other algorithms. In the Facebook 
network (Fig. 4(h)), the infection effect of the EC algorithm is the best. Because the degree value of nodes are particularly uneven, so 
the amount of infected nodes is large and fluctuates greatly. But in AAVA algorithm, the amplitude of burrs are smaller than that of 
other algorithms. Therefore, the curves of AAVA algorithm are smoother and have fewer quivering burrs in most networks and can well 
infect all nodes in the network. 

Fig. 4. (continued). 

Table 3 
Top-10 nodes in Karate.  

BC DC CC EC PR Ks VoteRank ELKSS PL GIN VoteRank Plus GSI AAVA SIR 

1 34 1 34 34 1 34 34 1 1 34 34 34 34 
34 1 3 1 1 2 1 1 34 34 1 1 1 1 
33 33 34 3 33 3 33 3 33 3 33 33 33 33 
3 3 32 33 3 4 3 33 3 33 2 3 3 3 
32 2 9 2 2 8 2 2 2 2 6 2 2 2 
9 4 14 9 32 9 6 14 32 32 32 4 32 32 
2 32 33 14 4 14 26 9 9 9 7 9 4 9 
14 9 20 4 24 31 7 4 14 14 30 14 9 14 
20 14 2 32 9 33 28 32 4 4 28 32 14 4 
6 24 4 31 14 34 30 8 24 20 4 31 24 24 
8 10 9 9 10 8 5 9 10 9 6 9 10 Num  
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(3) Top-10 nodes 

The sorted results of the top-10 influential nodes of 13 algorithms and SIR model are compared, so as to evaluate the accuracy and 
efficiency of AAVA algorithm. The infection and recovery probability is 0.1 and 1. The top-10 important nodes of the 13 algorithms on 
10 networks are sorted in descending order. Only Karate, Euroroad and Powergrid as representative networks are shown as follows, the 
colored data in each algorithm represent the node numbers that are the same as the top-10 nodes in the SIR Model. The last row in 
Tables 3–5 counts the same top-10 nodes number of each algorithm with SIR model, which are represented by underscores. 

In Tables 3 and it is obviously shows that the Top-10 influential nodes selected by the 13 algorithms have little difference because 
the Karate network structure is relatively simple. However, from the point of view of position ranking, the set of 10 nodes selected by 
AAVA, PL, PR, and DC is the same as that of SIR, but the order of the first six nodes of AAVA and PR is the same as that of SIR, while that 
of PL is only the first five nodes. However, Voterank and Voterank Plus algorithms only have 5 and 6 nodes respectively, which are the 
same as SIR model. Generally, there is little difference between the other comparison algorithm due to Karate is a small network. 
Therefore, it is concluded that the AAVA method works best. 

Table 4 shows the comparison under the medium-sized Euroroad network. According to the selected nodes, the top-10 nodes are 
exactly the same as those selected by SIR in the ELKSS and AAVA algorithms, however, the top-10 nodes of Ks and GSI algorithms are 
completely different from SIR model. From the location ordering of nodes, the first two nodes of VoteRank and DC are the same as SIR, 
but the location order of the first three nodes of AAVA algorithm is highly consistent with SIR in the comprehensive comparison. This 
proves that the AAVA method has better performance. 

Table 5 shows the comparison under medium and large Powergrid networks. According to the selected nodes, the results of the 13 
algorithms are quite different because of the complexity of the network structure. The top-10 nodes selected by AAVA are highly 
consistent with those selected by SIR, and the PL algorithm with the best effect in the comparison algorithm has 8 nodes, however, the 
top-10 nodes of BC, CC, GIN algorithms are completely different from SIR model. In addition, the location ranking of the nodes in-
dicates that the location order of the first three nodes of AAVA algorithm is highly consistent with SIR, and the selected nodes and their 
locations are sorted comprehensively. In general, the AAVA method has better performance.  

(4) Infection capacity of the Top-10 nodes 

The top-10 nodes of 13 algorithms are the seed nodes to infect other nodes, and the accuracy of the algorithm is verified by 
evaluating the number of infected nodes F(t). The infection and recovery probability are set to 0.01 and 1, respectively. After 30 rounds 
of independent operation, the average number of infected nodes is taken for 1000 iterations. 

According to Fig. 5, the value of F(t) increases rapidly at the initial time in each network, then it increases with the number of 

Table 4 
Top-10 nodes in Euroroad.  

BC DC CC EC PR Ks VoteRank ELKSS PL GIN VoteRank Plus GSI AAVA SIR 

402 284 401 7 284 2 284 7 107 401 284 284 7 284 
284 7 402 43 137 3 7 43 284 7 137 7 284 7 
277 39 403 499 236 17 39 107 7 402 107 401 107 107 
453 137 432 107 39 4 137 284 39 411 39 137 43 499 
452 107 1019 181 107 855 107 181 499 453 236 107 39 137 
403 236 253 454 7 6 236 499 43 454 7 236 137 39 
401 43 452 39 204 7 141 39 137 232 141 43 499 181 
404 141 404 180 768 880 401 401 181 43 401 499 181 236 
837 499 232 411 164 8 499 137 236 253 81 181 401 43 
836 181 284 8 587 22 43 236 141 400 265 141 236 401 
2 8 1 6 6 0 9 10 9 3 6 8 10 Num  

Table 5 
Top-10 nodes in Powergrid.  

BC DC CC EC PR Ks VoteRank ELKSS PL GIN VoteRank Plus GSI AAVA SIR 

651 2847 1378 4422 602 4422 2847 4422 4436 2781 2847 2847 4436 4436 
559 602 1678 4436 932 4415 602 4436 4422 2685 602 558 2847 4422 
1365 932 2944 4419 3411 4452 932 4452 4453 559 3930 556 4422 2847 
2824 3411 1377 4417 2847 4453 3411 4453 2847 2944 3411 2926 602 4452 
2685 4436 2781 4452 1210 4427 4436 4419 4452 2824 2926 602 4434 4419 
1324 558 1365 4453 691 4428 558 4417 4434 2956 4436 2866 4452 4453 
1378 2287 1368 4427 2287 4451 2287 4434 4417 651 558 2543 4453 4434 
1213 2926 1380 4421 2865 4454 2926 4427 2926 1378 2287 2783 4438 4417 
433 2865 2685 4434 2554 4417 2865 4438 2543 2782 2543 2719 4417 4438 
2781 3930 2795 4438 3930 4418 3930 4421 4438 1678 2865 2956 4419 4437 
0 2 0 8 1 4 2 8 8 0 2 1 9 Num  
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rounds; finally, it reaches a stable state after a certain period of infection. The comparison results show that the performance of the 
VoteRank, Voterank Plus and AAVA algorithms is better than that of the other algorithms in the Karate (Fig. 5(a)), Dolphins (Fig. 5(b)), 
Football (Fig. 5(c)), Euroroad (Fig. 5(e)), Facebook (Fig. 5(h)) and Powergrid (Fig. 5(i)) networks. This is because the voting method 
can effectively weaken the ability of neighbor nodes of selected influential node, which can make the elected influential nodes more 
dispersed and more conducive to diffusion between nodes. At the same time, the overall effect of AAVA algorithm is the best in the E- 
mail (Fig. 5(d)), Euroroad (Fig. 5(e)), Powergrid (Fig. 5(i)) and Ca-astroph (Fig. 5(j)) networks. The effect of AAVA algorithm is general 

Fig. 5. The infection capacity of the top-10 nodes of 13 algorithms on 10 networks, F(t) represents the infected nodes number.  

G. Wang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e16112

15

in other networks, but it is still at a high level. In the Facebook, Hamster (Fig. 5(g)) and Friendships (Fig. 5(f)) social networks, the 
effect of the DC algorithm performs better due to it sorts nodes according to their degree. Due to the voting ability of nodes can be 
adjusted adaptively in AAVA algorithm, so the distribution of influential nodes can be better balanced, and performs a better effect as a 
whole. 

5. Conclusion 

Identifying influential nodes has important application value for the research of invulnerability, security and propagation in 
complex networks. In this paper, a novel voting method based on adaptive adjustment of voting ability is proposed. At the beginning of 
voting, we first use the local attributes of node to measure the self-influence. Secondly, in the voting process and the voting end stage, 
the node adaptively adjusts its voting ability when voting for different neighbors by using the similarity relationship between the nodes 
and its neighbors. Finally, the importance of the node is comprehensively evaluated by integrating its self-influence and the voting 
contribution of its neighbors. To verify the performance of AAVA algorithm, the running results is compared with the other 11 
representative algorithms on 10 different types of networks, and taking SIR as a reference model, the Kendall value and the scale of 
node infection are analyzed and compared. After the analysis of the experimental data, it shows that AAVA algorithm can solve the 
problem of coarse-graining of node differentiation in traditional algorithms and is effectively suitable for the identification and ranking 
the influential nodes. The overall experimental results show that AAVA algorithm performs better and can be applied to most of the 
complex networks. However, the future work still presents great challenges, because the network in the real world is dynamically 
changing, therefore, further optimization of the algorithm should be carried out in future research to further improve the performance 
and applicability of the algorithm combined with the characteristics of real networks. 

Fig. 5. (continued). 
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