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Natural antibodies are spontaneously produced in the absence of infection or immuni-
zation, and are both anti-microbial and autoreactive. Autoreactive natural antibodies can 
bind noxious molecules, such as those involved in clinical situations of atherosclerosis 
(oxLDL), malignancy (NGcGM3), and neurodegeneration (amyloid, tau) and can affect 
the fate of their targets or the cells bearing them to maintain homeostasis. Clinically 
relevant natural antibodies have been shown to decline with advancing age in those few 
situations where measurements have been made. Consistent with this, human B-1 cells 
that are thought to be responsible for generating natural antibodies also decline with 
advancing age. These findings together suggest that an age-related decline in amount 
or efficacy of homeostatic natural antibodies is associated with relative loss of protection 
against molecules involved in several diseases whose incidence rises in the older age 
population, and that those individuals experiencing greatest loss are at greatest risk. 
In this view, natural antibodies act as rheostats for susceptibility to several age-related 
diseases. These considerations suggest that administration of natural antibodies, or of 
factors that maintain B-1 cells and/or enhance production of natural antibodies by B-1 
cells, may serve to counteract the onset or progression of age-related chronic illness.
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iNtrODUctiON

Natural antibody represents immunoglobulin that is spontaneously and constitutively secreted in the 
absence of infection or immunization. Natural antibody is present in animals and humans, and is 
thought to comprise the bulk of resting IgM, along with portions of isotype-switched IgA and IgG. 
Natural antibody differs from adaptive antibody in many ways, importantly including repertoire and 
function. Much natural antibody is anti-microbial and forms a preexisting shield against infection 
that provides a primary layer of protection during the lag period required for germinal center forma-
tion and adaptive antibody production (1–5). Natural antibody also tends to be autoreactive (6–9) 
and performs a second beneficial function in housekeeping and homeostatic activity that speeds 
elimination of dying cell debris and noxious molecular species (4, 10–17). In this way, potentially 
inflammatory and/or toxic agents are removed before direct tissue injury can occur.

Natural antibody is generated for the most part by a relatively small but unique subpopulation 
of B cells termed B-1 cells, first recognized in 1982, that is developmentally distinct (18–20). The 
origin and function of B-1 cells have been most extensively studied in mice, where B-1 cells are 
readily identified by a clear set of phenotypic markers (B220loCD5+CD23−CD43+IgMhiIgDlo). 
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For some time, the status of human B-1 cells has been uncertain, 
and the existence of human B-1 cells has been debated. However, 
a new phenotypic profile for B-1 cells in human peripheral blood 
was recently reported (CD19+CD20+CD27+CD38modCD43+ 
CD70−) (21–23) and, despite some controversy (24–27), this 
profile has gained acceptance and has been utilized by a number 
of investigators in translational studies of specific disease states 
(25, 26, 28–31).

The natural antibodies produced by B-1 cells differ in sequence 
from adaptive antibodies produced by conventional B (B-2) cells, 
which in turn dictates repertoire and function. Mouse B-1 cell 
antibodies are more germ line-like in comparison to mouse B-2 
cell antibodies by virtue of containing little or no somatic hyper-
mutation and much reduced, or non-existent, N-region addition 
(15, 32–34) both of which affect CDR3 domains that are major 
contributors to antigen binding. The lack of N-addition appears 
to derive from the absence of terminal deoxynucleotidyl trans-
ferase (TdT) during mouse hematopoietic development early 
in life when the bulk of B-1 cells are generated (35). However, 
human B-1 cell antibodies often contain N-addition, which likely 
reflects the presence of TdT throughout ontogeny in Homo sapi-
ens (35). Like mouse B-1 cell antibodies, human B-1 cell antibod-
ies contain little or no somatic hypermutation early in life (21), 
but acquire somatic mutation as time goes on, although some 
difference in this measure between B-1 and B-2 cell antibodies 
continues into adulthood (23). Because B-1 cell antibodies tend 
to reflect sequences delineated in the genome with little altera-
tion, especially in mice, it has been suggested that the B-1 cell 
repertoire is “tuned” over evolutionary time, obeying Darwinian 
precepts such that sequences functioning to promote survival are 
retained (10). In this view, B-1 cell antibodies represent the best 
functioning antibodies for the roles that they fulfill.

HUMAN NAtUrAL ANtiBODies 
recOGNiZe MOLecULes AssOciAteD 
WitH DiseAses OF AGiNG

Human natural antibodies directed against a variety of molecules 
with clinical significance have been identified. Three specific 
disease areas are illustrative, and these are three of the most com-
mon, distressing, and burdensome diseases associated with aging. 
(1) Atherosclerosis : healthy individuals commonly express IgM 
antibodies that bind oxidized low-density lipoproteins (oxLDL) 
(36). Oxidized LDLs arise from non-enzymatic processes, accu-
mulate within vessel walls, and contribute to plaque formation 
and inflammation that together drive the disease process of 
atherosclerosis, resulting in cardiovascular events that can be 
lethal (37). One type of anti-oxLDL natural antibody binds an 
oxidized form of the major lipoprotein, apolipoprotein B100 
(38–40). (2) Malignancy: healthy individuals commonly express 
antibodies that bind N-glycolylneuraminyl-lactosylceramide 
(NGcGM3) (41). NGcGM3 is not thought to be produced in 
human tissues due to an inactivating insertional mutation of 
cytidine monophosphate-N-acetylneuraminic acid hydroxylase 
(CMAH) that occurred evolutionarily after divergence of 
humankind from great apes, about 2.8 million years ago (42, 43). 

However, NGcGM3 is present in humans, presumably acquired 
exogenously by dietary intake, and for reasons that are as yet 
unclear is concentrated many fold in the membranes of some 
tumors, prominently including the malignant cells of lung cancer 
(44). (3) Neurodegeneration: healthy individuals commonly 
express antibodies that bind amyloid and tau proteins (45–48). 
Abnormal plaques (amyloid) and tangles (tau) of these proteins 
have been implicated in the pathogenesis of Alzheimer’s Disease, 
in which protein aggregates result in neuronal dysfunction, and 
enhanced phosphorylation may play a role in this abnormal 
protein behavior and disease pathogenesis (49).

DiseAse-AssOciAteD NAtUrAL 
ANtiBODies Are FUNctiONAL

Natural antibodies directed against antigens associated with these 
three classes of disease appear to be functional. (1) In mice, a 
number of adoptive transfer experiments with Apoe−/− recipients 
have led to the generally accepted paradigm that B-1 cells and 
the IgM antibodies they produce are atheroprotective, whereas 
B-2 cells and the IgG antibodies they produce are atherogenic 
(50, 51). Less invasive studies have been carried out with people, 
and it has been shown that human IgM anti-oxLDL is inversely 
correlated with cardiovascular and carotid disease (12, 38, 39, 
52–54), whereas IgG has been found to be positively correlated 
with atherosclerosis (12, 52, 55–60) or not correlated at all with 
vessel pathology (40, 61–64). The mechanism appears to involve 
inhibition of oxLDL uptake by macrophages (65, 66). In a recent 
study, human serum antibodies directed against a methylglyoxal 
(MGO) modified apolipoprotein B100 peptide were examined. 
The levels of IgM antibodies in healthy individuals aged 63–68 
were found to be inversely correlated with cardiovascular events 
occurring during the subsequent 15 years; in contrast, the levels 
of IgG antibodies were not correlated with subsequent cardiovas-
cular events (67). Thus, in both mouse and human, natural IgM 
antibodies against oxLDL, appear to counteract the development 
of atherosclerosis. (2) Human natural anti-NGcGM3 antibodies 
have been shown to specifically bind and eliminate malignant cells 
bearing NGcGM3. This tumor cell destruction by anti-NGcGM3 
antibodies occurs through both a complement-dependent mecha-
nism and an oncosis-like, complement-independent mechanism 
(41, 68, 69). Somewhat akin to the correlative results noted 
above with respect to MGO-modified apoB100 peptide, patients 
with lung cancer lack or have very low levels of anti-NGcGM3 
antibodies (41). Separately, an anti-idiotypic antibody vaccine 
(racotumomab) that displays the “internal image” of NGcGM3 
has been developed to stimulate production of anti-NGcGM3 
antibodies (69–71). In a recent clinical trial for maintenance 
 treatment after first line chemotherapy in non-small cell lung 
cancer patients, racotumomab significantly prolonged overall 
survival and progression free survival, and those patients expe-
riencing the greatest antibody response had the best outcomes 
(69, 72). Thus, natural and elicited cytotoxic antibodies against 
NGcGM3 appear to protect against the onset and/or ameliorate 
the course of lung cancer. (3) Human natural antibodies against 
amyloid and tau have been proposed as agents that might oppose 
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and/or treat Alzheimer’s neurodegeneration. As with the inverse 
correlation between serum levels of natural antibodies and the 
disease states of atherosclerosis and malignancy discussed above, 
natural anti-amyloid antibodies have been shown to be relatively 
diminished in patients with Alzheimer’s Disease (46, 73–75). 
These natural anti-amyloid antibodies have been shown to dimin-
ish the burden of aggregated proteins and improve cell viability 
in vitro (45, 46, 76, 77). In animal studies, passive administration 
of antibodies against amyloid and tau has in each case depleted 
abnormal proteins from the brain and improved pathology and/
or behavioral parameters (76, 78–81). In recent clinical trials, 
passive administration of monoclonal antibodies against amyloid 
protein failed to produce improvement in cognition or function 
(82–85). This failure of clinical improvement in anti-amyloid tri-
als to date, despite preclinical data showing diminished protein 
aggregation, remains unexplained, but may suggest the utility of 
alternative anti-tau treatment. Regardless, these results indicate 
that circulating antibodies can affect aggregation and alter depos-
its of abnormal, pathological amyloid and tau proteins.

cLiNicALLY reLevANt NAtUrAL 
ANtiBODies Are DiMiNisHeD Or Less 
eFFective WitH iNcreAsiNG AGe AND 
DiseAse

In each of the three clinical entities discussed above, natural anti-
bodies that recognize disease-associated epitopes are diminished 
in affected patients. There are several potential explanations for 
these inverse correlations, among which is the possibility that the 
absence of homeostatic antibodies increases the risk of developing 
disease. This is perhaps most directly suggested by the prospec-
tive study of natural antibodies that recognize modified apoB100 
and the associated subsequent risk of cardiovascular events, dis-
cussed above. These diseases of atherosclerosis, malignancy, and 
neurodegeneration are all more common with increasing age. If 
natural antibodies are involved in opposing disease pathogenesis 
and/or disease progression, it would be expected that levels of 
disease-related natural antibodies would be found to be dimin-
ished with advancing age. In fact, an age-related decline has been 
documented for natural antibodies directed against NGcGM3 
(41), and for natural antibodies directed against amyloid (46). 
Thus far, the relationship between natural antibodies against 
oxidized apoB100 and age has not been examined.

B-1 ceLLs GeNerAte HOMeOstAtic 
ANtiBODies

In mice, natural antibodies are predominantly, if not exclusively, 
generated by B-1 cells. The recent phenotypic identification of 
human B-1 cells raises the question of whether this popula-
tion is responsible for producing human natural antibodies, 
especially those related to disease. This has been evaluated for 
atherosclerosis-predictive/-protective IgM antibodies against 
MGO-modified apoB100. Among human B-1 cell, memory 
B cell, preplasmablast and plasmablast culture supernantants, 

natural IgM anti-MGO-apoB100 antibodies were generated 
predominantly by human B-1 cells (67). Similarly, B-1 cells are 
responsible for producing natural anti-NGcGM3 antibodies in 
mice (44). However, human B-1 cells have not yet been tested for 
production of antibodies neither against NGcGM3 nor against 
amyloid and tau.

AGe-reLAteD cHANGes iN NAtUrAL 
ANtiBODies LiKeLY reLAte tO AGe-
reLAteD cHANGes iN B-1 ceLLs

To the extent that human B-1 cells are the origin of disease-
related homeostatic natural antibodies, then a change in B-1 
cells may underlie the decline that occurs with advancing age. 
To address this possibility, B-1 cell and other B cell popula-
tions were enumerated in peripheral blood of healthy adult 
volunteers over a wide age range. This study showed an age-
related decline in B-1 cells (21). Other B cell populations did 
not change with age. Thus, B-1 cell numbers are age-sensitive. 
Although some investigators have reported an age-related 
decline in memory B cells, others have not (86–89), but B-1 
cells were not differentiated from CD27+ memory B cells in 
earlier studies.

Beyond numbers, there is some evidence in mouse studies 
that the B-1 cell repertoire changes with age (90). In a careful 
study involving deep sequencing, Ghosn et  al. showed that 
selection operates on the B-1 cell repertoire as mice mature 
(91). Consistent with this, the avidity of natural anti-amyloid 
antibodies is diminished in patients with Alzheimer’s Disease as 
compared to healthy controls (75). Thus, as a result of declining 
B-1 cell numbers, or a change in B-1 cell repertoire, or both, 
natural antibody deteriorates, which appears to be accompanied 
by a loss of the protection, especially homeostatic protection, that 
natural antibody affords.

tHe rHeOstAt HYPOtHesis FOr B-1 
ceLL NAtUrAL ANtiBODies

Weaving these different strands of evidence together, there is rea-
son to hypothesize, as a general paradigm, that: (1) an age-related 
decline in amount and/or efficacy of homeostatic natural anti-
bodies is in turn associated with relative loss of protection against 
molecules involved in several diseases whose incidence rises in 
the older age population; and, (2) those individuals experiencing 
the greatest loss in amount and/or efficacy of homeostatic natural 
antibodies are at greatest risk. In this view, natural antibodies act 
as rheostats for susceptibility to several age-related diseases that 
are associated with accumulation of noxious molecules or involve 
unique molecular targets, or both. Extrapolation from this point 
suggests the possibility that administration of disease-opposing 
natural antibodies or of factors that maintain B-1 cells and/or 
enhance production of disease-opposing natural antibodies by 
B-1 cells could serve to counteract the onset or progression of 
age-related chronic illness.
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WHY Are NAtUrAL ANtiBODies 
reLevANt tO DiseAses OF tHe 
eLDerLY PreseNt BeYOND tHe AGe 
OF rePrODUctiON?

According to Darwinian principles, there is no advantage to 
counteracting diseases whose onset occurs after reproductive 
age. In this sense, then, results in both the mouse and human 
systems raise the question of why natural antibodies that protect 
against age-associated diseases are retained in evolution. This 
likely results from polyreactivity of B-1 cell natural antibodies, 
and antigenic mimicry of B-1 cell natural antibody targets, as 
illustrated graphically by mouse T15/E06 (11, 92). T15 is a com-
pletely germ-line antibody that arises in many mouse strains, first 
identified by its recognition of phosphorylcholine, an antigenic 
determinant found on pneumococci and other microbes. E06 
is a completely germ-line antibody identified by its binding to 
oxidized LDL. T15 and E06 are, in fact, one-and-the-same; they 
are identical antibodies that protect against pneumococcal infec-
tion and affect the disposition of oxLDL (93). Moreover, human 
antibodies with these kinds of specificities appear early in life. 
This is highlighted by reports that IgM anti-oxLDL antibodies are 
found in umbilical cord blood samples and in blood samples from 
preterm and full-term infants (94, 95). These antibodies block 
the uptake of oxLDL by macrophages and are often germ line 
in heavy chain sequence (95). So natural antibodies capable of 
influencing atherosclerosis later in life appear early in ontogeny 
and seem to exist by virtue of a combination of similarity between 
antigens on bacteria and oxidized lipids and polyreactivity of B-1 
cell-derived natural antibodies. The same is likely true of other 
natural antibodies.

DO NAtUrAL ANtiBODies Arise 
sPONtANeOUsLY Or Are tHeY 
stiMULAteD BY seLF-ANtiGeNs?

Mature B-1 cells secrete antibody spontaneously and constitutively, in 
the absence specific antigen engagement, which fails to generate typi-
cal signs of BCR signaling and activation in these cells (96). However, 
the BCR may play a role early on. Studies in mice indicate that B-1 
cell development is enhanced by antigen engagement, the inverse of 
antigen-induced apoptosis in nascent B-2 cells (97, 98). The relevant 
antigens may be self-antigens, inasmuch as B-1 cell development is not 
disturbed in germ-free mice lacking foreign antigens (91). NGcGM3 
would appear to contradict this paradigm because it cannot be a 
self-antigen in the human species that lacks CMAH and is incapable 
of generating this ganglioside. However, the germ-line antibody, 4ac, 
which binds myelin oligodendrocyte glycoprotein (MOG), a central 
nervous system target for EAE (experimental allergic encephalomy-
elitis), is identical to the germ-line anti-NGcGM3 antibody, P3, and 
so cross-reactivity with self components may explain the existence of 
natural antibodies against NGcGM3 (99). Further, potential transfer 
of NGcGM3 across the placenta and in mother’s milk at early stages 
of fetal/neonatal development is unknown. Overall, the degree to 
which the B-1 cell repertoire is shaped by self-antigens as opposed 
to “foreign” antigens remains a question yet to be fully resolved. In 

light of the polyreactivity and antigen mimicry discussed above, the 
determinants of the B-1 cell repertoire are likely to have an important 
influence on the level of homeostatic protection provided by B-1 cell 
natural antibody and may be responsible, at least in part, for the varia-
tion in protective antibody noted among older individuals.

OtHer QUestiONs reMAiN

B-1 cells in mouse and human can isotype switch and secrete natural 
antibodies that are IgA and IgG as well as IgM (23, 100, 101). The 
degree to which this happens may be important in assessing the level 
of homeostatic protection afforded by natural antibodies. For example, 
IgM anti-oxLDL antibodies protect against atherosclerosis in mice and 
correlate with protection against cardiovascular events in humans, 
whereas IgG anti-oxLDL antibodies do not. However, it is unknown 
at present whether IgG anti-oxLDL antibodies originate from B-1 cells 
and whether, if they do, they can be as protective as IgM anti-oxLDL 
antibodies.

In addition, other B cell populations, such as marginal zone B cells 
and IgM memory B cells, have been proposed as contributors to the 
pool of natural antibodies (102–106). At present it is unknown to what 
extent, if any, protective homeostatic antibodies derive from these 
populations but this could be relevant to the extent that enhancement 
of homeostatic natural antibody producing B cell populations becomes 
a prophylactic or therapeutic maneuver in the future.

cONcLUsiON/rHeOstAt reDUX

To summarize, it is proposed that many chronic diseases associated 
with aging, including atherosclerosis, cancer, and neurodegeneration, 
and possibly others, take place against a background of greater or 
lesser homeostatic protection provided by B-1 cell-derived natural 
antibodies that decline with advancing age due to a decrease in the B-1 
cell population and/or an alteration in the B-1 cell repertoire. There is 
much to be learned regarding the development and function of B-1 
cells and the nature of homeostatic natural antibodies, and changes 
that occur in both B-1 cells and natural antibodies with advancing age. 
As this information is acquired, it is proposed that the onset and/or 
course of several chronic diseases of aging might be favorably altered 
by therapies that maintain or enhance the native B-1 cell population 
and/or that replace or add exogenous natural antibodies.
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