
Research Article
On the Prediction of Biogas Production from Vegetables, Fruits,
and Food Wastes by ANFIS- and LSSVM-Based Models

Yong Yang ,1,2 Shuaishuai Zheng ,1,2 Zhilu Ai ,1,2

and Mohammad Mahdi Molla Jafari 3

1College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
2Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450002, China
3Department of Petroleum Engineering, Ahwaz, Faculty of Petroleum Engineering, Petroleum University of Technology (PUT),
Ahwaz, Iran

Correspondence should be addressed to Zhilu Ai; zhilafood@163.com
and Mohammad Mahdi Molla Jafari; mohammad.molajafari@afp.put.ac.ir

Received 5 August 2021; Revised 17 August 2021; Accepted 21 August 2021; Published 24 September 2021

Academic Editor: Alireza Baghban

Copyright © 2021 Yong Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study is aimed at modeling biodigestion systems as a function of the most influencing parameters to generate two robust
algorithms on the basis of the machine learning algorithms, including adaptive network-based fuzzy inference system (ANFIS)
and least square support vector machine (LSSVM). The models are assessed utilizing multiple statistical analyses for the actual
values and model outcomes. Results from the suggested models indicate their great capability of predicting biogas production
from vegetable food, fruits, and wastes for a variety of ranges of input parameters. The values that are calculated for the mean
relative error (MRE %) and mean squared error (MSE) were 29.318 and 0.0039 for ANFIS, and 2.951 and 0.0001 for LSSVM
which shows that the latter model has a better ability to predict the target data. Finally, in order to have additional certainty,
two analyses of outlier identification and sensitivity were performed on the input parameter data that proved the proposed
model in this paper has higher reliability in assessing output values compared with the previous model.

1. Introduction

The main disposal pathways for FW (food waste) residues are
treating via incineration or disposal in landfills. Given the very
fast biodegradability of the food wastes in the presence of con-
taminating microorganisms, their disposal in landfills is very
problematic [1, 2]. In addition, biodegradation within landfills
necessitates a vast area, and greenhouse gases, e.g., methane,
are generated with no profit gained via the energy produced
through the biomass [3]. Thus, many nations have prohibited
such a disposal option. From another viewpoint, given the
highmoisture content (>70%) of the organicmatter, the incin-
eration requires intensive amounts of energy with no energy
recovery in some situations [4, 5]. Both options impose
adverse impacts on human health and the environment [6, 7].

Therefore, since waste-to-energy techniques support
reduced environmental impacts and partial replacement of

fossil reserves, they are studied for disposal of organic
wastes. One of the feasible approaches is AD (anaerobic
digestion), which is an environmentally friendly technology
for transforming liquid or solid organic wastes into biogas,
which is convertible to beneficial energies (heat and/or elec-
tricity) [8, 9]. Anaerobic digestion is a complicated multi-
step biochemical degradation procedure conducted in the
absence of O2, through which the microorganisms trans-
form organic compounds into a gaseous mix mainly com-
posed of CO2 (carbon dioxide), N2 (nitrogen), and CH4
(methane). Nonetheless, one can find other compounds in
the composition, including H2 (hydrogen), H2S (hydrogen
sulfide), O2 (oxygen), CO (carbon monoxide), and NH3
(ammonia). Also, trace amounts of siloxanes, dust particles,
and halogenated and aromatic compounds are found in
biogas; some of which can increase emissions, corrosion,
and biohazards for human health. Biogas is also saturated
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with water. Also, this process generates sludge residues (or
digests), which can be utilized as a fuel for energy genera-
tion subsequent to a drying treatment or directly for reme-
diation of soil [10].

The conversion yield, the biogas composition, and the
production rate are affected by the biomass nature, the con-
figuration of biodigester, and the process characteristics [11,
12]. Given the diversity of handling and processing tech-
niques, resources, local seasons and climates, and eating
behaviors, the same kind of FWs may provide extremely var-
iable features [13]. The amount of TSs (total solids) found in
FW ranges from <2%w in liquid FWs to >90%w in solid
FWs. The organic content (often ~90%) shown by the VS/TS
ratio (in which the VS (volatile solids) represents the weight
fraction convertible into gaseous materials) makes biomass a
suitable candidate for anaerobic digestion. The C/N ratio
varies between 3 and 55, paving the way for modifying the
mixture C/N ratio to reach the optimum biodegradability
for the food biomass. For most of the FWs, the acidity neces-
sitates adding chemicals (e.g., alkali reagents) to stabilize
biodigesters’ pH. For each kind of FWs, the highest potential
of methane production is within the 0.31–1.1m3 CH4/kg
range when volatile solids are added [14]. Thus, the electric-
ity generated per 1 ton of fresh substances is within the
151.6-224.6m3/t range for FVW and FW, which is nearly
the same value acquired from chicken and cattle dungs
(257.3 and 122.5m3/t, respectively) [15].

As observed in [16–18] and others, the parameters con-
tributing to biogas generation have been investigated. None-
theless, only a few studies have simultaneously investigated
more than a single factor. The simultaneous investigation
of the interacting impact of a number of experimental sce-
narios presents invaluable data for optimization and predic-
tion of the key features used in the experimental procedure
of the entire studied scenarios. The problem is finding plausi-
ble standard experimental techniques for dataset compilation.
Concerning optimization and prediction, the most routine
methods pave the way for creating polynomial models corre-
lating the response to the procedure irrespective of variables
and their associated interactions [19]. Seman et al. concen-
trated on developing an association between parameters and
evaluating the interactions between factors [20]. Therefore,
the parameter optimization and response prediction of the
process were founded on the basis of polynomial regression
modeling (second-order model).

Another modeling instrument employed for better pre-
diction is ANNs (artificial neural networks) [21]. The inde-
pendent variables employed by Beltramo et al. in the
artificial neural network model to assess the rate of biogas
generation were TS, VFA, VS, acid detergent lignin, acid
detergent fiber, ammonium nitrogen, neutral detergent fiber,
OLR, and HRT [22]. The prediction error of the model was
6.24%, and the authors considered a coefficient of determi-
nation, R2 = 0:9, as the optimum result. By using an artificial
neural network, Ghatak et al. optimized and modeled the
prediction of particular biogas generation via the parameters
including temperature, duration, and composition [23]. The
neural model could anticipate the creation of biogas with an
accuracy of 99.7%.

In this paper, we have tried to predict the values of bio-
gas production from vegetables, fruits, and food wastes using
two new models, ANFIS and LSSVM. First, a wide range of
actual output data and input parameters affecting them were
collected. Then, these two models were constructed and sta-
tistically evaluated, and compared. Finally, the results of
these models were compared with the previously proposed
models (in terms of accuracy), and the best model was
proposed.

2. Description of Models

2.1. ANFIS. The adaptive network-based fuzzy inference sys-
tem (ANFIS) algorithm is defined as a class of neural net-
work techniques to address problems involving function
approximation [24]. To put it in another way, an ANFIS
structure is a combined information acquired from the fuzzy
logic system and artificial neural network, and it consists of
several membership function (MF) parameters optimized
utilizing optimization algorithms [25]. Accordingly, the
ANFIS structure, because of being particular, is significantly
precise, and its reliance on real values is less than other
machine learning algorithms, for instance, the artificial neu-
ral networks [25].

A typical ANFIS structure includes five layers, each of
which has a number of nodes defined by their node functions
[26]. Layers’ association can be established using internal con-
nections. The outputs of the previous layer are used as the
inputs of the next layer. It is worth noting that the fuzzy infer-
ence system is utilized in the ANFIS technique as a fuzzy sys-
tem. More specifically, for the inputs with two parameters, x
and y, and output with a single parameter, f i, the rules govern-
ing an ANFIS structure are expressed as follows [27].

First rule: if x is M1 and y is N1 then z is f 1ðx, yÞ
First rule: if x is M2 and y is N2 then z is f 2ðx, yÞ
where fuzzy sets indicated by M and N and f i (x, y) is

representative of the first-order fuzzy inference system
output.

The adaptive nodes included in the first layer are speci-
fied as follows:

O1
i − μMi

xð Þ, for i = 1, 2, ð1Þ

O1
i − μMi−2

ðxÞ, for i = 3, 4,where μðyÞ and μðxÞ indicate
the membership functions.

Each node denoted by π is constant in the following
layer.

O2
i =Wi = μMi

xð ÞμNi
yð Þ, for i = 1, 2, ð2Þ

where Wi indicates the firing strength of the rule.
The third layer has constant nodes denoted by N . The

corresponding node functions are applied to normalize the
firing by dividing the ith node’s firing strength value by the
all firing strength values’ summation [28].

O3
i =

Wi

∑Wi
, for i = 1, 2: ð3Þ
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The fourth layer includes adaptive nodes indicated by
the square shapes.

O4
i =Wif i =Wi miX1 + niX2 + rið Þ, for i = 1, 2, ð4Þ

where f1 and f2 indicate the fuzzy if-then rules defined as
follows [29].

Rule 1: if x is M1 and y is N1 then f1=p1x + q1y + r1
Rule 1: if x is M2 and y is N2 then f2=p2x + q2y + r2
where pi, qi, and ri indicate the consequential terms.
The overall output in the last layer is given by:

O5
i = Y =〠

i

Wi f i =W1 f1 +W2 f2 =
∑Wif i
∑Wi

: ð5Þ

Totally, the output is described as a linear combined
consequential term [30].

2.2. LSSVM. The supervised least square support vector
machine (LSSVM) algorithm developed in 1999 by Suykens
et al. for solving problems stemmed from the regression
together with function approximation. For the inputs
denoted by Xi and the output denoted by Yi, the usual
LSSVM nonlinear function is given as follows [31].

f xð Þ = ωTϕ xð Þ + b, ð6Þ

where f indicates the connections between the target output
and inputs, w denotes the m-dimensional weight vector, and
b denotes the bias. The following equation is commonly used

to solve the regression problems concerning the minimiza-
tion theory [32]:

min J ω, eð Þ = 1
2ω

Tω + 1
2 γ〠

N

k=1
e2k: ð7Þ

The following boundary conditions need to be consid-
ered:

yk = ωTϕ xkð Þ + b + ek k = 1, 2,⋯,N , ð8Þ

where c indicates the margin parameter and ek indicates the
error variable of xk. The LSSVM straightforward derivations
lead to

f xð Þ = 〠
N

k=1
akK x, xkð Þ + b: ð9Þ

The radial basis function is commonly used as a kernel
function in regression faults due to its great efficiency, which
is given by [33]

K x, xkð Þ = e − x−xkk k2/σ2ð Þð Þ: ð10Þ

The σ2 in this equation indicates the squared bandwidth
that needs to be estimated using optimization.

3. Materials and Methods

3.1. Sensitivity Analysis. In order to analyze the effects of
individual inputs on the output value, a sensitivity analysis
was carried out. Thus, the relevancy factor was decided as
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Figure 1: Sensitivity on various input parameters.
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presented in the following to discover the effect of the indi-
vidual inputs [34].

r = ∑n
i=1 Xk,i−Xk

� �
Yi − �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 Xk,i − Xk

� �2∑n
i=1 Yi − �Y
� �2

q : ð11Þ

In this equation, �Xk and Y stand for the average of the
input, and the average of the kth output, Yi represents the i
th output, N represents the entire number of data points,

and Xk,i stands for the ith input value of the kth parameter.
Also, the r values range between -1 and 1. The less absolute
value is interpreted as the fact that the input is less effective
on the output parameter. In addition, the positivity or nega-
tivity of r is regarded as direct or reverse impacts of the con-
cerned inputs; i.e., by increasing an input with negative r
values, the target parameter is decreased; however, for the
inputs with negative values of r, it is increased.

This research examined eight inputs that reflected a
direct impact on the discussed target. Figure 1 presents the
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Figure 2: Analysis to identify outlier’s data in models (a) LSSVM and (b) ANFIS.
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analysis results, where the highest eigenvalue n is of the pos-
itive value of r = 0:29 that refers to HRT (d).

3.2. Data Gathering and Preanalysis Phase. In this phase, our
study employed two different techniques to evaluate and
predict the output parameters from the employed algo-
rithms. Then, the data acquired in the experiments con-
ducted in this research were employed for training the
above-mentioned algorithms [35], whilst of the whole data
points, about 25% of the same data points were used for
the validation of those algorithms. Also, the dataset was sub-
jected to the normalization procedure:

Dk = 2 x − xmin
xmax − xmin

− 1: ð12Þ

In the above equation, Dk represents the normalized
value and x stands for the input value.

3.3. Identification of Outliers. Outlier or suspected data
points featuring behaviors that differ from the major part
of the databank show up in a large dataset typically. How-
ever, the same data points may affect model’s accuracy and
reliability. Hence, it seems necessary then to try to find such
data in the proposed models, in particular for the training
datasets. In case of neglecting some unrecognized impacts,
some restrictions may be encountered in the model. In the
other words, the analysis of outliers may provide us with
an insight on the same restrictions, which are the benefits
of the discussed analysis. In order to eliminate the outlier
data, the leverage technique was used, which requires deter-
mining the deviation of the predictive tool from the con-
cerned real data [34, 36]. The deviation which is also
termed as standardized crossvalidated residuals creates a

Hat matrix, which can be determined on the basis of the
equation below in this study:

H = X XtX
� �−1Xt , ð13Þ

where X stands for an N × P matrix. N and P, respectively,
represent the entire number of data points and the input
parameters. T and -1 are called transpose and inverse oper-
ators, respectively. In addition, the equation below was used
to explicate a warning leverage value:

H∗ = 3n
p + 1ð Þ : ð14Þ

The practical region is delineated within 0 ≤H ≤H ∗
and R = ±3 rectangular area. According to the red points
observed in Figure 2, only a number of 20 suspected data
were discovered amongst the entire dataset.

4. Results and Discussion

The two computational techniques developed in this work are
ANFIS and LSSVM used to estimate the target values. Upon
splitting the dataset into the testing and training datasets, of
the whole data points, 75% were employed to make use of
the above-mentioned model for determining the outputs.
Then, the training process performance is expressible through
a comparison made between the real values and the predicted
ones in this step. Alternatively, the comparison made in the
testing phase presents a better idea about the model’s accuracy
in unclear circumstances, which is called model generaliza-
tion. Figure 3 presents the simultaneous comparison of the
experimental and determined targets for the whole models
trained in testing and training databanks. Also, as Figure 3
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Figure 3: Simultaneous viewing of real and simulated output data using models (a) LSSVM and (b) ANFIS.
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suggests, the calculated constants may include the experimen-
tal points featuring plausible performances.

Thus, it is evident that the proposed LSSVM model can
estimate outputs with higher accuracy. In order to evaluate
the usability of the proposed models, various mathematical
and graphical techniques were used. In Figure 4, the cross-
plots or regression are presented exhibiting the capability
of the suggested algorithms in estimating the target values.
It is clear that the data points are highly concentrated
around the bisector line.

Figure 5 presents the deviation plots for the ANFIS and
LSSVM models and shows the outputs vs. relative deviation

for testing and training steps. Most of the determined devi-
ations are found in the vicinity of the zero error line. In addi-
tion, the deviations compaction in the LSSVM model is
clearer than the other model. The same compaction reflects
the accuracy of prediction for this model.

Table 1 reports the mathematical indexes determined for
the presented models. The higher values of R2, and also, the
lower values of RMSE, MRE, STD, and MSE are observable
for the proposed models, reflecting their good capability in
estimating the output values.

Also, the models of ANFIS and LSSVM and the rest of
the techniques found in the literature to decide the target
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Figure 5: The deviation plots for the (a) LSSVM and (b) ANFIS models.
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values, e.g., those presented by the authors such as Neto and
colleagues were compared. In 2021, they used the artificial
neural network method to predict this parameter [35]. Com-
pared to other models, the LSSVM model with R2 = 0:998
features the most optimal performance. The same compari-
son reveals that the minimum accuracy is attributable to the
ANN model with R2 = 0:6167.

5. Conclusions

In this study, two accurate techniques, i.e., ANFIS and
LSSVM, were presented successfully to estimate biogas pro-
duction. The developed instruments used for estimation
may help the scholars in suggesting a new efficient measure-
ment technique. According to the statistical analyses, the
LSSVM model can lead to the most accurate results with
the best values of STD, RMSE, R2, MSE, and MRE. Given
the above results, compared to the rest of the computational
techniques, the LSSVM model presented a superb perfor-
mance in terms of validity, accuracy, and generalization.
Additionally, a sensitivity analysis was conducted in order
to reflect the effect of input parameters on the target values
which showed that HRT (d) has the greatest effect on the
output parameter.
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