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The efficiency of nitrogen-fixing root nodule symbiosis 
is greatly dependent on the manner in which the sym-
biont is intracellularly accommodated. Rhizobia can re-
side either in cell wall-bound fixation threads (FTs) or 
in membrane-bound, organelle-like structures termed 
symbiosomes (SYMs). Casaes et al. (2024) investigated 
the evolution of Chamaecrista (a legume genus belong-
ing to the Caesalpinioideae, a sister subfamily to the 
Papilionoideae), focusing on a possible relationship be-
tween the plant’s growth habitat and the rhizobial housing 
mechanism. They identified tree species with FTs, (sub)
shrubs with SYMs, and, notably, several shrub species 
displaying an intermediate FT–SYM phenotype. The pres-
ence of multiple rhizobia housing mechanisms within a 
single evolutionary genus, in combination with the pres-
ence of a possibly unique intermediate form of rhizobia 
housing, opens up the opportunity to unravel the genetic 
adaptations leading towards SYM release, and could po-
tentially shed more light on organelle evolution.

Symbiosomes: a crucial evolutionary 
adaptation

Both FT- and SYM-type structures enable nutrient exchange 
between the host plant and the N2-fixing rhizobium in its 
symbiotic form, the bacteroid. Three key features distinguish 

the FTs from SYMs (Fig. 1A–C). Firstly, the FT is derived 
from invaginations of the host cell wall of the infection thread 
(IT) and remains cell wall bound at all times (Brewin, 1998; 
Fonseca et al., 2012). Conversely, SYM release involves the 
breakdown of the plant cell wall at the tip of the IT, the release 
of the rhizobia into the host cytoplasm, but with the retention 
of the symbiont only in a thin host-derived (peribacteroid) 
membrane (Gavrin et al., 2016). A second key difference is that 
SYMs typically contain only one to at most a few rhizobia. 
Combined with the removal of the host-derived cell wall, this 
effectively reduces the amount of space occupied by each in-
dividual symbiont, and, as a consequence, allows the host to 
accommodate a far greater number of symbionts per cell (de 
Faria et al., 2022; Casaes et al., 2024). Akin to chloroplasts, a 
greater number of smaller organelles is believed to be more 
efficient than a few larger FTs (Schumpp et al., 2009; Xiong et 
al., 2017). A third, and probably crucial key difference, is that 
the SYM fully encloses the symbiont by only the peribacteroid 
membrane, thereby maximizing the surface area available for 
nutrient exchange while probably at the same time minimiz-
ing any impediment to diffusion of metabolites and nutrients. 
This more efficient plant–microbe interaction probably con-
fers a competitive advantage to the host plant. It is therefore 
not surprising that the SYM-type symbiosis is the predomi-
nant symbiont housing strategy among all nodulating Fabaceae 
species (de Faria et al., 2022).

The currently prevailing hypothesis on the origin of nod-
ulation is a single gain followed by massive parallel losses 
(Griesmann et al., 2018; van Velzen et al., 2018). Stable reten-
tion of the nodulation trait seemingly correlates with the ability 
to develop SYM-type nodules (de Faria et al., 2022). Within 
the N2-fixing clade, the vast majority of nodulation species 
are found within the Fabaceae family (Doyle, 2011; Griesmann 
et al., 2018). Yet even here the nodulation trait is unequally 
distributed. Of the over ~20 000 Fabaceae, most nodulating 
species are members of either the Papilionoideae subfamily or 
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the mimosoid clade in the Caesalpinioideae subfamily (de Faria 
et al., 2022). With the exception of a few basal Papilionoideae 
clades, all of the aforementioned nodulation-competent spe-
cies exclusively develop SYM-type nodules. The phylogenetic 
distribution of these species suggests the FT to be an ancestral 
trait. Consequently, SYMs must have been acquired independ-
ently through convergent evolution (Sprent et al., 2013; Ardley 
and Sprent, 2021; de Faria et al., 2022) (Fig. 2). It thus appears 
that the development of SYMs is pivotal, as failure to do so 
may ultimately lead to the loss of the ability to nodulate.

Chamaecrista as a novel experimental 
system to investigate symbiosome 
evolution

Despite being a crucial adaption, the genetic changes under-
lying a transition from FT- to SYM-type rhizobia housing 
have remained largely elusive. Previous studies on SYM ev-
olution predominantly focused on SYM-developing spe-
cies (Gavrin et al., 2016; Libourel et al., 2023), presumably 
limited by the large evolutionary gap between FT-type and 

Fig. 1. Schematic overview of the different rhizobial housing mechanisms. (A) A fixation thread (FT) derived from invagination of the plant cell wall (black) 
and surrounded by a plant-derived membrane (red). (B) An intermediate FT–symbiosome (FT–SYM) housing type. Note the thinning of the cell wall and 
protrusion of the symbionts. (C) SYMs surrounded by a plant-derived membrane and lacking a plant cell wall.

Fig. 2. Simplified phylogeny of the nitrogen-fixing clade with emphasis on the rhizobial housing mechanism and the legume family. Symbiosomes (SYMs; 
red); fixation threads (FTs; blue); and fixation thread–symbiosome intermediate (FT–SYM; green). IRLC=inverted repeat lacking clade. Time scales are 
approximate.
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SYM-type Papilionoideae. The comparison between basal 
FT-type Papilionoideae clades and SYM-forming Papilionoideae 
is complicated by >50 million years of evolutionary separa-
tion, thereby introducing significant noise within the anal-
ysis (Sprent et al., 2017). However, the recent study by Casaes 
et al. (2024) positions the non-mimosoid Caesalpinioideae 
Chamaecrista genus as a particularly attractive system to study 
SYM evolution. Chamaecrista stands out as having independ-
ently acquired SYMs and being the only known genus to 
date to contain both SYM- and FT-type nodules. Within the 
Chamaecrista genus, tree species of the basal Apoucouita sec-
tion develop FTs, whereas shrubby members of the Absus 
and Chamaecrista sections develop SYMs (Naisbitt et al., 1992; 
Casaes et al., 2024). Notably, Casaes et al. (2024) pinpoint sev-
eral species seemingly in transition from FT- to SYM-type 
nodules, further suggesting an ongoing evolutionary develop-
ment towards SYM acquisition in the Chamaecrista genus (Fig. 
1B). The most recent FT–SYM to SYM transition event in 
this genus occurred relatively recently, ~17 million years ago, 

while a comparison between Chamaecrista species employing 
FT-type and SYM-type strategies is separated by ~35 million 
years of evolution (Fig. 2). Combined, this means that a com-
parative analysis within the Chamaecrista genus holds promise 
for identifying the crucial adaptations that could be causal in 
facilitating a transition towards SYM housing mechanisms of 
N2-fixing rhizobia.

The aim of such comparative analyses would be to derive 
a blueprint of the genetic constraints needed to enable SYM 
formation. The ultimate proof of concept, and validation, of 
such a blueprint is to engineer SYMs on an FT-type species. 
Moving beyond in silico analyses towards practical application 
necessitates developing a diversity of Chamaecrista species as 
suitable models for in planta research. The SYM-type shrubby 
species Chamaecrista fasciculata and C. mimosoides have already 
been used in laboratory settings, their genomes have been 
sequenced, and they are amenable to hairy root transforma-
tions via Rhizobium rhizogenes (formerly Agrobacterium rhizo-
genes) (Griesmann et al., 2018; Wardhani, 2020). However, the 

Box 1. Terminally differentiated bacteroids—a temporary organelle

Following symbiosome release, certain species impose terminal differentiation upon their symbiont. While primarily 
observed in members of the inverted repeat lacking clade (IRLC), a form of terminal differentiation is also observed in 
stem nodules of the Aeschynomene genus (Mergaert et al., 2006; Czernic et al., 2015). Thus, like symbiosomes, this trait 
too appears to be an example of convergent evolution.

Terminal differentiation is characterized by the enlargement of the symbiont, endoreplication of its genomic content, 
increased membrane permeability and the irreversible loss of autonomy (Fig. 3).

In Medicago truncatula (an IRLC member), the induction of terminal differentiation is dependent on host-produced 
nodule-specific cysteine-rich (NCR) peptides (Van de Velde et al., 2010). The NCR family of peptides comprises >600 
members, few of which have been characterized. The mature peptides are transported towards the symbiosome 
membrane where they induce terminal differentiation (Wang et al., 2010; Montiel et al., 2017; Yang et al., 2023). Although 
the genetic regulation of terminal differentiation in the Aeschynomene genus is unknown, it too appears to utilize NCR 
peptides (Czernic et al., 2015). Terminal differentiation is believed to further enhance the efficiency of the nitrogen-fixing 

symbiosis (Oono and Denison, 2010), a claim corroborated by the apparent convergent evolution of the trait.

Fig. 3. Terminal differentiation of the nitrogen-fixing symbiont. Following symbiosome release, the symbiont undergoes cell enlargement, genome 
endoduplication, and its membrane permeability is increased. The symbiont is no longer capable of survival outside the host plant cell.
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biggest challenge probably lies with the FT-type Chamaecrista. 
FT-type Chamaecrista species are all tropical trees, which gener-
ally suffer from relatively long, sexually incompetent, juvenile 
stages. Consequently, utilizing tree species in laboratory condi-
tions is a non-trivial task. Nevertheless, the successful utiliza-
tion of the nodulating tree species Parasponia andersonii indicates 
that establishing a model tree species is feasible (Wardhani et al., 
2019). Comparative analyses involving P. andersonii have already 
provided valuable insights into the evolution of nodulation 
(van Velzen et al., 2018; Libourel et al., 2023; Zhang et al., 2023). 
The Chamaecrista genus holds similar potential to provide cru-
cial insights into the evolution of SYMs. However, to truly 
establish Chamaecrista as a model system for SYM evolution, 
significant efforts must be directed towards establishing FT, 
SYM, and FT–SYM species as additional experimental models.

The evolution of a transient organelle

SYMs not only boost the efficiency of the symbioses, but also 
enable the host plant to exert greater levels of control over its 
symbiont. Consider the inverted repeat lacking clade (IRLC) 
within the Papilionoideae subfamily of legumes for instance. 
Here, following SYM release, the symbiont is terminally dif-
ferentiated during the nodulation process, which further opti-
mizes—exploits—the symbiotic interaction. During terminal 
differentiation, host-produced peptides trigger the symbiont to 
lose its capacity to function as a free-living organism, essen-
tially becoming a transient organelle (Box 1; Fig. 3) (Mergaert 
et al., 2006; Van de Velde et al., 2010). While members of the 
Mimosoid clade in the Caesalpinioideae do not appear to impose 
terminal differentiation upon their symbionts (Marchetti et al., 
2011; Libourel et al., 2023), it is currently unknown if such ter-
minal differentiation could occur within the SYM-type nod-
ules of Chamaecrista species.

During terminal differentiation, the symbiont seems to have 
relinquished all control to the host. However, one outstanding 
question that remains is whether the host or the symbiont is in 
control of SYM formation. The current hypothesis is that the 
host plant controls the party (Ferguson et al., 2019).

The cross-nodulation experiments performed by Casaes and 
colleagues (2024) identified strains capable of nodulating on 
a SYM-type shrub species, though their primary host is an 
FT-type tree. An investigation on the structure of these nodules 
would be warranted. Such an analysis of SYM-type nodules 
with a rhizobial strain generally associated with FT-type nod-
ules, and vice versa, would be able to test the current dogma on 
host control of bacterial release.

Terminally differentiated or not, SYMs bear a significant re-
semblance to an organelle; they are enclosed in host-derived 
membranes, an import–export mechanism is established, and 
in some cases the symbiont is stripped of its autonomy. This 
study by Casaes and colleagues (2024) now positions the 

Chamaecrista genus as an interesting system for comparative ev-
olutionary analyses to study SYM evolution. This will not only 
provide valuable insights for nodule engineering efforts but 
will also shed light onto the acquisition of a new organelle.
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