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Identification of hub genes in thyroid carcinoma to predict prognosis by 
integrated bioinformatics analysis
Yangwang Pan, Linjing Wu, Shuai He, Jun Wu, Tong Wang, and Hongrui Zang

Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Bejing, People’s Republic of 
China

ABSTRACT
The aim of this study was to identify hub genes closely related to the pathogenesis and prognosis 
of thyroid carcinoma (THCA) by integrated bioinformatics analysis. In this study, through differ-
ential gene expression analysis, 1916 and 665 differentially expressed genes (DEGs) were obtained 
from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, and 7 and 
11 co-expressed modules were identified from the TCGA-THCA and GSE153659 datasets, respec-
tively, by weighted gene co-expression network analysis. We identified 162 overlapping genes 
between the DEGs and co-expression module genes as candidate hub genes. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the 162 
overlapping DEGs identified significant functions and pathways of THCA, such as thyroid hormone 
generation and metabolic process. A protein–protein interaction (PPI) analysis detected the top 10 
hub genes (QSOX1, WFS1, EVA1A, FSTL3, CHRDL1, FABP4, PRDM16, PPARGC1A, PPARG, COL23A1). 
Finally, survival analysis, clinical correlation analysis, and protein abundance validation confirmed 
that 3 of the 10 hub genes were associated with survival prognosis of patients with THCA, and 8 
of them were associated with the clinical stages of THCA. In summary, we identified hub genes 
and key modules that were closely related to THCA, and validated these genes by survival analysis, 
clinical correlation analysis, and Human Protein Atlas image analysis. Our results provide impor-
tant information that will help to elucidate the pathogenesis of THCA and identify novel candidate 
prognostic biomarkers and potential therapeutic targets.
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Introduction

Thyroid carcinoma (THCA) is the most common 
cancer involving the endocrine system and the 
most prevalent malignant tumor of the head and 
neck, accounting for about 1%–2% of systemic 
malignancies. The incidence rate is predominant 
in females and has been increasing year by year 
[1,2]. The etiology of THCA remains unclear and 
is currently thought to be the synergistic result of 
multiple carcinogenic factors, such as nutrition, 
dietary habits, obesity, and radiation exposure 
[3,4]. Treatments for THCA include surgery, thyr-
oid hormone, and radiation therapy. The compre-
hensive and systematic therapies mean that most 
patients with differentiated THCAs have 
a relatively good prognosis, but patients with dis-
tant metastasis or undifferentiated THCAs often 
have a less favorable prognosis [5,6]. Therefore, it 
is urgent to identify the hub genes involved in 
THCA to help develop new therapeutic targets.

The development of next-generation high- 
throughput sequencing technologies and genomics 
has generated large amounts of cancer gene 
expression data and clinical information that 
have been stored in many public databases [7,8]. 
This has laid the foundation for further elucidating 
the molecular mechanisms of cancer and the bio-
logical functions of hub genes by bioinformatics 
methods and experimental validation. Weighted 
gene co-expression network analysis (WGCNA) 
is commonly used to identify co-expression gene 
modules that are highly correlated with clinical 
phenotypes [9].

In this study, we aimed to identify potential 
prognostic biomarkers for distinguishing THCA 
at different clinical stages. Previous studies [10– 
14] have used transcriptome and microarray data 
for gene differential expression analysis, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway functional enrich-
ment analysis, protein–protein interaction (PPI) 
network analysis, and/or survival analysis. In this 
study, we added WGCNA, and validated the iden-
tified hub genes by clinical correlation analysis and 
Human Protein Atlas (HPA) image analysis.

Materials and methods

Data acquisition from the TCGA and GEO 
databases

THCA gene expression data and survival information 
were obtained from The Cancer Genome Atlas 
(TCGA) (https://portal.gdc.cancer.gov) and Gene 
Expression Omnibus (GEO) (https://www.ncbi.nlm. 
nih.gov/gds) databases. We downloaded TCGA 
RNA-Seq raw counts and corresponding clinical 
data from the TCGA database using the R package 
TCGAbiolinks [15]. A total of 567 samples were col-
lected, including 509 THCA and 58 normal thyroid 
tissues. We downloaded the GEO high-throughput 
sequencing GSE153659 dataset using the R package 
GEOquery [16]. A total of 24 THCA and 7 adjacent 
normal thyroid tissues were collected.

Data preprocessing and differential 
expression analysis

Different intergroup comparisons were conducted 
using the Rstudio software (version 1.3.959, 
https://rstudio.com/) and Bioconductor 
R packages (http://www.bioconductor.org/). First, 
the gene expression matrices of the TCGA-THCA 
and GSE153659 datasets were normalized sepa-
rately, and formatted in the RStudio input file 
format. Then, volcano plots and heatmaps of the 
differentially expressed genes (DEGs) were drawn 
using the limma [17] and pheatmap [18] packages 
in R. Genes with adjusted P-value <0.05 and | 
logFC (fold change)| >1 were considered to be 
statistically differentially expressed.

Weighted gene co-expression network 
analysis (WGCNA)

WGCNA can identify modules of highly correlated 
genes and hub genes by constructing scale-free co- 
expression networks [19]. We used the R package 
WGCNA [20] in RStudio to perform WGCNA for 
the TCGA-THCA and GSE153659 datasets sepa-
rately. The filtered and trimmed raw expression data 
and clinical information were input, then all the genes 
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and samples were clustered by Pearson correlation- 
based hierarchical clustering. To construct a scale-free 
gene co-expression network, we set soft threshold 
power values using the pickSoftThreshold function, 
and calculated the scale-free fit index and average 
connectivity of each power. Then, the adjacency 
matrices were converted into a topological overlap 
matrix, which was used for gene hierarchical cluster-
ing and dynamic shear module recognition, and simi-
lar modules were clustered and merged. Finally, the 
gene list of each module was obtained and gene- 
module tree and module-trait relationship diagrams 
were drawn.

Intersection of differential expression 
analysis and WGCNA

In the module-trait relationship diagrams of the 
TCGA-THCA and GSE153659 datasets, the top 
two modules most significantly related to THCA 
were found. Overlapping genes between DEGs and 
top two most relevant co-expression module genes 
(CEMGs) were considered as candidate hub genes 
of THCA, which were visualized as a Venn dia-
gram using the R package VennDiagram [21].

Functional and pathway enrichment analyses

To explore the biological functions and key path-
ways closely associated with the candidate hub 
genes of THCA [22], we used the R packages 
org.hs.eg.db, clusterProfiler, enrichplot, and 
ggplot2 [23,24] to perform GO [25] and KEGG 
[26] enrichment analyses. P-value <0.05 was con-
sidered statistically significant.

Construction of PPI network and 
identification of hub genes

PPI networks can provide interaction information 
that can help to identify hub genes and key mod-
ules involved in the development of THCA. We 
used the STRING database (http://www.string-db. 
org/) to construct a PPI network of candidate 
genes [27]. Genes with a minimum required inter-
action score ≥0.5 were chosen to build a full net-
work model, which was then visualized in 
Cytoscape software (http://www.cytoscape.org). 

We used the Maximal Clique Centrality (MCC) 
algorithm of the cytoHubba plugin to select the 
top 10 genes in the network and then visualized 
them in Cytoscape [28].

Survival analysis and clinical correlation 
analysis of hub genes

To confirm the reliability of the identified network 
hub genes and verify their prognostic value, we 
performed an overall survival (OS) analysis using 
the Kaplan Meier method [29] in the R packages 
survival and survminer [30] based on the clinical 
data from the TCGA-THCA dataset. We used the 
online survival analysis tool GEPIA2 (http:// 
gepia2.cancer-pku.cn/) to evaluate the disease- 
free survival (DFS) [31] of the patients with 
THCA. Then the R package ggpubr [32] was 
used to analysis the clinical correlation between 
gene expression and tumor stage. Only the 
patients for which complete clinical information 
was available were included in our analysis. The 
hub genes were classified into two groups based on 
their expression levels and the median values. 
Genes with P < 0.05 were regarded as prognosis- 
related hub genes.

Validation of protein abundance levels of 
prognosis-related hub genes

The Human Protein Atlas (HPA) (http://www.pro 
teinatlas.org/) is an antibody-based database that 
provides a large amount of transcriptome and 
proteomic data on various disease and normal 
tissues [33]. We used the HPA to validate protein 
abundance levels of the prognosis-related hub 
genes by downloading immunohistochemical 
(IHC)-stained images and analyzing them.

Results

We identified hub genes and key modules that 
were highly related to the prognosis of THCA by 
integrated bioinformatics analysis, including dif-
ferential expression analysis, WGCNA, GO and 
KEGG enrichment analyses, PPI network analysis, 
survival analysis, and clinical correlation analysis, 
and validated protein abundance by examining 
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related HPA images. The goal was to further elu-
cidate the pathogenesis of THCA and find novel 
prognostic biomarkers and potential therapeutic 
targets.

Identification of DEGs

The TCGA-THCA dataset contained the gene 
expression matrix and clinical data for 567 sam-
ples, including 509 THCA and 58 normal thyroid 
tissues. The GSE153659 dataset contained the 
expression profiles from 24 TCGA and 7 paired 
normal tissues. After data preprocessing and gene 
differential expression analysis, we identified 1916 
DEGs from the TCGA-THCA dataset; 910 were 
down-regulated and 1006 were up-regulated 
(Figure 1a). We also identified 665 DEGs from 
the GSE153659 dataset; 471 were down-regulated 
and 194 were up-regulated (Figure 1b). The top 50 
DEGs from each dataset were visualized in heat-
maps (Figure 1c,d).

WGCNA of the whole transcriptome 
expression matrix

Genes with similar expression patterns tended to 
have similar biological functions. Therefore, we con-
structed a weighted gene co-expression network 
according to the RNA-Seq count data of 14,161 
genes in the TCGA-THCA dataset and 58,437 
genes in the GSE153659 dataset. We analyzed the 
soft threshold powers of the network topology with 
threshold weights from 1 to 20 and determined the 
scale independence and mean connectivity of the 
WGCNA. We selected β = 2 and 6 as the optimal 
soft-thresholding parameters (Figure 2(g,h),). The 
hierarchical clustering dendrograms of module 
eigengenes are shown in Figure 2(a,b). We identified 
7 modules from the TCGA-THCA dataset (Figure 2 
(c)) and 11 modules from the GSE153659 dataset 
(Figure 2(d)), and plotted module-trait diagrams to 
assess the relationships between gene modules and 
clinical characteristics. The two modules with the 
highest correlation with clinical phenotypes were 
MEred and MEturquoise in TCGA-THCA and 

Figure 1. Identification of differentially expressed genes (DEGs) in the TCGA and GSE153659 datasets of thyroid carcinoma (THCA). 
The cutoff criteria were |logFC| ≥1.0 and adjusted P < 0.05. (a, b) Volcano plots of DEGs in the TCGA-THCA (a) and GSE153659 (b) 
datasets. (c, d) Heatmaps of the top 50 DEGs in the TCGA-THCA (c) and GSE153659 (d) datasets. Red, up-regulated DEGs; green, 
down-regulated DEGs.
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MEred and Mepink in GSE153659 as shown in 
Figure 2(e,f).

Intersection of DEGs and CEMGs

The differential expression analysis and WGCNA 
identified 1916 DEGs in the TCGA-THCA dataset 
and 665 DEGs in the GSE153659 dataset, 5459 
CEMGs in the MEred and MEturquoise modules 
of TCGA-THCA, and 1602 CEMGs in the MEred 
and MEpink modules of GSE153659. A total of 
162 overlapping genes were detected between the 
DEGs and top two most relevant CEMGs. These 
genes were considered as candidate hub genes of 
THCA and were used for the subsequent analyses 
(Figure 3).

Enrichment analyses of the 162 overlapping 
genes

We performed GO functional and KEGG pathway 
enrichment analyses of the 162 overlapping genes 
using the R packages listed in the Methods section. 
The enriched GO terms (Figure 4(a)) under the 
biological process category were mainly thyroid hor-
mone metabolic process, fat cell differentiation, reg-
ulation of transmembrane receptor protein serine/ 
threonine kinase signaling pathway, and endoplas-
mic reticulum stress-induced intrinsic apoptotic sig-
naling pathway. Under the cellular component 
category, the enriched terms were primarily related 
to apical plasma membrane, endoplasmic reticulum 
lumen, and collagen-containing extracellular matrix. 
Under the molecular function category, the enriched 

Figure 2. Identification of modules correlated with the clinical phenotype in the TCGA-THCA and GSE153659 datasets of thyroid 
carcinoma (THCA). (a, b) Hierarchical clustering dendrograms of module eigengenes in the TCGA-THCA (a) and GSE153659 (b) 
datasets. Modules below the red line indicate correlation >0.6 and will be merged. (c, d) Gene-module tree diagrams in the TCGA- 
THCA (c) and GSE153659 (d) datasets. Each branch represents one gene, and each of the colors below represent one co-expression 
module. (e, f) Module-trait relationship diagrams in the TCGA-THCA (e) and GSE153659 (f) datasets. Each row corresponds to a color 
module and each column corresponds to a clinical trait (tumor or normal). Each cell contains the corresponding correlation and 
P-value. (g, h) Analysis of the scale independence and mean connectivity for the optimal soft threshold powers (β) 2 in the TCGA- 
THCA (g) and 6 in the GSE153659 (h), respectively.
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terms were mainly related to oxidoreductase activ-
ity, extracellular matrix structural constituent, 
GTPase regulator activity, and actin filament bind-
ing. The KEGG pathway analysis (Figure 4(b)) 
found that the tyrosine metabolism, thyroid hor-
mone synthesis, and protein digestion and absorp-
tion pathways were significantly enriched.

Identifying hub genes in the PPI network

We built the PPI network of the 162 overlapping 
candidate hub genes using the STRING database 
(Figure 5(a)). The MCC algorithm of the 
cytoHubba plug-in in Cytoscape was used to iden-
tify hub genes from the PPI network (Figure 5(b)). 
The top 10 network hub genes encoded QSOX1 
(quiescin sulfhydryl oxidase 1), WFS1 (wolframin 
ER transmembrane glycoprotein), EVA1A (Eva-1 
homolog A, regulator of programmed cell death), 
FSTL3 (follistatin like 3), CHRDL1 (chordin like 1), 
FABP4 (fatty acid binding protein 4), PRDM16 
(PR/SET domain 16), PPARGC1A (PPARG coacti-
vator 1 alpha), PPARG (peroxisome proliferator 

activated receptor gamma), and COL23A1 (col-
lagen type XXIII alpha 1 chain).

Identification of prognosis-related hub genes 
and validation of protein abundance levels

To detect the prognosis-related hub genes among 
the top 10 network hub genes (QSOX1, WFS1, 
EVA1A, FSTL3, CHRDL1, FABP4, PRDM16, 
PPARGC1A, PPARG, COL23A1), we performed 
OS and DFS analyses using the R packages survival 
and survminer [30] and the GEPIA2 tool, respec-
tively. We verified the expression levels of the 
genes in THCA tissues at different stages. The 
OS analysis showed that low expression of 
EVA1A was significantly correlation with unfavor-
able prognosis in patients with THCA (P < 0.05) 
(Figure 6(a)). The DFS analysis showed that low 
expression of CHRDL1 and FABP4 was markedly 
associated with poor prognosis (P < 0.05) (Figure 6 
(b)). Our evaluation of the hub genes using the 
HPA images indicated that the abundance levels of 
the EVA1A and CHRDL1 proteins were lower in 
tumor tissues than they were normal tissues 

Figure 3. Venn diagrams of the differentially expressed genes (DEGs) and top two most relevant co-expression module genes 
(CEMGs) of thyroid carcinoma (THCA). The 162 overlapping genes were considered as candidate hub genes of THCA.
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(Figure 7(a,b)). Furthermore, the clinical correla-
tion analysis indicated that CHRDL1, COL23A1, 
EVA1A, FABP4, FSTL3, PPARGC1A, PRDM16, 
and QSOX1 were strongly associated with the 
clinical stages of THCA (Figure 8).

Discussion

THCA is a malignant tumor that originates from 
thyroid follicular epithelium or parafollicular 
epithelial cells, and it is also the most common 
head and neck cancer [34]. Currently, THCA is 
mainly targeted using a comprehensive treatment 
strategy of surgery combined with thyroid 

hormone therapy and radiotherapy. However, 
because of the lack of accurate molecular targets, 
the prognosis is still poor, especially for patients 
with advanced clinical stage THCA [35]. 
Therefore, there is an urgent need to find new 
prognostic biomarkers and therapeutic targets for 
THCA. In this study, we used integrated bioinfor-
matics methods such as WGCNA and identified 
162 overlapping candidate hub genes in the 
TCGA-THCA and GSE153659 datasets. The bio-
logical functions of these genes were enriched 
mainly in thyroid hormone generation and meta-
bolic process, regulation of serine/threonine kinase 
signaling pathway, apical plasma membrane, 

Figure 4. Bubble plots of the functional and pathway enrichment analyses the 162 overlapping genes. (a, b) Gene Ontology (GO) (a) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (b) enrichment analyses. The diameter of the circle indicates the 
number of genes, the color of the circle indicates the P-values, and the bottom transverse coordinate GeneRatio represent the 
proportion of the total number of genes.
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endoplasmic reticulum lumen and extracellular 
matrix, GTPase regulator activity, SH3 domain 
binding, and actin filament binding. The enriched 
pathways were mainly thyroid hormone synthesis, 
protein digestion and absorption, tyrosine, and 
sulfur and seleno-compound metabolism. The 
top 10 hub genes (QSOX1, WFS1, EVA1A, 
FSTL3, CHRDL1, FABP4, PRDM16, PPARGC1A, 
PPARG, COL23A1) were identified by analyzing 
the constructed PPI network. Among them, low 
expression of EVA1A, CHRDL1, and FABP4 sig-
nificantly affected the survival prognosis of 
patients with THCA, and the expression levels of 
CHRDL1, COL23A1, EVA1A, FABP4, FSTL3, 

PPARGC1A, PRDM16, and QSOX1 were highly 
correlated with the clinical stages of THCA. The 
identified hub genes were confirmed by survival 
and clinical correlation analysis and by examining 
related HPA images.

EVA1A (Eva-1 homolog A, regulator of pro-
grammed cell death) is a novel lysosomal and 
endoplasmic reticulum-associated protein 
involved in autophagy and cell division [36]. 
Several studies have found that high levels of 
EVA1A inhibit the growth of tumor cells by acti-
vating autophagy and inducing apoptosis [36]. 
Furthermore, EVA1A is a target of microRNA- 
125b, which plays a role in the response of liver 

Figure 5. Visualization of the protein–protein interaction (PPI) network and top 10 hub genes. (a) PPI network of the 162 
overlapping genes. Blue nodes represent the genes; edges represent interactions between nodes. (b) Identification of hub genes 
from the PPI network using the Maximal Clique Centrality (MCC) algorithm. The edges represent protein–protein associations. Red 
nodes represent genes with high MCC sores; yellow nodes represent genes with low MCC scores.
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cancer to chemotherapy by decreasing EVA1A- 
mediated autophagy [37]. In our study, the down- 
regulated expression of EVA1A in THCA tissues 
was closely related to poor survival prognosis. 
CHRDL1 (chordin like 1) is a secreted glycopro-
tein with a repetitive cysteine-rich domain that 
binds to the bone morphogenetic protein (BMP) 
family of ligands [38]. It has been reported that 
CHRDL1 expression was dramatically down- 
regulated in gastric cancer tissues and was linked 
to poor survival [39]. Cyr-Depauw C, et al [40]. 
found that CHRDL1 acts as a negative regulator of 
breast cancer phenotypes by blocking the ability of 
BMP ligands to induce increased migration and 
invasion of breast cancer cells. FABP4 (fatty acid 

binding protein 4) is an intracellular lipid chaper-
one that is involved not only in lipid transport but 
also in inflammation and insulin resistance [41]. 
Differential expression of FABP4 has been 
reported in obesity-associated breast cancer, color-
ectal cancer, hepatocellular carcinoma, and FABP4 
is closely correlated with tumor invasion and 
metastasis [42–44]. Together, these results show 
that WGCNA and other integrated bioinformatics 
analyses can detect new disease-causing genes and 
provide rich resources for future experiments.

A recent study found that the KEGG pathways 
Mineral absorption, Thyroid hormone synthesis, 
and Protein processing in the endoplasmic reticu-
lum pathways and the GO molecular function 

Figure 6. Survival analysis of the top 10 hub genes in patients with thyroid carcinoma (THCA). (a) Overall survival (OS) analysis for 
EVA1A in THCA using the R package survival. (b, c) Disease-free survival (DFS) analysis for CHRDL1 (b) and FABP4 (c) in THCA using 
the GEPIA2 tool. The patients were classified into high-level (red) and low-level (green) groups according to the median expression 
levels of the genes. P < 0.05 was considered to be a statistically significant difference.
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terms protein tyrosine kinase activity, enzyme 
binding, protein binding, and integrin binding 
were enriched in follicular thyroid carcinoma 
[45]. Interestingly, emerging evidence has indi-
cated possible molecular links between THCA 
and other diseases, such as Parkinson’s disease, 
osteoporosis, chronic kidney disease, chronic 
heart failure, and Type 1 and Type 2 diabetes 
[46]. The Thyroid hormone synthesis, Adherens 
junction, and Thyroid cancer pathways were found 
to be common between THCA and chronic kidney 
disease [47]. A study that used a network-based 
approach [48] identified seven significant path-
ways, namely, Thyroid hormone synthesis, Rap1 
signaling, Pathways in cancer, PI3K-Akt signaling, 
Proteoglycans in cancer, Bladder cancer, and 
Cytokine-cytokine receptor interaction, that were 
highly correlated with 79 hub genes of THCA that 
were common to other diseases. They included 
cancer (24 genes), neurological (20 genes), cardio-
vascular (14 genes), metabolic (13 genes), endo-
crine (13 genes), and hematological (12 genes) 
[48]. The results of our functional and pathway 

enrichment analysis are consistent with those of 
many other previously reported studies.

The integrated bioinformatics analyses allowed 
us to identify hub genes and key modules closely 
associated with the initiation and progression of 
THCA. The results were validated by the survival 
analysis, clinical correlation analysis, and protein 
abundance data. Our results will help to elucidate 
the pathogenesis of THCA and provide novel can-
didate biomarkers and potential therapeutic tar-
gets for future studies. A limitation of this study 
is the lack of focus on the different subtypes of 
THCA. Clearly, the hub genes associated with the 
pathogenesis and outcome of THCA still need to 
be tested experimentally.

Conclusion

In this study, we identified three genes (EVA1A, 
CHRDL1, FABP4) that were associated with survi-
val prognosis of patients with THCA, and eight 
(CHRDL1, COL23A1, EVA1A, FABP4, FSTL3, 
PPARGC1A, PRDM16, QSOX1) that were 

Figure 7. Immunohistochemical images of prognosis-related genes in cancer and normal tissues from the HPA database. (a, b) 
Abundance levels of EVA1A in (a) thyroid carcinoma (THCA) tissues (Antibody HPA008055; Staining: Not detected; Intensity: 
Negative; Quantity: None) and (b) normal thyroid tissues (Antibody HPA008055; Staining: Low; Intensity: Week; Quantity: 75%– 
25%). (c, d) Abundance levels of CHRDL1 in (c) THCA tissues (Antibody HPA000250; Staining: Not detected; Intensity: Negative; 
Quantity: None) and (d) normal thyroid tissues (Antibody HPA000250; Staining: Low; Intensity: Week; Quantity: 75%–25%).
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associated with clinical stages. These genes are 
candidate novel prognostic biomarkers and poten-
tial therapeutic targets.

Research highlights

● We obtained top 10 hub genes (QSOX1, 
WFS1, EVA1A, FSTL3, CHRDL1, FABP4, 
PRDM16, PPARGC1A, PPARG, COL23A1) 
in thyroid carcinoma

● 3 of the 10 hub genes were associated with 
survival prognosis of thyroid carcinoma

● 8 of the 10 hub genes were associated with 
clinical stages of thyroid carcinoma

● The hub genes may be novel prognostic bio-
markers and potential therapeutic targets
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