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Abstract

Background: Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans,
the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases
encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play
a central role in the pathogenesis of M. ulcerans.

Methodology/Principal Findings: We have synthesized and tested a series of mycolactone derivatives to conduct structure-
activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used
to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain
(comprising C12–C20) caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked
polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory
effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether
mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus
pneumoniae) or Gram-negative bacteria (Neisseria meningitis and Escherichia coli), the fungus Saccharomyces cerevisae or the
amoeba Dictyostelium discoideum.

Conclusion: Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones
expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways.
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Introduction

The macrolide exotoxin mycolactone is a key virulence factor of

M. ulcerans and plays a central role in the pathogenesis of Buruli

ulcer [1]. Mycolactones have been shown to act both in vivo and in

vitro on various mammalian cell types, including fibroblasts [1–6],

adipocytes [7], keratinocytes [8], myocytes [9,10], macrophages

[2,6,11–14], dendritic cells [15] and T-cells [16–18]. Effects

caused by mycolactones include induction of apoptosis/necrosis,

cytoskeletal rearrangements, impaired cytokine production and

interference with cellular signaling.

The polyketide synthases required for mycolactone biosynthesis

are encoded on the extrachromosomal plasmid pMUM [19,20].

M. ulcerans has evolved from a common M. marinum ancestor by

acquisition of this plasmid and has subsequently diverged into two

principal mycolactone-producing lineages [21,22]. The ‘‘classical’’

lineage includes M. ulcerans isolates associated with Buruli ulcer

from Africa and Australia. The ‘‘ancestral’’ lineage includes both

Buruli ulcer isolates from Japan, China and Mexico and isolates

from fish and frogs previously also designated M. pseudoshottsii, M.

liflandii or M. marinum [23,24]. Mycolactones are composed of a

12-membered macrolide core and two attached side chains; a

short upper, C-linked side chain (comprising C12–C20) and a

longer lower, C5-O-linked polyunsaturated acyl side chain. While

the macrolide core structure and upper side chain are conserved,

mycolactone populations from different M. ulcerans sub-lineages

vary in the length, the number and localization of hydroxyl groups

and in the number of double bonds of the lower side chain. M.

ulcerans strains may produce several molecular variants of

mycolactone, with one or more species dominating [25]. The

mycolactone repertoire seems to be highly conserved within a

defined geographical sub-lineage of M. ulcerans [25]. Mycolactone

A/B is produced by strains of the classical M. ulcerans lineage found

in Africa and is regarded as the most potent toxin. Australian

classical lineage strains produce - in addition to mycolactone A/B -

mycolactone C, which lacks one hydroxyl group. Mycolactone D

with an additional methyl group is produced by Chinese strains

belonging to the ancestral lineage. M. ulcerans ancestral lineage

isolates from fish and frogs have been found to produce the

mycolactone variants E and F.

Mycolactones have previously been prepared from M. ulcerans

cultures by a two-step extraction procedure, yielding preparations
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of acetone soluble lipids predominantly containing mycolactone.

These extracts can be further purified by chromatographic

methods [26]; nevertheless, the use of extracted mycolactones

for comparative studies may be compromised by the heterogeneity

of preparations. Therefore, biological studies with highly defined

synthetic mycolactones represent an attractive alternative. Based

on the established synthesis of the mycolactone core [27–30],

different synthesis strategies have been pursued for the stereose-

lective partial and total synthesis of mycolactones [31–33]. In

addition, simplified C8-desmethyl-mycolactone analogues have

been synthesized, which were analyzed for their cytopathic

potency by using cell rounding as a parameter to compare

cytotoxic activities [34]. No systematic structure-activity relation-

ship studies on larger sets of synthetic mycolactones have been

published so far. Results of individual studies cannot be reliably

compared, since different readouts, such as cell rounding

[22,34,35], cytokine production [36] or flow cytometric param-

eters [35,36] have been employed. Furthermore, different cell lines

(such as Jurkat T-cells [36], murine fibroblasts [22,34,35] and sets

of human tumor cell lines [37] have been used and cytotoxic

activity has been assessed after different times, such as 24 hours

[36] or 24 and 48 hours [35]. Most of these structure-activity

studies have been limited to mycolactone A/B and a limited

number of derivatives. A comparison of the activity of eight C8-

desmethyl mycolactone analogues is hampered by the fact that

lack of the C8-methyl substituent reduces the cytopathic activity

by a factor of 125 [34]. Here, we have performed more systematic

comparative studies using synthetically produced natural toxins

and additional structural mycolactone variants that are not found

in nature.

Materials and Methods

Synthetic mycolactones
We recently reported the synthesis of mycolactone A/B [38].

Details of the syntheses of mycolactones C and F and of the six

non-natural mycolactone derivatives will be published elsewhere

(Gersbach et al., manuscript in preparation). Briefly, all mycolac-

tones discussed here were prepared by the same overall strategy

that we had previously developed for the synthesis of mycolactone

A/B. Thus, a modified Suzuki coupling was employed to establish

the C12–C13 bond and elaborate the full upper side chain and a

Yamaguchi type acylation reaction was used to attach the lower

side chain. All final products used for biological testing were

purified by RP-HPLC; they were generally obtained as mixtures of

(interconverting) double bond isomers. Analytical data for the

synthetic compounds are provided as supplementary information

(S1).

For biological testing, 0.5 mg/ml stock solutions of the

mycolactones were prepared in cell culture grade DMSO (Sigma).

Stock solutions were aliquoted and stored frozen at 220uC.

Cytotoxicity assay
Murine L929 fibroblasts were grown in RPMI medium (Gibco)

supplemented with 10% FCS (Sigma), 2 mM glutamine (Gibco)

and 0.05 mM b-mercaptoethanol (Gibco) and incubated at 37uC
and 5% CO2. Cells were passaged 3–6 times prior to use in

cytotoxicity experiments. For flow cytometry analysis 24,000 cells

were seeded into 24-well plates (Falcon) and allowed to adhere o/

n. Medium was then aspirated and replaced by 500 ml medium

containing different concentrations of mycolactone and 0.12%

DMSO (vol/vol). After incubation for 24, 48 or 72 h, cells were

detached from the culture plates by repeated gentle flushing

through a pipette tip without use of Trypsin-EDTA. Harvested

cells were centrifuged for 10 min at 1,200xg, resuspended in

300 ml binding buffer with 0.2 mg/ml Annexin V-FITC (Annex-

inV kit, Calbiochem) and incubated for 30 min at 4uC. The cells

were spun again and pellets were resuspended in 300 ml staining

buffer containing 0.3 mg/ml propidium iodide (AnnexinV kit,

Calbiochem). Cell suspensions were analyzed by flow cytometry

using a BD FACS Calibur Flow Cytometer (Becton Dickinson)

and apoptotic (A+/PI2) and necrotic (A+/PI+) cell populations

were determined using the CellQuest Pro Software (Becton

Dickinson). The experiments were set up in triplicates and

performed at least twice. Mycolactone A/B in a concentration

range of 3.75 to 120 ng/ml was included as control in all

experiments. The mycolactone concentration at which 50% of the

cells were killed (LC50) was determined by plotting the percentage

of affected cells (sum of A+/PI2 and A+/PI+ cells) against the log

concentration of the individual mycolactones. In Fig. 1–3 only

data for concentrations close to the LC50 are shown.

Inhibition of cell proliferation
To measure proliferation of L929 fibroblasts, 24,000 cells were

seeded into 24-well plates (Falcon) and allowed to adhere o/n. The

medium was aspirated and replaced by 500 ml medium containing

60 ng/ml of mycolactone and 0.06% DMSO (vol/vol). At time

point 0 and after 24, 48 and 72 h fibroblasts were harvested,

diluted 1:100 in isotonous solution and measured using an

automated cell counting device (CasyHTT, Schärfe System). The

experiment was set up in triplicates and performed twice.

Microscopic analysis
24,000 cells were seeded on four-chamber glass slides (BD

Falcon) with complete RPMI medium and allowed to adhere for

24 hours. The medium was aspirated and replaced by 500 ml

medium containing different concentrations of mycolactone. After

the specified incubation period, cells were washed once in PBS and

fixed with 4% formaldehyde (Medite) for 20 min. Fibroblasts were

washed again in PBS prior to permeabilization in Triton X-100

(0.1% in PBS) for 20 min. Cells were rinsed in PBS and blocked by

incubation in 4% FBS in PBS for additional 20 min. The actin

cytoskeleton was stained by incubating the cells for 1 h at room

temperature with Texas Red-X phalloidin (3 units/ml, in blocking

solution, Molecular Probes). Cells were washed in blocking buffer,

then in PBS. ProLong Gold antifade reagent (Invitrogen)

Author Summary

Buruli ulcer is a chronic necrotizing skin disease caused by
Mycobacterium ulcerans. The characteristic histopatholog-
ical features of Buruli ulcer, severe destruction of subcu-
taneous tissue with minimal inflammation in the core of
the lesion, are primarily attributed to the cytotoxic activity
of mycolactone, the macrolide exotoxin of M. ulcerans.
Different geographical lineages of M. ulcerans produce
different structural variants of mycolactone. By using
highly defined synthetic mycolactones, including both
naturally occurring molecular species and additional non-
natural variants, we have assessed the influence of the
structure of the C-linked upper side chain and the lower
C5-O-linked polyunsaturated acyl side chain on biological
activity. Changes in the lower side chain affected the
cytotoxic activity against mammalian cells more profound-
ly than changes in the upper side chain. Mycolactone A/B
had no antimicrobial activity against Gram-positive and
Gram-negative bacteria and was also inactive against
Saccharomyces and Dictyostelium.

Biological Activities of Synthetic Mycolactones
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containing diamidino-2-phenylindole (DAPI) was used for nuclear

counterstaining. Cover slips were mounted onto the slides and cell

rounding as well as the staining of nuclei and actin cytoskeleton

was qualitatively analyzed by fluorescence microscopy (Leica DM

5000 B). Mycolactone-induced changes in the pattern and

intensity of the Texas Red-X phalloidin staining of the cytosolic

actin cytoskeleton as well as in the uniform, round and clear-edged

DAPI staining of nuclei in healthy cells were observed.

Alamar Blue – based analysis of metabolic activity
Metabolic activity of mycolactone-treated L929 fibroblasts was

analyzed by performing Alamar Blue assays. Seeding of cells and

Figure 1. Cytotoxicity of mycolactone variants with modifications in the lower side chain. Cells were treated for 48 hours with different
concentrations of mycolactone A/B, mycolactone F, mycolactone C or PG-155 and stained with annexin-V-FITC and PI. Flow cytometry was used to
determine annexin-positive (A+) and PI-positive (PI+) cell populations. Triplicate samples were analyzed and mean values as well as standard
deviations are shown.
doi:10.1371/journal.pntd.0002143.g001

Biological Activities of Synthetic Mycolactones
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addition of mycolactones were performed as described for the flow

cytometry-based cytotoxicity assays. After mycolactone treatment,

alamarBlueH reagent (Invitrogen) was added to the wells (10% v/v)

and the cells were further incubated for 1 hour at 37uC and 5% CO2.

Fluorescence intensities were measured using a SpectraMax Gemini

XS (Molecular Devices) and the values were calculated referring to

the DMSO control (0 ng/ml mycolactone) set at 100%. The

experiments were set up in triplicates and performed at least twice.

The concentration at which the metabolic activity of cells was

inhibited by half (IC50) was determined by plotting the fluorescence

intensity against the log concentration of the individual mycolactones.

Assessment of the antimicrobial activity of mycolactone
A/B

Antimicrobial activity of mycolactone on Streptococcus pneumoniae

(SP1, P1577), E. coli (DE(3)) and Saccharomyces cerevisiae was tested

by applying the disk agar diffusion (Kirby-Bauer) method. Bacteria

were pelleted, resuspended in PBS and spread on blood agar/LB

agar. The plates were dried for 30 min and sterile paper disks were

distributed circle-like onto the agar. Mycolactone A/B solutions of

different concentrations (0.003 mg/ml to 10 mg/ml) were applied

on the paper disks (40 ml). The agar plates were incubated o/n at

37uC and then analyzed for potential zones of inhibition.

The effect of mycolactone A/B on the growth of Dictyostelium

discoideum DH1-10 was assessed by performing an Alamar Blue

assay in a 24-well format. 2,000 cells were seeded in 500 ml

medium containing mycolactone in the concentration range of

0.16 to 500 ng/ml. As controls, DMSO and blasticidin were used.

After an incubation period of 3 days at room temperature,

alamarBlueH reagent (Invitrogen) was added and the plate was

further incubated for 18 hours at room temperature.

Results

Recently we described a novel strategy for the synthesis of

mycolactone A/B that is based on the stereoselective construction

of the macrolactone core by ring-closing olefin metathesis and

subsequent incorporation of the C- and O-linked side chains by

suitable fragment couplings [38]. Taking this synthesis approach a

set of natural mycolactones (mycolactone A/B, mycolactone C,

mycolactone F) and additional derivatives displaying modifications

Figure 2. Cytotoxicity of mycolactone variants with modifications in the upper side chain. Cells were treated for 48 hours with different
concentrations of PG-157, PG-165 or PG-182 and stained with annexin-V-FITC and PI. Flow cytometry was used to determine the annexin-positive (A+)
and PI-positive (PI+) cell populations. Triplicate samples were analyzed and mean values as well as standard deviations are shown.
doi:10.1371/journal.pntd.0002143.g002

Biological Activities of Synthetic Mycolactones
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in the lower or upper side chain (PG-119, PG-120, PG-155, PG-

157, PG-165 and PG-182) were produced (see Figures 1, 2 and 3)

for biological testing. The biological activity of these synthetic

compounds on the murine L929 fibroblast cell line was assessed by

flow cytometry. After treatment with different concentrations of

synthetic mycolactones, cells were stained both with FITC-labeled

annexin-V and with propidium iodide. Annexin-V binds to

exposed phosphatidylserine residues translocated from the inner

to the outer leaflet of the plasma membrane in cells undergoing

apoptosis. Propidium iodide intercalates into the DNA of cells that

have lost nuclear membrane integrity, serving as a marker for

necrosis. Quadrant analysis was performed to determine apoptotic

(A+/PI2) and necrotic (A+/PI+) cell populations.

While first signs of mycolactone A/B-mediated cell death were

already detectable after 24 hours, significant effects were only

observed after 48 hours [38]. For comparison with mycolactone A/

B, the lethal concentration of mycolactone analogues at which 50%

of the cells were affected (LC50) was therefore determined after

48 hours (Table 1). As described previously [38], mycolactone A/B

was highly potent (Figure 1) with a LC50 of 12 nM (Table 1). For the

two naturally occurring structural variants mycolactone F and

mycolactone C, the LC50 values were 29 nM and 186 nM,

respectively (Table 1). Mycolactone C differs from mycolactone

A/B in lacking the hydroxyl group at position C12 of the lower side

chain. Mycolactone F has a shorter side chain with also only two

hydroxyl substituents (Figure 1). While these natural mycolactones

retained cytotoxic activity, compound PG-155, a non-natural

structural variant devoid of all hydroxyl groups in the lower side

chain, showed only minor activity with a LC50 of 4550 nM (Table 1).

Apart from these mycolactone variants with modifications in the

lower side chain, also analogues with modifications in the upper

side chain were synthesized and tested (Figure 2). Introduction of a

hydroxyl group at C20 in compound PG-165 had no major effect,

since PG-165 had only a slightly higher LC50 (15 nM) than

mycolactone A/B (Figure 2, Table 1). In addition, derivatisation of

this hydroxyl group into an acetate (PG-157 with a LC50 of

45 nM) or into a bulky butyl carbamate (PG-182 with a LC50 of

50 nM) reduced cytotoxicity only about three-fold (Figure 2,

Table 1). Thus, the upper side chain turned out to be relatively

tolerant to a significant extension in length and to the presence of

polar linker elements between the natural side chain and the

extension module.

PG-120, a derivative with a significantly truncated lower side

chain, showed some residual cytotoxic activity (LC50 = 3426 nM),

whereas PG-119, a derivative with an acetyl residue as the lower

side chain, showed no activity within the concentration range

tested (Figure 3, Table 1). For all compounds, except PG-120,

concentrations required for cytotoxic activity (as measured by flow

cytometry), reduction of metabolic activity in an Alamar Blue-

based assay, changes in the intensity and pattern of phalloidin-

staining of the actin cytoskeleton and changes in the round, clear-

edged and uniformly stained nuclear morphology of normal cells

were in the same range. While the IC50 value for PG-120

(171 nM; Table 1), was twenty-fold lower than the LC50, the

LC50/IC50 ratios of all other compounds with widely varying toxic

Figure 3. Cytotoxicity of truncated mycolactone variants. Cells
were treated for 48 hours with different concentrations of PG-119 or
PG-120 and stained with annexin-V-FITC and PI. Flow cytometry was
used to determine the annexin-positive (A+) and PI-positive (PI+) cell
populations. Triplicate samples were analyzed and mean values as well
as standard deviations are shown.
doi:10.1371/journal.pntd.0002143.g003

Table 1. Comparison of LC50 and IC50 values of the
mycolactone variants.

Mycolactone MW (g/mol) LC50 (nM) IC50 (nM) LC50/IC50

Mycolactone A/B 743 12 5 2.4

Mycolactone F 701 29 9 3.2

Mycolactone C 727 186 122 1.5

PG-155 695 4550 1439 3.2

PG-165 759 15 5 3.0

PG-157 801 45 20 2.3

PG-182 858 50 16 3.1

PG-119 467 &5000 &5000 n.a.

PG-120 519 3426 171 20

doi:10.1371/journal.pntd.0002143.t001

Figure 4. Inhibition of proliferation of L929 fibroblasts upon
treatment with PG-120, PG-119 and mycolactone A/B. Cell
proliferation was measured after 0, 24, 48 and 72 h by determining the
number of cells treated with 60 ng/ml of PG-120, PG-119 or
mycolactone A/B. Mean values and standard deviations of triplicates
are shown.
doi:10.1371/journal.pntd.0002143.g004

Biological Activities of Synthetic Mycolactones
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potency ranged between 1.5 and 3.2 (Table 1). Furthermore, at

such sub-lethal PG-120 concentrations a marked reduction in cell

proliferation (Figure 4), and a transient effect on the actin

cytoskeleton accompanied by the rounding up of the cells, without

changes in nuclear morphology was observed (Figure 5A). A

similar activity was not observed for PG-119 (Figures 4 and 5).

When analyzed for antimicrobial activity, mycolactone A/B

was found inactive against all microbial species tested, including

Gram-positive (Streptococcus pneumoniae) and Gram-negative

(Neisseria meningitis, Escherichia coli) bacteria; it was also inactive

against yeast (Saccharomyces cerevisae) and amoeba (Dictyostelium

discoideum).

Figure 5. Changes in morphology and metabolic activity of L929 fibroblasts upon treatment with PG-120, PG-119 and mycolactone
A/B. (A) For microscopic analysis, cells incubated for 48 h with selected concentrations of mycolactones were stained with phalloidin to label the
actin cytoskeleton (red) and with DAPI (blue) to visualize the nuclei. The slides were analyzed by fluorescence microscopy using a 787-fold
magnification. (B) For the analysis of metabolic activity, alamarBlueH reagent was added to fibroblasts incubated for 48 hours with different
concentrations of PG-120, PG-119 or mycolactone A/B. Fluorescence intensities of triplicate samples were measured and mean values as well as
standard deviations are shown.
doi:10.1371/journal.pntd.0002143.g005

Biological Activities of Synthetic Mycolactones
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Discussion

Our flow cytometric analyses of murine fibroblast L929 cells

treated with a series of synthetic mycolactones reconfirmed that

changes in the O-linked lower side chain can profoundly affect the

biological activity. Activity of the synthetic mycolactone A/B was

in the range reported for mycolactone preparations extracted from

M. ulcerans cultures [1]. Mycolactone F was about two times less

active and mycolactone C about 15 times less active than

mycolactone A/B, respectively. For extracted mycolactone C an

even far more pronounced difference in activity compared to

mycolactone A/B has been described in assays determining L929

fibroblast rounding at 24 h and loss of monolayer at 48 h [25]. In

addition to mycolactone C, Australian M. ulcerans strains also

produce mycolactone A/B. Our data indicate that this mycolac-

tone A/B portion may be more important for the pathogenesis

caused by these strains than mycolactone C. In accordance with

our findings, only a slightly lower activity was observed, when

extracted mycolactone F was compared to mycolactone A/B in a

L929 cell apoptosis assay at 24 h [3]. When the inhibition of IL2

production by activated Jurkat T-cells instead of cell death was

used as readout, both mycolactones F and C were dramatically less

potent than mycolactone A/B [36].

While we have investigated different types of modifications for

the lower and upper side chains, it is clear that both the

incorporation of polar substituents at C20 and the extension of the

upper side chain by up to 7 heavy atoms, in contrast to most of the

modifications of the lower side chain, does not lead to a substantial

loss in cytotoxicity. It remains to be seen how the removal of

hydroxyl groups from the upper side chain or its overall shortening

would affect potency.

It has been proposed that mycolactones enter mammalian cells

via passive diffusion and interact with cytosolic target(s) [39].

Reduced or abolished activity of structural variants of mycolactone

may thus be related to lack of binding to target structure(s),

inefficient triggering of activation pathways or reduced transloca-

tion across the cell membrane. Studies using isotopically labeled

rather than fluorescence labeled structures with altered biophysical

properties are required to gain better insight into mechanisms that

allow mycolactones to cross biological membranes.

Our findings with the truncated mycolactone PG-120 shows

that different biological effects of mycolactone can be dissociated

by using structural variants. In line with these observations, sub-

lethal doses of mycolactone A/B have been shown to alter

trafficking and cytokine production of lymphocytes and macro-

phages [40,41]. It remains to be elucidated whether different

pathways and target structures are involved in the triggering of the

biological effects of mycolactone.

Since a number of macrolides have antibiotic activity against a

broad spectrum of bacteria it has been speculated that mycolactone

secreted by M. ulcerans during active disease may prevent superin-

fection of BU wounds. However, synthetic mycolactone A/B showed

no antimicrobial activity against any of the microorganisms tested

here. In line with this observation, superinfection of Buruli ulcer

lesions seems to be much more common than traditionally

anticipated (Yeboah-Manu et al., personal communication).

Much has still to be learnt about the biophysical properties of

mycolactones, their distribution and stability in biological systems,

their target structures and triggering pathways in mammalian cells.

Synthetic natural mycolactones, isotopically labeled derivatives

and structural variants represent valuable tools to address these

open questions in future.
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