
ORIGINAL RESEARCH
published: 04 January 2019

doi: 10.3389/fonc.2018.00658

Frontiers in Oncology | www.frontiersin.org 1 January 2019 | Volume 8 | Article 658

Edited by:

Rengyun Liu,

Johns Hopkins University,

United States

Reviewed by:

Dokyoon Kim,

Geisinger Health System,

United States

Qi Zhao,

Sun Yat-sen University Cancer Center

(SYSUCC), China

*Correspondence:

Marianna A. Zolotovskaia

zolotovskaya@oncobox.com

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Oncology

Received: 19 October 2018

Accepted: 12 December 2018

Published: 04 January 2019

Citation:

Zolotovskaia MA, Sorokin MI,

Roumiantsev SA, Borisov NM and

Buzdin AA (2019) Pathway Instability

Is an Effective New Mutation-Based

Type of Cancer Biomarkers.

Front. Oncol. 8:658.

doi: 10.3389/fonc.2018.00658

Pathway Instability Is an Effective
New Mutation-Based Type of Cancer
Biomarkers
Marianna A. Zolotovskaia 1,2*, Maxim I. Sorokin 3,4, Sergey A. Roumiantsev 1,

Nikolay M. Borisov 2,3 and Anton A. Buzdin 3,4,5

1Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical

University, Moscow, Russia, 2Oncobox Ltd., Moscow, Russia, 3 The Laboratory of Clinical Bioinformatics, I.M. Sechenov First

Moscow State Medical University, Moscow, Russia, 4Omicsway Corp., Walnut, CA, United States, 5 The Laboratory of

Systems Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

DNA mutations play a crucial role in cancer development and progression. Mutation

profiles vary dramatically in different cancer types and between individual tumors.

Mutations of several individual genes are known as reliable cancer biomarkers, although

the number of such genes is tiny and does not enable differential diagnostics for most

of the cancers. We report here a technique enabling dramatically increased efficiency of

cancer biomarkers development using DNA mutations data. It includes a quantitative

metric termed Pathway instability (PI) based on mutations enrichment of intracellular

molecular pathways. This method was tested on 5,956 tumor mutation profiles of 15

cancer types from The Cancer Genome Atlas (TCGA) project. Totally, we screened

2,316,670 mutations in 19,872 genes and 1,748 molecular pathways. Our results

demonstrated considerable advantage of pathway-based mutation biomarkers over

individual gene mutation profiles, as reflected by more than two orders of magnitude

greater numbers by high-quality [ROC area-under-curve (AUC)>0.75] biomarkers. For

example, the number of such high-quality mutational biomarkers distinguishing between

different cancer types was only six for the individual gene mutations, and already 660

for the pathway-based biomarkers. These results evidence that PI value can be used as

a new generation of complex cancer biomarkers significantly outperforming the existing

gene mutation biomarkers.
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INTRODUCTION

Cancer is a multifactorial disease which is conditioned by alterations arising from biological,
chemical, radiological impacts, as well as inherited. Tumor transformation is characterized by
frequent accumulation of genetic mutations (1). The pivotal initiating role here belongs to DNA
damage and genome instability (2, 3). The resulting combinations of gene mutations driving cancer
development vary dramatically among different cancers types and individual patients (4).
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Recently, high throughput studies of cancer genomes were
initiated to identify mutation enrichment specific for the
different cancer types. For example, the large scale projects
like Wellcome Trust Sanger Institute’s Cancer Genome Project,
the International Cancer Genome Consortium (ICGC), The
Cancer Genome Atlas (TCGA) showed very high molecular
heterogeneity of cancer, not only between different cancer types,
but also among the individual tumors of the same type (5–8).
This allowed to considerably advance current understanding of
carcinogenetic molecular mechanisms by documenting complete
or near-complete landscapes of pathological somatic mutations
including base substitutions and gene fusions. Many of the
alterations revealed appeared promising for molecular cancer
diagnostics in order to improve and personalize the treatment
regimens (9, 10).

Identification of informative and robust genetic markers of
cancer is one of themajor tasks of the contemporary biomedicine.
Many reports have been published featuring cancer-specific
mutations and gene fusions, as well as epigenetic alterations (11–
13). Some of them are already widely used in clinical practice
as the biomarkers, but the problem of finding new relevant and
informative cancer markers with higher sensitivity and specificity
is largely unsolved (10, 14). Further accumulation of cancer
type- and condition-specific biomarkers can be a key to a more
effective, personalized treatment (15).

Despite recent success in high throughput analysis of
molecular basis for cancer transformation, traditionally the
focus is being made on the roles of the individual genes
(16, 17). However, this approach cannot always explain tumor
development in a comprehensive way. Apparently, this is most
probably due to the mode of gene functioning as the nodes of
molecular pathways, where roles of individual genes are highly
interconnected and frequently interchangeable (18).

Previously, the analysis of molecular pathways at the level of
gene expression was successfully applied for cancer investigations
(19–21). Several approaches for measuring molecular pathway
activities were proposed for the expression data at both mRNA,
protein and microRNA levels (22–27). The extent of pathway
activation, so called pathway activation strength (PAS), is a
cumulative value aggregating relative expression levels of the
enclosed gene products in relation with their functional roles in a
pathway (28).

Interestingly, for most of the cancer types investigated the
molecular pathways were shown to be stronger expression
biomarkers of cancer than the individual genes (29). PAS was
also proven to be more stable and experimental platform-
independent metric than the individual gene expression patterns
(30). This property appeared to be fundamental and linked
with the ability to aggregate individual gene expression levels,
thus decreasing experimental errors, as modeled in a recent

Abbreviations: CDS length, coding DNA sequence length; COSMIC, Catalog Of

Somatic Mutations In Cancer; ICGC, International Cancer Genome Consortium;

MR, Mutation rate; nMR, Normalized mutation rate; PAS, pathway activation

strength; PCA, principal component analysis; PI, Pathway instability; ROC AUC,

Receiver Operator Characteristics Area Under the Curve; TCGA, The Cancer

Genome Atlas.

investigation (25). PAS biomarkers are also used for predicting
efficiencies of target cancer drugs in the ongoing clinical trials
(24). However, to our knowledge, this type of quantitative
pathway approach was never applied before for the mutation
data, including human cancers.

Here, for the first time, we propose a new type of molecular
biomarkers based on DNA mutation impacts on the molecular
pathways. We introduced a quantitative metric termed Pathway
instability (PI) proportionate to the relative number of mutated
genes in a pathway and developed a specific bioinformatic
algorithm for quantization thereof. Using high throughput gene
mutation profiles, we identified affected molecular pathways
that specifically define the major human cancer types. We
took cancer somatic mutation data published in the TCGA
project for 5,956 patients representing 15 different cancer
types. Totally, we screened 2,316,670 mutations in 19,872 genes
and 1,748 molecular pathways. The robustness of mutation-
based molecular pathway approach dramatically exceeded that
for the individual gene biomarkers. This trend was also
reproducible when only truncating mutations were considered
for PI calculations, thus confirming consistency of the new
method. Finally, we provide a list of 660 novel robust cancer
type-specific pathway mutation biomarkers.

MATERIALS AND METHODS

DNA Mutation Data
The source DNA mutation dataset was obtained from the
database of COSMIC (the Catalog Of Somatic Mutations In
Cancer) project (31). We downloaded the verified somatic
mutations data from COSMIC website, database version 76
(32). The initial dataset contained 6,651,236 mutation records
for 20,528 genes from 19,434 individual tumor samples
of 37 primary localizations. For statistical consistence, we
took only those tumor localizations having at least 100
tumor samples profiled during The Cancer Genome Atlas
(TCGA) project (33). The TCGA mutation profiles were
selected because they represented the largest collection of
uniformly treated biosamples profiled using the same deep
sequencing platforms (34). Totally, we analyzed 2,316,670
mutations in 5,956 tumor genetic profiles corresponding
to 15 primary localizations: breast, central nervous system,
cervical, endometrium, ovaries, prostate, kidney, urinary tract,
liver, hematopoietic and lymphoid tissue, stomach, large
intestine, lung, thyroid, and skin (Supplementary Table 1). The
database accession numbers of 5,956 samples are given in
Supplementary Table 3.

In parallel, for the additional analysis we selected a fraction of
gene truncating mutations that possibly lead to the loss of gene
function. We meant truncating mutations as those having the
following labels in COSMIC description: “Deletion-Frameshift,”
“Insertion-Frameshift,” “Complex-frameshift,” “Substitution-
Nonsense.” Totally, we selected 161,760 truncating mutations in
5,297 tumor samples corresponding to the same 15 cancer types
(Supplementary Table 2). The database accession numbers of
5,297 samples are given in Supplementary Table 4.
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Molecular Pathways
The structures of 3,121 molecular pathways were taken from
the following public databases: Reactome (35), NCI Pathway
Interaction Database (36), Kyoto Encyclopedia of Genes and
Genomes (37), HumanCyc (38), Biocarta (39), Qiagen (40). For
all the pathways, the gene contents were extracted and cataloged.
For further analyses, we pre-selected 1,748 molecular pathways
each including at least 10 gene products.

Principal Component Analysis
The Principal component analysis (PCA) was performed with
package made 4 in R.

Clustering Dendrograms
For clustering, we used Ward’s criterion and Ward.d2 algorithm
(41) for the gene- (nMR) and pathway- (PI) specific mutation
metrics.

RESULTS

In this study, we applied quantitative molecular pathway
approach to human cancer DNA mutation data. We developed
algorithm for quantization of mutational impact on molecular
pathways and applied it for screening of 1,748 human pathways.
The DNA mutation data was extracted from the Catalog
Of Somatic Mutations In Cancer (COSMIC) database (32).
For the reasons of statistical significance, we analyzed here
only the tumor localizations having at least 100 complete
exome sequencing-profiled tumor samples, totally fifteen
primary localizations and 5,956 individual tumor specimens
(Supplementary Table 1). For parallel analysis, we also selected a
subset of 161,760 truncating mutations for 5,297 tumor samples
of the same cancer types (Supplementary Table 2).

Pathway Instability (PI) Scoring
Pathway instability (PI) scoring for a molecular pathway depends
on the mutation frequencies in the genes participating in this
pathway. To assess mutation burden of the individual genes, we
introducedMutation rate (MR) value calculated according to the
formula:

MRn=
Nmut(n,g)

N samples (g)
,

where MRn is the Mutation rate of a gene n; N mut(n,g) is
the total number of mutations identified for a gene n in a
group of samples g; N samples (g) is the number of samples
in a group g. However, the MR values strongly positively
correlated with the lengths of gene coding DNA sequences
(CDS)s, Spearman correlation was 0.798 for all mutations and
0.629 for truncating mutations, p < 2.2e-16 in both cases
(Supplementary Images 1A,C), most probably because larger
genes had higher probabilities to accumulate mutations.

To avoid the bias linked with the CDS lengths, we next
introduced a Normalized mutation rate (nMR) value expressed
by the formula:

nMRn=
1000∗MRn

Length CDS (n)
,

where nMRn is the Normalized mutation rate of a gene n;MRn is
theMutation rate of a gene n; Length CDS(n) is the length of CDS
of a gene n in nucleotides.

In contrast to the previous metric, nMR did not
correlate with the size of CDS for the respective genes
(Supplementary Images 1B,D; rank correlation 0.151 for
all mutations and 0.024 for truncating mutations). nMR
scores calculated using all mutations for each tumor sample
are listed in Supplementary Data Sheet 1, nMR scores
calculated based on truncating mutations only are listed in
Supplementary Data Sheet 2.

We next calculated Pathway instability (PI) scores for every
pathway to estimate their relative enrichments by cancer-specific
mutations. Pathway instability is expressed by the formula:

PIp=

∑
n nMRnPGp,n

Np

where PIp is Pathway instability score for a pathway p; nMRn
is the Normalized mutation rate of gene n; PGp.n is pathway-
gene indicator that equals to one if gene n belongs to pathway
p, or equals to zero if gene n doesn’t belong to pathway p; Np–
total number of gene products that belong to pathway p. Unlike
previous metrics for pathway activation scoring based on gene
expression data, the current equation for PI calculation doesn’t
have coefficients defining activator or repressor molecular roles
of genes participating in amolecular pathway under investigation
(28). This has been done because for most of mutations their
functional roles (neutral, repressing or activating gene function)
remain unclear. Pathway instability (PI) (calculation also doesn’t
utilize logarithmation of nMR scores during summation because
the number of mutations in tumor is not lower than in the
reference normal tissue.

Cancer Type-Specific Pathway Instability
(PI) Mutation Signatures
Totally, we calculated PI scores for 1,748 molecular pathways in
5,956 tumor samples representing fifteen primary localizations:
breast, central nervous system, cervical, endometrium, ovaries,
prostate, kidney, urinary tract, liver, hematopoietic and lymphoid
tissue, stomach, large intestine, lung, thyroid, and skin for all
mutations (Supplementary Data Sheet 3) and in 5,297 tumors
for only truncating mutations (Supplementary Data Sheet 4).

Each tumor sample was characterized by a complete set
of Normalized mutation rate (nMR) values for all individual
genes and by the Pathway instability (PI) values for 1,748
molecular pathways. As shown by the principal component
analysis (PCA), the complete sets of 19,872 nMR biomarkers
and 1,748 PI biomarkers could not distinguish between the
tumor localization types (Figures 1A,B). The PCA revealed no
significant differences for the different cancer types both at the
gene-based and pathway-based levels, although pathway-based
approach covered most of the variation by the first component,
unlike gene-based level of data analysis, where dramatically lower
proportion of variation was covered. Similar figure was seen for
the fraction of truncating mutations, where the variation of first
principal component did not exceed 1.85% for genes and 19.77%
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FIGURE 1 | (A) PCA of Normalized mutation rate (nMR) patterns based on all mutations for 5,956 samples representing 15 primary human tumor localizations,

reflected by the color key. Each point on the plot represents one tumor sample. Abbreviations for the cancer types: BRCA, breast invasive carcinoma; LGG, brain

lower grade glioma; GBM, glioblastoma multiforme; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; UCEC, uterine corpus endometrial

carcinoma; LAML, acute myeloid leukemia; KIRP, kidney renal papillary cell carcinoma; KIRC, kidney renal clear cell carcinoma; COADREAD, colorectal cancer; LICA,

liver cancer; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma;

PRAD, prostate adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; BLCA, bladder urothelial

carcinoma. (B) PCA of Pathway instability (PI) patterns based on all mutations for the same samples. (C) PCA of Normalized mutation rate (nMR) patterns based on

the truncating mutations for 5,297 tumor samples. (D) PCA of Pathway instability (PI) patterns based on the truncating mutations for 5,297 tumor samples.
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for pathways (Figures 1C,D). The most likely reason for lack of
tumor type-specific clustering may be the redundancy of features
at high sparsity of the mutation data.

However, many molecular pathways had characteristic PI
scores that were clearly distinctive of the different tumor types, as
shown by the high area under the ROC curve (AUC) values. The
AUC value is the universal biomarker robustness characteristics
depending on its sensitivity and specificity(42). It varies from 0.5
till 1 and positively correlates with the quality of a biomarker.
The AUC discrimination threshold is typically 0.7 or 0.75.
The parameters with greater AUC are considered good-quality
biomarkers, and vice-versa (43). This statistical approach is also
applicable to mutation research in human cancer (44–46). We
performed the ROC AUC test in two ways: (i) for comparing
every separately taken tumor type (localization) vs. all other
tumors, and (ii) for all possible pairwise comparisons among the
tumor types.

In parallel, the same AUC tests were performed also for
every gene nMR characteristics of every sample. The tests were
performed for all mutations and in parallel—for only truncating
mutations (Supplementary Tables 5, 6, respectively). The data
analysis pipeline is schematized on Figure 2. In this way, we
could compare the biomarker potentials of the individual gene
mutations (nMR) with the aggregated pathway-based mutation
characteristics (PI).

Our analysis revealed a dramatic advantage of the pathway
based (PI) compared to gene based (nMR) approach in finding
good quality biomarkers in all types of the comparisons made.
For example, for the analyzes when one tumor localization was
compared against fourteen others, the total number of good
quality (AUC>0.75) biomarkers was 660 for all mutations and
21 for truncating mutations for the pathways (PI), compared to
only six for all mutations and one for truncatingmutations for the
individual genes (nMR). Similarly, for the pairwise comparisons
we identified totally 32,594 good quality PI biomarkers vs. only
226 nMR biomarkers for all mutations (Figure 2A). For the
truncating mutations, we discovered in pairwise comparisons
1,056 good quality PI biomarkers vs. only 24 nMR biomarkers
(Figure 2B). Provided that the initial number of potential
pathway biomarkers (1748) was one order of magnitude lower
than the number of gene biomarkers (19,872 for all mutations
and 16,760 for truncatingmutations), this further strengthens the
advantage of a PI-based approach.

Cancer Type Specific Biomarkers
For the dataset of all mutations, the cancer type-specific six
gene mutation biomarkers were APC for colorectal cancer,
PTEN for endometrial cancer, BRAF for thyroid cancer and
MUC16, DNAH5, TTN for cutaneous melanoma. These genes
were previously linked with the respective cancer types in the
literature (47–50), but the overall number of six biomarkers
may seem negligible provided they were obtained for fifteen
comparisons (Figure 2A). In contrast, the pathway approach
returned here as much as 660 reliable biomarkers representing
428 pathways. Different localizations had markedly different
numbers of marker pathways (Figure 3A). Gene and pathway
mutation biomarkers could be found for four and eight tumor

localizations, respectively. In the case of truncatingmutations, we
found gene and pathway biomarkers for colorectal cancer only
(Figures 3B,D).

For the first time, we provide here the list of tumor
type-specific pathway biomarkers based on all mutation for
eight localizations investigated: colorectal, kidney, non-small
cell lung, prostate, thyroid cancers, hematological malignancies,
cutaneous melanoma and uterine corpus endometrial carcinoma
(Supplementary Table 7). The list of colorectal cancer specific
pathway biomarkers obtained using truncating mutations is
shown on Supplementary Table 8.

Despite the large number of good-quality pathway biomarkers
(Figures 3A,C), all of them were applicable only for eight
localizations of the fifteen totally investigated. Colorectal cancer
and endometrial carcinoma had maximum number of pathway-
based biomarkers. It should be noted that characteristic tumor
type-specific PI scores could be either higher or lower than the
average values for other cancer types, thus resulting in “high” or
“low” biomarkers (Figure 3A).

Using total pool of mutations, we next identified molecular
pathways that were frequently mutated in all the cancer types
under study. To this end, we selected 1,145 pathways having
AUC<0.7 in all tumor types (Supplementary Table 9) and
intersected them with the list of top 10% pathways sorted
according to the average PI values. The selected short list
contained 18 pathways that were most frequently mutated in all
cancer types (Table 1).

On the other hand, we also screened for the pathways
that were most informative as biomarkers (AUC>0.75) for the
maximum number of cancer types. Top 25 most informative
biomarker pathways are shown on Table 2.

Pairwise Comparison Biomarkers
The number of high quality biomarkers identified in pairwise
comparisons can be characteristic of tumor mutational
landscapes and their relative similarities. For example, when
two cancer types under comparison have little or no specific
biomarkers, this suggests small differences in their mutation
profiles. In contrast, high number of biomarkers would mean
more distinct mutation profiles. Based on the numbers of
high quality ROC AUC biomarkers, a distance matrix can be
created for all the tumor localizations under comparison, and
a clustering dendrogram can be built. In this study, we used
pairwise comparisons to analyze common features and clustering
of 15 tumor types. The distance matrix was built separately for
the gene (nMR) and the pathway (PI) mutation biomarkers
(Figure 4A and Supplementary Image 2A for all and truncating
mutations, respectively).

For all mutations, in a series of pairwise comparisons we
found that the number of biomarkers that distinguish between
the two cancer types varies greatly depending on the localizations
compared (Figure 4A). The number of PI roughly two orders of
magnitude per instance exceeded the number of nMR biomarkers
(Figure 4A).

There was also an overall correlation between these numbers
(correlation 0.69, p-value = 3.677e-16), for example, all fourteen
comparisons having no good biomarkers according to PI values,
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FIGURE 2 | Bioinformatic comparison of quality for pathway- and gene-based mutation biomarkers: (A) for all mutations; (B) for truncating mutations.

also had no nMR biomarkers there (Figure 4A). The numbers
of biomarkers differed for PI up to 784 and for nMR—only
up to 5 per instance. Provided obviously higher number of

the effective biomarkers, the pathway-based approach can be
regarded beneficial and much more informative than the gene-
based mutation analysis.
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FIGURE 3 | (A) Numbers of mutation marker genes and molecular pathways in “one vs. all” cancer type comparisons for all mutations. The cancer types are

abbreviated as follows: BRCA, breast invasive carcinoma; LGG, brain lower grade glioma; GBM, glioblastoma multiforme; CESC, cervical squamous cell carcinoma

and endocervical adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; LAML, acute myeloid leukemia; KIRP, kidney renal papillary cell carcinoma; KIRC,

kidney renal clear cell carcinoma; COADREAD, colorectal cancer; LICA, liver cancer; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung

squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach

adenocarcinoma; THCA, thyroid carcinoma; BLCA, bladder urothelial carcinoma. (B) Numbers of mutation marker genes and molecular pathways in “one vs. other

cancer types” comparisons for truncating mutations only. (C) AUC distributions of pathway- and genes-based mutation biomarkers for all mutations. Cut-off AUC level

of high-quality biomarkers is set 0.75. AUC were obtained as the result of “one vs. others” comparisons. (D) AUC distributions of pathway—and genes-based mutation

biomarkers for truncating mutations only. Cut-off level of high-quality biomarkers is set 0.75. AUC were obtained in “one vs. other cancer types” comparisons.
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TABLE 1 | Intersection of top 10% molecular pathways by average PI and molecular pathways with AUC<0.7 for all cancer types.

# Pathway name (according to the

source pathway database)

PI Reference

1 NCI Aurora A signaling Pathway (protein

catabolic process)

0.19 http://apps.pathwaycommons.org/pathways?uri=http%3A%2F

%2Fpathwaycommons.org%2Fpc2

%2FPathway_83968ff327912d4d5a0ee5f31d27adf9

2 biocarta double stranded RNA induced

gene expression Main Pathway

0.19 http://amp.pharm.mssm.edu/Harmonizome/gene_set/double$+$stranded$+$rna$+

$induced$+$gene$+$expression/Biocarta$+$Pathways

3 biocarta role of BRCA1 BRCA2 and ATR in

cancer susceptibility Pathway (DNA

replication termination)

0.18 http://amp.pharm.mssm.edu/Harmonizome/gene_set/role$+$of$+$brca1$+

$brca2$+$and$+$atr$+$in$+$cancer$+$susceptibility/Biocarta$+$Pathways

4 biocarta p53 signaling Main Pathway 0.18 http://amp.pharm.mssm.edu/Harmonizome/gene_set/p53$+$signaling$+$pathway/

Biocarta$+$Pathways

5 NGF Pathway Apoptosis 0.17 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=320

6 BRCA1 Pathway Mismatch Repair 0.16 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=68

7 ATM Pathway G2-Mitosis progression 0.16 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=46

8 ATM Pathway G2M Checkpoint Arrest 0.16 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=46

9 biocarta tumor suppressor ARF inhibits

ribosomal biogenesis Main Pathway

0.16 http://software.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_ARF_PATHWAY

10 biocarta ATM signaling Main Pathway 0.14 http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?geneSetName=

BIOCARTA_ATM_PATHWAY

11 NCI Hypoxic and oxygen homeostasis

regulation of HIF1 alpha Main Pathway

0.12 http://www.pathwaycommons.org/pc/record2.do?id=517145

12 HIF1 Alpha Pathway NOS Pathway 0.11 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=223

13 HIF1Alpha Pathway VEGF Pathway 0.09 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=223

14 HIF1Alpha Pathway Gene Expression via

JUN CREB3

0.09 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=223

15 Lipoxins Influence on Cell Growth and

Proliferation

0.05 http://pathwaymaps.com/maps/2690

16 NCI Validated transcriptional targets of

TAp63 isoforms Pathway (Pathway

degradation of TP63)

0.03 http://www.pathwaycommons.org/pc/record2.do?id=517011

17 NCI Validated transcriptional targets of

TAp63 isoforms Pathway (Metastasis)

0.02 http://www.pathwaycommons.org/pc/record2.do?id=517011

18 D-imyoi-inositol 145-trisphosphate

biosynthesis

0.02 https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-6351

For the truncating mutations, we found that the number
of respective pathway biomarkers was also significantly higher
(up to 43 pathway biomarkers vs. only one gene biomarker),
but they were identified in a smaller group of cancer
types (Supplementary Image 2A). Nevertheless, the correlation
between gene and pathway pairwise comparisons was 0.634,
p-value= 3.62e-13.

Clustering Dendrograms of Cancer
Localizations
Taking number of molecular pathways with significant AUC
as a metric of the proximity between cancer types, we built
clustering dendrograms for the 15 investigated cancer types. The
dendrograms generated for the different cancer types differed
considerably for the nMR and PI data. We focused on the results
based on all mutations, because the dendrograms built using
only truncating mutations were not biologically informative
(Supplementary Images 2B,C).

First of all, the nMR-based tree had lower number of major
clades (three vs. four for the PI data tree). Second, distances

between the cancer localizations were more degenerated on
the nMR tree (Figures 4B,C). These features may reflect the
approximately two orders of magnitude lower numbers of
biomarkers used to construct dendrograms identified for the
nMR data. Clade compositions were largely similar between both
types of tree, but the above considerations suggest in favor of
using pathway- rather than gene-specific tree based on mutation
data.

Interestingly, positions on the clades of all the dendrograms
were not linked with the anatomical proximities of the respective
localizations in human body. This suggests that accumulations
of characteristic mutations in cancers are following complex
mechanisms that are not yet completely understood.

DISCUSSION

Bioinformatic approaches based on measuring of molecular
pathway activation were efficient in finding biomarkers using
high throughput proteomics (25), mRNA (27, 51), microRNA
(26) and even transcription factor binding site data (52).
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TABLE 2 | Top 25 molecular pathways sorted by the number of cancer types where PI score serves as a good biomarker distinguishing from the other fourteen

localizations (AUC>0.75).

# Pathway name (according to the

source pathway database)

Cancers Reference

1 KEGG Pathways in cancer Main Pathway 6 https://www.genome.jp/kegg-bin/show_pathway?hsa05200

2 AKT Signaling Pathway 5 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=23

3 cAMP Pathway 5 https://www.qiagen.com/br/shop/genes-and-pathways/pathway-details/?pwid=76

4 ILK Signaling Pathway 5 https://www.qiagen.com/dk/shop/genes-and-pathways/pathway-details/?pwid=246

5 ILK Signaling Pathway Cytoskeletal

Adhesion Complexes

5 https://www.qiagen.com/dk/shop/genes-and-pathways/pathway-details/?pwid=246

6 KEGG Neuroactive ligand receptor

interaction Main Pathway

5 https://www.genome.jp/kegg-bin/show_pathway?map=hsa04080&show_description=show

7 PTEN Pathway Adhesion or Migration 5 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=375

8 PTEN Pathway Angiogenesis and

Tumorigenesis

5 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=375

9 PTEN Pathway Ca2+ Signaling 5 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=375

10 ERK Signaling Pathway 4 https://www.qiagen.com/fr/shop/genes-and-pathways/pathway-details/?pwid=162

11 ILK Signaling Pathway Epithelial

Mesenchymal Transition Tubulo-Interstitial

Fibrosis

4 https://www.qiagen.com/dk/shop/genes-and-pathways/pathway-details/?pwid=246

12 ILK Signaling Pathway Migration

Vasculogenesis

4 https://www.qiagen.com/dk/shop/genes-and-pathways/pathway-details/?pwid=246

13 KEGG ECM receptor interaction Main

Pathway

4 https://www.genome.jp/kegg-bin/show_pathway?hsa04512

14 KEGG HTLV I infection Main Pathway 4 https://www.genome.jp/kegg-bin/show_pathway?hsa05166

15 KEGG MAPK signaling Main Pathway 4 https://www.genome.jp/kegg/pathway/hsa/hsa04010.html

16 KEGG Olfactory transduction Main

Pathway

4 https://www.genome.jp/kegg-bin/show_pathway?map=hsa04740&show_description=show

17 KEGG Protein digestion and absorption

Main Pathway

4 https://www.genome.jp/kegg-bin/show_pathway?map=hsa04974&show_description=show

18 KEGG Sphingolipid signaling Main

Pathway

4 https://www.genome.jp/kegg-bin/show_pathway?map=hsa04071&show_description=show

19 MAPK Signaling Pathway 4 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=282

20 MTOR Pathway 4 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=304

21 NCI Beta1 integrin cell surface interactions

Main Pathway

4 http://www.pathwaycommons.org/pc/record2.do?id=517095

22 p38 Signaling Pathway 4 https://www.qiagen.com/mx/shop/genes-and-pathways/pathway-details/?pwid=337

23 PAK Pathway 4 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=342

24 PTEN Pathway 4 https://www.qiagen.com/us/shop/genes-and-pathways/pathway-details/?pwid=375

25 Ras Pathway 4 https://www.qiagen.com/no/shop/genes-and-pathways/pathway-details/?pwid=383

Here, we applied molecular pathway scoring approach to
large scale mutation data. For the first time, we developed
reliable universal method of measuring mutation enrichment of
molecular pathways. It should be noted that the idea of collapsing
mutation data has been already reflected in several previous
studies. For example, bioinformatic tool BioBin overcomes
sparsity of data by combining mutations into bins at the levels
of molecular pathways, protein families, evolutionary conversed
regions and regulatory regions (53, 54). An alternative approach
for the same has been provided by the method Network
regularized sparse non-negative TRI matrix factorization for
PATHway identification using known molecular pathways and
gene interaction networks (55). Unlike previous methods, our
approach focuses on generation of universal parameters that
objectively assess the mutation load of a molecular pathway.

Previous approaches evaluated mutation load only based on
presence or absence of a mutation, not considering number
of gene products-pathway participants and lengths of their
DNA coding sequences, which hindered accurate comparison of
pathways. These major problems were addressed by the current
PI approach, which provides clear, simple and reliable universal
measure of mutation burden of molecular pathways.

We adopted this method for finding mutation biomarkers
of cancers. On the example of 5,956 exome sequencing profiles
of different cancer patients we showed at least two order of
magnitude superior performance of the pathway instability
scoring compared to the single gene-based approach.

In the current approach, we did not classify the effects
of the different mutations on the pathway activities because
only a minor fraction of the mutations identified has been
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FIGURE 4 | (A) Data matrix of high quality (AUC>0.75) biomarkers for pairwise comparisons between the different cancer localizations calculated based on all

mutations. The cancer types are abbreviated as follows: BRCA, breast invasive carcinoma; LGG, brain lower grade glioma; GBM, glioblastoma multiforme; CESC,

cervical squamous cell carcinoma and endocervical adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; LAML, acute myeloid leukemia; KIRP, kidney

renal papillary cell carcinoma; KIRC, kidney renal clear cell carcinoma; COADREAD, colorectal cancer; LICA, liver cancer; LIHC, liver hepatocellular carcinoma; LUAD,

lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; SKCM, skin cutaneous

melanoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; BLCA, bladder urothelial carcinoma. The lower triangle shows numbers of high-quality

biomarkers for pathway-based data (PI); the upper triangle—for individual gene-based mutation data (nMR). The intersection of cancer localization terms indicates

number of the effective biomarkers for the respective comparison. (B) Cluster dendrogram built for the fifteen cancer types based on mutation biomarker (PI) data for

all mutations. Number of biomarkers was used as the distance metric. (C) Cluster dendrogram built for the fifteen cancer types based on mutation biomarker (nMR)

data for all mutations. Number of biomarkers was used as the distance metric.

experimentally characterized in terms of its impact on the protein
and pathway functionalities. However, further accumulation of
these data on a high throughput basis will make it possible to
improve the PI calculation by adding the specific coefficients
reflecting effect of every individual mutation on the respective
protein. To assess stability of PI scoring, we also tested a version
of this method considering only a minor fraction of truncating
mutations that most likely led to the loss of gene function.
Truncating mutations have demonstrated the same trends as
the total fraction of mutations, thus confirming PI scoring
robustness.

This method can be easily translated to comparisons of every
sets of human exome or complete genome data. To this end,
for every sample, mutations should be identified for the genes
participating in the molecular pathways under investigation
(1,748 pathways including 8,543 genes in this study). Pathway
instability (PI) scores are then calculated showing relative
mutation burden of each pathway in every biosample. These
findings can be valuable per se for better understanding of the
individual mechanisms of carcinogenesis. Furthermore, ROC
AUC test can be next applied to the PI data to identify reliable
biomarkers of the sample groups under comparison. All these
procedures can be done by using publicly available bioinformatic
tools, and the gene compositions of 1,748 molecular pathways
required for PI calculation are available in the respective
databases (35–40).

Taken together, our data suggest that in addition to better
understanding of fundamental tissue-specific mechanisms

of carcinogenesis, molecular pathway approach can be
beneficial in finding reliable tumor type-specific biomarkers
for identification of tumor origin in the low- or non-
differentiated tumor histotypes. Pathway instability (PI)
mutation data can be used as the additional criteria for
differential diagnostics in oncology. Tumor relationship based
on the pathway specific genetic signatures such as those
shown on Figure 4C may help optimize design of the basket
clinical trials. This may be also beneficial to help to predict
common patterns in response to drugs and different treatment
regimens.

Although a major focus of this study was made on
the specific deviations in PI between the cancer types, we
could also identify molecular pathways that were strongly
mutated in all the cancer types, as previously predicted in the
literature (19, 21).

Finally, we provide the list of 660 marker molecular pathways
that distinguish between the major human cancer types. This
list can be helpful for better understanding molecular grounds
of carcinogenesis and for further investigations in molecular
oncology and drug development.
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Supplementary Image 2 | (A) Data matrix of high quality (AUC > 0.75)

biomarkers for pairwise comparisons between different cancer types based on

truncating mutations only. The cancer types are abbreviated as follows: breast

invasive carcinoma - BRCA, brain lower grade glioma - LGG, glioblastoma
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