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Abstract  
Central nervous system (CNS) trauma, including traumatic brain injury and spinal cord injury, has 
a high rate of disability and mortality, and effective treatment is currently lacking. Previous studies 
have revealed that neural inflammation plays a vital role in CNS trauma. As the initial enzyme in 
neuroinflammation, cytosolic phospholipase A2 (cPLA2) can hydrolyze membranous phosphatides 
at the sn-2 position in a preferential way to release lysophospholipids and ω3-polyunsaturated 
fatty acid dominated by arachidonic acid, thereby inducing secondary injuries. Although there is 
substantial fresh knowledge pertaining to cPLA2, in-depth comprehension of how cPLA2 participates 
in CNS trauma and the potential methods to ameliorate the clinical results after CNS trauma are still 
insufficient. The present review summarizes the latest understanding of how cPLA2 participates in 
CNS trauma, highlighting novel findings pertaining to how cPLA2 activation initiates the potential 
mechanisms specifically, neuroinflammation, lysosome membrane functions, and autophagy activity, 
that damage the CNS after trauma. Moreover, we focused on testing a variety of drugs capable of 
inhibiting cPLA2 or the upstream pathway, and we explored how those agents might be utilized as 
treatments to improve the results following CNS trauma. This review aimed to effectively understand 
the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma 
and provide clarification and a new referential framework for future research.
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Introduction 
Central nervous system (CNS) trauma, including traumatic brain injury (TBI) 
and spinal cord injury (SCI), is a leading cause of long-term disability and 
death worldwide (No authors listed, 2019a). The global burden of disease 
collaborator group study reported 0.93 million SCI cases and 27.08 million 
new TBI cases worldwide, while their global prevalence reached 27.04 million 
and 55.50 million, respectively (No authors listed, 2019b). To date, despite 
obvious clinical needs, no therapy has significantly improved the long-
term rehabilitation outcomes after CNS injury. This may partially reflect an 
incomplete understanding of the complicated pathobiological mechanisms. 

At present, we have knowledge of two events that occur during damage from 
CNS trauma: the primary mechanical injury involving direct mechanical tissue 
damage and secondary damage mediated by diverse pathogenic processes 
such as neuroinflammation, free radicals, calcium overload, and glutamate 
excitotoxicity (Hall, 1989; Saghazadeh and Rezaei, 2017; Gong et al., 2020). 
Overlapping boundaries exist between the effects mediated by these factors 
and other causal links driving the secondary injury (David and López-Vales, 
2021). Among these, neural inflammation is an obvious characteristic of the 
reaction to central nervous system trauma (López-Vales and David, 2019). In 
addition, it is a vital marker of a variety of neurodegeneration illnesses where 
inflammatory events facilitate pathological development (Stephenson et al., 
2018). CNS trauma-induced neuroinflammatory reactions are intricate and 
revealing the causal links regulating such inflammatory events is pivotal for 
the purpose of developing valid therapies (David and López-Vales, 2021).

Cytosolic phospholipase A2 (cPLA2), a key target of inflammatory response, is 
involved in neuroinflammation in SCI and TBI. Early studies have proven that 
it exists in both spinal cord and brain neurons (Bonventre, 1996; Ong et al., 
1999a). Besides, collective evidence from many recent studies suggests that 
not only increased cPLA2 activity but also cPLA2-generated mediators play an 
important role in acute inflammatory responses in the CNS (Farooqui et al., 

2006). Biologically active lipids are a large family of multifunctional mediating 
factors for inflammatory events deserving extreme attention, and they 
involve prostaglandins and associated eicosanoids known to be predominant 
inflammatory modulators. Certain enzymes are required to transform 
aliphatic acids related to the cellular membrane into eicosanoids and the rest 
of the biologically active lipidic mediating factors (David and López-Vales, 
2021). As the first enzyme in such processes, cPLA2 can, in a preferential 
way, hydrolyze membranous phosphatides at the sn-2 position to produce 
lysophospholipids and arachidonic acid (AA) that contribute to various aspects 
of neuroinflammation through cyclooxygenase-2 (COX-2) and lipoxygenase 
(LOX) pathways after CNS trauma (Li et al., 2019; Sarkar et al., 2020). Under 
physiological conditions, cPLA2 participates in a variety of significant cellular 
responses, including phospholipid metabolism, signal transduction, and 
membrane remodeling (Kita et al., 2019; Wang et al., 2021; Hayashi et al., 
2022). Nevertheless, under pathological conditions, elevated cPLA2 activity 
and excessive free aliphatic acids including AA, proinflammatory mediators, 
and platelet-activating factor (PAF) might damage lysosome membranes and 
cause neuroinflammation and oxidative stress (Chuang et al., 2015).

In general, as a rate-limiting step of the inflammatory response, activated 
cPLA2 will induce the production of more inflammatory factors, creating a 
cascade effect that promotes the progression of inflammation. Thus, as the 
critical component of signal transduction in the inflammatory response, 
cPLA2 vitally influences TBI and SCI pathogenesis (Chao et al., 2018; Stewart 
et al., 2021). Although an increasing number of studies have confirmed the 
involvement of cPLA2 in TBI and SCI pathogenesis, few have summarized the 
association between CNS trauma and cPLA2. In this paper, we have specifically 
highlighted the effects of cPLA2 and its downstream products on inducing 
inflammatory events after SCI and TBI. We have also summarized the latest 
understanding of cPLA2 in CNS trauma, with special focus on the potential 
effects of cPLA2 in the mediation of secondary damage and the potential 
therapeutic prospects of cPLA2-related inhibitors.
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Retrieval Strategy 
Literature review was electronically performed using PubMed database. The 
following combinations of keywords were used to initially select the articles to 
be evaluated: cPLA2; domain or structure; traumatic brain injury; spinal cord 
injury; mechanism or function; MAPK or calcium influx or upstream; brain 
or spinal. More than half of the selected studies were published from 2017 
to 2022. We screened the results of each step by abstract and full title and 
excluded studies that reported non-cPLA2-related experiments and reviews 
(Figure 1).

inflammation illness models (Nagase et al., 2000b). Thus, most researchers 
now believe that cPLA2 is the “valve” that regulates the inflammatory process 
(Chatterjee et al., 2021; Duro et al., 2022). 

Upstream of Cytosolic Phospholipase A2 
Activation 
It is generally accepted that the activation of cPLA2 occurs only through 
the mechanism of postreceptor signal transduction and it depends on the 
comodulation of many factors (Isenović et al., 2009). The fact that there are 
many phosphorylation sites on cPLA2 (S431, S454, S505, and S727) showed 
that cPLA2 was a matrix for the rest of the kinases (de Carvalho et al., 1996). 
Thus, as a molecule in the complex intracellular regulating network, cPLA2 
can give “instructions” by sensing external signals, triggering a series of 
downstream effects, and playing an important role in connecting these signals 
with responses (Figure 2).

Figure 1 ｜ Flowchart for literature retrieval.
cPLA2: Cytosolic phospholipase A2.

Overview of Cytosolic Phospholipase A2 
Phospholipase A2 (PLA2) is a family of enzymes with glycerophospholipid 
decomposition activity. By catalyzing the hydrolysis of phosphatidylcholine, 
phosphatidylethanolamine, and phosphatidylserine in the sn-2 position 
of the cell  membrane, PLA2 can produce free aliphatic acids and 
lysophospholipids, which act as lipidic secondary messengers (Peng et al., 
2021). The physiological functions of PLA2 include the transformation of 
the phospholipid structure, promotion of the autologous disappearance of 
necrotic tissues, and participation in the metabolism of alveolar surfactants 
(Kita et al., 2019). According to the classification of their biological activity, the 
PLA2 family is subdivided into approximately four groups (Ong et al., 2010): 
(i) Secreted phospholipase A2 (sPLA2): sPLA2 is a low molecular mass (14 
kDa) enzyme with a rigid tertiary structure configured by disulfide bridges. It 
needs a millimolar concentration of calcium to exert its enzymatic action and 
has poor fatty acid selectivity when tested in vitro (Sun et al., 2021). Several 
studies have suggested that functionally active cPLA2 is a prerequisite for 
sPLA2-mediated AA release and prostaglandin biosynthesis (Balsinde et al., 
1998; Murakami et al., 1998; Shinohara et al., 1999) and that cPLA2 regulates 
gene expression of sPLA2 (Kuwata et al., 2000). (ii) cPLA2: mainly including 
cPLA2α, cPLA2β, and cPLA2γ. cPLA2α has a molecular weight of 85 kDa and is 
widely present in various bodily tissues. It normally requires the participation 
of a submicromolar Ca2+ concentration and the phosphorylation of upstream 
kinases during activation to selectively hydrolyze the phospholipid AA sn-2 
position. Later, other downstream enzymes, including COX and leukotrienes 
are responsible for the metabolism of AA to eicosanoids and are located at 
the sn-2 position too (Farooqui et al., 2006). This gives cPLA2 access to its 
membrane-associated phospholipid substrate. Since cPLA2α was discovered 
earlier, the current understanding of cPLA2 mainly comes from cPLA2α. Many 
studies have found group cPLA2α as the main PLA2 involved in the production 
of AA and vital for inflammatory events (Sun et al., 2021). Transgenic mice 
that lack cPLA2α exhibit remarkably harmful phenotypes in inflammatory 
illnesses such as ischemic cerebral damage, anaphylactic reactions, arthritis, 
alcohol abuse, and acute lung injury (ALI) (Bonventre et al., 1997; Nagase et 
al., 2000a, 2002; Kishimoto et al., 2010; Tai et al., 2010; Chuang et al., 2015). 
(iii) Ca2+-independent phospholipase A2 (iPLA2) exists in various tissues and 
cells, and its activation does not require the participation of Ca2+ (Sun et al., 
2021). It is generally believed that iPLA2 does not directly participate in the 
release of AA induced by activators (Farooqui et al., 2006). (iv) Plasmalogen-
selective PLA2: it has an apparent molecular mass of 39 kDa and mainly exists 
in the plasma and endarterium (Ong et al., 2010).

A recently published study has shown that iPLA2, cPLA2, and sPLA2 have a 
unique preference among the specific omega-3 fatty acids—eicosapentaenoic 
acid and docosahexaenoic acid—or the omega-6 AA, which are the precursors 
of most pro- and anti-inflammatory factors (Hayashi et al., 2021). Meanwhile, 
the study discovered that cPLA2 selectively preferred AA, whereas iPLA2 
preferred eicosapentaenoic acid, and sPLA2 preferred docosahexaenoic 
acid as the substrate. Compared to the other three forms, cPLA2 is the best 
characterized in terms of its enzyme properties and protein structure, while 
iPLA2, sPLA2, and plasmalogen-selective PLA2 need to be further clarified 
(Kita et al., 2019). cPLA2 has two independent units that include an N-terminal 
C2 domain and a catalytic domain, and it is translocated to phosphatide 
membranes through the C2 domain at the nanomolar level of Ca2+, where it 
acts on arachidonate-containing phospholipids (Sun et al., 2021). Additionally, 
increasing evidence has shown that cPLA2 is crucial for the release of AA and 
lysophospholipids induced by agonists such as cytokines and endotoxins and a 
series of downstream inflammatory mediators (Sun et al., 2021). Experiments 
performed using mice with cPLA2 knockout (KO) have shown that cPLA2 is the 
indispensable PLA2 enzyme required for eicosanoid production in different 

Figure 2 ｜ Graphical presentation of the mechanism of cPLA2 in traumatic brain and 
spinal cord injuries. 
The extracellular signal molecule binds to its corresponding G-protein-coupled receptor 
to activate PLC. PLC cleaves the PIP2 in the cell membrane into DAG and IP3 and then 
activates PKC to cause a cascade reaction, which opens the calcium channel of the cell 
membrane and increases the intracellular calcium ion concentration. In addition, a 
second injury promotes cPLA2 phosphorylation through the ras-MAPK signaling pathway. 
The increased intracellular calcium promotes the binding of the C2 domain of cPLA2 to 
membrane phospholipids. Phosphorylated cPLA2 hydrolyses membrane phospholipids, 
producing downstream products (AA, Ly-so, and their subsequent metabolites) 
that trigger neuroinflammation. Phosphorylated cPLA2 simultaneously binds to the 
lysosomal membrane, resulting in increased permeability of the lysosomal membrane. 
Lysosomal enzymes (CTSB, CTSD) exosmose to degrade TFAM and impair mitochondrial 
function. Exosmotic lysosomal enzymes break down digestive cells and cause neuronal 
cell death. Damaged lysosomal enzymes prevent the binding of lysosomal enzymes 
to autophagosomes and thus hinder the progress of autophagy. [Ca2+]i: Intracellular 
calcium concentration; AA: arachidonic acid; CTSB: cathepsin B; CTSD: cathepsin D; DAG: 
diacylglycerol; IP3: inositol triphosphate; LPA: lysophosphatidic acid; LTB4: leukotriene 
B4; LXA4: lipoxin A4; Ly-so: lysophospholipids; MAPK: mitogen-activated protein kinase; 
PAF: platelet-activating factor; PGE2: prostaglandin E2; PIP2: phosphati-dylinositol-
4,5-bisphosphate; PKC: protein kinase C; PLC: phospholipase C; S-1-P: sphingosine 1 
phosphate; TFAM: transcription factor A; TXA2: thromboxane 2.

A previous study showed that there are two classical pathways that can 
activate cPLA2 (Mouchlis and Dennis, 2019). First, an increase in cytosolic 
calcium can activate cPLA2 (Sun et al., 2021). In Lin’s research, cPLA2 was 
stimulated by elevated endocellular Ca2+ levels (Lin et al., 1993). When cells 
are activated by an acceptor ligand such as platelet-derived growth factor 
or adenosine triphosphate (ATP), phospholipase C is induced by a G protein-
independent/dependent process, resulting in the generation of diacylglycerol 
and inositol triphosphate. Then, an increase of those intracellular messengers 
leads to the stimulation of protein kinase C and the mobilization of 
endocellular Ca2+, or the elevation of endocellular Ca2+ could be a result of 
Ca2+ influx (Lin et al., 1993). Finally, elevated Ca2+ leads to the movement of 
cPLA2 from the cytosol to the membranes in which the matrix phosphatide is 
localized, which is pivotal for cPLA2 stimulation and might explain the partial 
stimulation of cPLA2 without phosphorylation (Lin et al., 1993). 

Extracellular Ca2+ influx has been shown to be dispensable for the activation of 
cPLA2 (Rzigalinski et al., 1996). The mobilization of low-level AA was realized 
and followed by the release of Ca2+ stored in endocellular compartments, 
before extracellular Ca2+ influx. A later AA release was coupled with the 
extracellular Ca2+ influx and it lasted until maximum [Ca2+]i concentration 
was reached, suggesting cPLA2-mediated AA release might take part in the 
modulation of intracellular free Ca2+ content. Therefore, further investigation 
of the mechanisms of cPLA2 activation by the Ca2+-dependent pathway is 
necessary. 

Another pathway for cPLA2 stimulation is phosphorylation. With the available 
full sequence of cPLA2, it seems obvious that this enzyme has a consensus 
phosphorylation motif (involving Ser-505) that is a target of the components 
of the mitogen-activated protein kinase (MAPK) family (Santerre-Anderson 
and Werner, 2020). The MAPK family is involved in regulating various 
neurotransmitters, hormones, growth factors, and cytokines and responding 
to stress stimulation of the physiological activities of diverse cells (Yuan et al., 
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2020). It involves three primary components: extracellular signal regulated 
kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), reflecting three 
diverse signal transmission cascades (Xue et al., 2020). These three signaling 
pathways are not completely independent, and they interact with each 
other to affect the phosphorylation of cPLA2 (Naik et al., 2017). P38 MAPK 
is considered a stress-triggered kinase and is vital for inflammatory reactions 
(Kim et al., 2021). It has been established that the phosphorylation of cPLA2 
by P38 MAPK on serine-505 increases its catalytic activity (Santerre-Anderson 
and Werner, 2020). Importantly, ABT-737-induced activation of p38 triggered 
cPLA2 phosphorylation, and this affected platelet apoptosis (Rukoyatkina 
et al., 2013). In addition, leptin attenuated lipopolysaccharide-triggered 
apoptosis damage in murine thymic cells, primarily by decreasing cPLA2 and 
realizing the cleavage of caspase-3 through the p38-MAPK signaling pathway 
(Liang et al., 2013). 

ERK1/2 is one of the pathways involved in the cellular reaction and sensitivity 
to stimulus via ultimate control of cellular metabolic and proliferative abilities 
as well as cellular death (Santerre-Anderson and Werner, 2020). Activation 
of cPLA2 and generation of the lipidic secondary messenger lysolecithin 
are considered initiating events (in 2 min) needed for radiation-triggered 
stimulation of ERK1/2 in vascular endothelial cells (Yazlovitskaya et al., 
2008). In a study by Shelat et al. (2008) with primary neurons in cultivation, 
activation with the ionotropy glutamate receptor agonist caused reactive 
oxygen species (ROS) generation via the nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidative enzyme and fast stimulation of ERK1/2 and 
cPLA2. Further research by Chuang et al. (2015) showed that in both primary 
and BV-2 microglia stimulated by lipopolysaccharide, the timepoint of 
increasing p-ERK1/2 was prior to that of p-cPLA2. The associations between 
p-ERK1/2 and cPLA2 were further verified by U0126, the MEK1/2-ERK1/2 
suppressor, which completely blocked cPLA2 phosphorylation. JNK also serves 
as a component of the MAPK family and mediates various types of cellular 
signaling processes such as cell proliferation, migration, and apoptosis (Li et 
al., 2021). Increasing evidence has confirmed that JNK signaling is involved 
in inflammation and the nervous system (Yang et al., 2009; Nasrazadani and 
Van Den Berg, 2011). Hernández et al. (1999) found that TNF-α causes early 
stimulation of p38-MAP kinase and JNK in astrocytic glioma cells, which is 
before cPLA2 phosphorylation and the release of AA, suggesting that P38 
and JNK are both upstream signaling pathways of cPLA2. In addition, an 
experiment in a liver injury model proved that gigantol ameliorated CCl4 
triggered hepatic damage by avoiding stimulation of the JNK/cPLA2/12 LOX 
inflammation pathway (Xue et al., 2020).

A surprising event that occurred in Kishimoto et al’s research was that the 
phosphorylation of MAPKs-p38, ERK 1/2, and JNK 1/2 was more remarkable 
in the cPLA2+/+ ischemia cortex than in the cPLA2–/– ischemia cortex, 6 
hours after reinfusion (Kishimoto et al., 2010). The authors believe that the 
mutual effects may create a positive feedback loop, where cPLA2-reliant ROS 
elevates kinase stimulation and induces more cPLA2 stimulation. In addition, 
phosphatidylinositol-4,5-bisphosphate (PIP2), which exists in the plasma 
membrane, can bind to cPLA2 and activate it. PIP2 promotes the binding of 
the active parts of the enzyme to the membranous phospholipid matrix by 
inducing alterations of the cPLA2 conformation (Stahelin et al., 2007). Overall, 
specific crossover and integration between MAPK pathways and other 
intracellular pathways constitutes a complex signal network, which indicates 
that cPLA2 is an active substrate downstream of this vast regulatory network. 
However, the extent to which they independently affect the phosphorylation 
of cPLA2 and how they interact with each other still needs further research. 
Through the coaction of the above pathways, cPLA2 can be activated for a 
long time and play a “pivotal” role in the various downstream inflammatory 
factors. 

Involvement of Cytosolic Phospholipase A2 in 
Traumatic Brain Injury and Spinal Cord Injury
Functions of cPLA2 in TBI
More than two decades ago, it was reported that cPLA2 activity was a vital 
contributing factor to deleterious cellular processes in the CNS (Mori et 
al., 1996). Later, cPLA2 was found in the gerbil cerebrum and the neuron 
cultivation of rat cerebrum (Bonventre, 1996). A head trauma model induced 
in rats by weight drop equipment showed that 15 minutes and 24 hours 
post trauma, cPLA2 activity increased by 75% and 245% relative to sham, 
respectively, while there were no significant changes of cPLA2 activity in the 
uninjured brain parts. It needs to be further investigated whether ischemia 
gradually develops because of increased production of the AA metabolites 
produced by cPLA2 (Shohami et al., 1989). [Ca2+]i is reportedly pivotal for the 
regulation of neuron membrane excitability (Martiszus et al., 2021), and it 
is vital for maintaining cytoskeleton completeness (Lu et al., 2021). In an in 
vitro traumatic injury model (stretch-injured neurons), activation of cPLA2 
was confirmed to participate in the postponed reinforcement of capacitive 
Ca2+ influx, which subsequently disrupted the dynamic equilibrium of Ca2+ 
(Rzigalinski et al., 1996). 

Accumulating evidence has proven that ischemia is an important 
pathophysiological mechanism after TBI, and changes in cerebrovascular 
physiology further lead to ischemia damage (Veenith et al., 2016; 
Dobrzeniecki et al., 2021; Weil et al., 2021). A study showed that mice that 
had encountered TBI in the past had an approximately 4-fold elevation in 
lesion volume, more edema in the ischemic hemisphere, and functional 
damage after middle cerebral artery occlusion (MCAO) (Weil et al., 2021). 

Therefore, improving the symptoms of cerebral ischemia in TBI may also 
improve the prognosis of TBI. 

cPLA2 knockout (KO) mice are protected against postischemic cerebrum 
damage triggered by MCAO (Bonventre et al., 1997). The sizes of infarctions 
are decreased in cPLA2 KO mice after reinfusion, which is especially obvious 
in posterior cerebrum sections. In addition, this work discovered that 
cPLA2 facilitated early events resulting in damage during the process of 
cerebral infarction (Kishimoto et al., 2010). These events might magnify the 
inflammatory cascades and cellular deaths, which define the processes of 
stroke development. Compared with cPLA2 KO mice, cPLA2 WT mice exhibited 
more COX-2 expression, prostaglandin E2 (PGE2) generation, and ROS 
after ischemic events, together with damage to the neuronal morphology, 
suggesting that cPLA2 is a vital regulator of molecular events that occurred 
quickly after cerebral ischemia reperfusion. 

Zhang et al. (2012) found that cPLA2 inhibitors used in the early stages of 
stroke can effectively reduce the area and severity of infarcts. AKT (a cPLA2 
inhibitor) injections 1 hour prior to and at 1 and 6 hours after the initiation of 
reinfusion remarkably decreased the infarction sizes in the hemisphere and 
striatum after 24 hours of reinfusion. However, if ATK was not administered 
within 6 hours of reperfusion, the injury would not decrease, which means 
that cPLA2 may take part in the early stage of brain injury. 

In another study, Wu et al. (2018) used an effective cPLA2 inhibitor and 
adenovirus-mediated RNA interference for the treatment of MCAO/R mice. 
The data indicated that pAd-siRNA-cPLA2 treatment reduced the levels of 
inflammatory factors, neurological deficits, and tissue damage. Bradykinins 
(BKs) are reported to be important for the regulation of vasopermeability and 
inflammation processes after brain damage. In a previous study, controlled 
cortical impact (CCI) assays were conducted to explore the association 
between cPLA2 and the BK acceptor pathway in rats (Chao et al., 2018). The 
data showed cPLA2 upregulation and stimulation after cerebrum damage 
within the initial 24 hours, particularly for the B2 receptor in the early stage 
after TBI, which suggested that BK system stimulation was an initial event 
inducing the stimulation of cPLA2 in the TBI model. 

In recent years, additional pathogenetic and molecular mechanisms of cPLA2 
in brain injury have been further explored. A recent study demonstrated that 
lysosome membrane permeability (LMP) increases in neurons following CCI-
induced TBI in mice, causing damaged macroautophagy and neuronal deaths 
(Sarkar et al., 2020). This was the first study to suggest that cPLA2-mediated 
LMP could facilitate autophagy-lysosome flaws in TBI. However, the specific 
and systematic mechanisms of cPLA2 in TBI need further research.

Functions of cPLA2 in SCI
In 1999, high levels of cPLA2 activity were noted to exist in the rat spinal cord 
(Ong et al., 1999b). Later, in an in vitro experiment, cPLA2 immune reactivity 
was found to be remarkably upregulated in nerve cells undergoing apoptosis 
(Hornfelt et al., 1999). This finding suggested that cPLA2 was pivotal for 
certain causal links participating in or tightly associated with neuron death. 
Later, Liu et al. (2007) found that the usage of annexin A1 (a nonselective 
PLA2 suppressor) can inhibit SCI-triggered inflammatory events and decrease 
tissue damage. Another study showed that both cPLA2 and mellitin (an 
activation agent of endogenetic cPLA2) caused spinal neuron death in vitro, 
which was remarkably attenuated by mepacrine, a cPLA2 suppressor (Liu 
et al., 2006). When cPLA2 or mellitin was delivered into the healthy spinal 
cord via microinjection, the former triggered confined myelinoclasis and 
the latter caused diffuse tissue necrosis. Both these microinjections caused 
oxidization, inflammatory events, and tissue damage, leading to relevant 
electrophysiology and behavioral changes. 

It was then revealed that suppressing cPLA2 (AACOCF3) or gene knockout 
(cPLA2 KO C57Bl/6 mice) can improve motor deficiency and cause less tissue 
injury after SCI (Liu et al., 2014). In Malada’s study, an in vitro experiment 
in microglia showed that cPLA2 can upregulate CD40 protein expression by 
activating the NOX2-NADPH oxidative enzyme and NF-κB. The outcomes 
indicated that cPLA2 might be an essential magnifier of the inflammatory 
reaction after CNS trauma (Malada-Edelstein et al., 2017). Recently, a study 
confirmed that upregulation of cPLA2 can also damage the lysosomal 
membrane and thus impair autophagic flux (Li et al., 2019), suggesting 
that activation of cPLA2 by SCI can destabilize the lysosomal membrane. 
Overall, these data reveal a crucial effect of cPLA2 on regulating oxidation, 
inflammation, membrane integrity, apoptosis, autophagy, and functional 
outcomes following SCI.

However, an interesting study discovered there were complicated effects of 
diverse PLA2 enzymes (cPLA2, sPLA2, and iPLA2) for alleviating or worsening 
SCI (López-Vales et al., 2011). Although all PLA2s were upregulated after 
SCI, contray to Liu et al. (2006), cPLA2 was found to benefit SCI, which was 
identified via special suppressors and cPLA2 KO mice, whereas sPLA2 GIIA 
and iPLA2 GVIA were deleterious for SCI. López-Vales et al. (2011) speculated 
that the strain of mice and the genetic background of different strains of mice 
were the main reasons for the discrepancy. A study focused on lumbar spinal 
stenosis showed that inhibition of cPLA2 can reduce proinflammatory lipid 
mediators originating from cauda equina compression-induced injury (Khan et 
al., 2015). This suggests that cPLA2 is adequately expressed in cells in a wide 
range of nervous systems, such as the CNS and peripheral nervous system, 
and it is regulated by cPLA2-related inhibitors.
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Specific effects of cPLA2 in cell types after CNS trauma
Once CNS trauma occurs, a variety of numerous cells such as neurons, 
astrocytes, and microglia will participate in the inflammatory response 
(Lukacova et al., 2021). The BK receptor is a significant factor within 
secondary injuries in TBI. A previous study showed that reactive astrocytes 
(the major component of the glial scar) played a more important role than 
neurons in BK-cPLA2-AA inflammation (Chao et al., 2018). These authors 
thought that BK-induced inflammation after TBI primarily occurred with the 
glia cells, and the glia cells affected the neuron status. In cultured astrocytes 
and microglia, TNF-α and IL-1β can induce the activation of cPLA2, leading to 
PGE2 production and AA release (Hernández et al., 1999). AA triggers Ca2+-
dependent cell death through mitochondrial permeability transition in both 
cells (Penzo et al., 2004). PGE2 exerts neurotoxicity via astrocyte glutamate 
release (Stachowicz, 2021) and microglia cytokine release (Bhatia et al., 2017). 
Those showed that cPLA2 and its metabolites played different toxicological 
roles in specific neural cells. In addition, the way to activate cPLA2 may be 
different in various cells after CNS trauma. In astrocytes, cPLA2 interacts with 
mitochondrial antiviral-signaling protein to boost nuclear factor kappa B (NF-
κB)-driven inflammatory responses (Chao et al., 2019). In microglia, cPLA2 
and AA metabolites contribute to ROS and nitric-oxide production during 
cell activation mainly through the MAPK pathway (Chuang et al., 2015). As 
mentioned above, although cPLA2 is widely expressed after CNS trauma, 
studies on the specific role of cPLA2 on different cell types in CNS trauma are 
limited because of the complex cellular composition of the nervous tissue. 
However, with recent advances in techniques for separation and isolation of 
specific cell types in the brain and spinal cord tissue, understanding of the 
molecular actions of cPLA2 has greatly improved, but the specific underlying 
mechanism requires further investigations (Sun et al., 2021). 

Potential Mechanisms of Cytosolic 
Phospholipase A2 in Traumatic Brain Injury and 
Spinal Cord Injury 
To date, sufficient evidence has proven that cPLA2 plays a significant role in 
CNS trauma. However, the mechanism by which activation of cPLA2 affects 
CNS trauma remains elusive. Some mechanisms have been proposed to 
explain the cPLA2-mediated damage. These causal links might not exclude 
each other, and it is possible that every pathway might interact in an 
independent manner after activation of cPLA2 to cause neuroinflammation 
and harm the organelles during the inflammatory reactions involved in CNS 
trauma. Here, we mainly discuss the details of the effect of cPLA2 on the 
production of metabolites, membrane damage, impaired autophagy flux 
(Siegrist et al., 2019; Sarkar et al., 2020), and subsequently, impaired SCI and 
TBI (Figure 2).

Effect of cPLA2 on neuroinflammation in CNS trauma
cPLA2 is vital for the production of diverse inflammatory mediators: a 
variety of inflammatory mediators are directly or indirectly involved in the 
pathogenesis of CNS trauma, some of which induce each other and some 
are antagonistic to each other, thereby jointly building a complex network. 
A previous study showed that CNS trauma increased cPLA2 metabolites 
such as free aliphatic acids, eicosanoids, and lipidic peroxides (Abu Hamdeh 
et al., 2018). First, oxidized free aliphatic acids are a primary product of 
lipid peroxidation after CNS trauma. In a CCI model, oxidation peaked at 
60 minutes after CCI and gradually weakened at the 4- and 24-hour time 
points (Anthonymuthu et al., 2017). Sixty minutes after TBI, enzyme lipid 
peroxidation was the primary causal link with 15-LOX, leading to almost 
complete total oxidation of aliphatic acids. Proinflammatory lipidic mediating 
factors were elevated at 1 and 4 hours after TBI and were then restored to 
basic levels after 24 hours, which coincides with the time of early cPLA2-
mediated damage (Li et al., 2019; Sarkar et al., 2020). In addition, the 
metabolism of free aliphatic acids and lysophosphatides leads to the loss 
of essential phospholipids. Thus, it may also function with a detergent-like 
effect on the membranes of the neurons and influence nerve conduction 
(Faure et al., 2014). Moreover, free aliphatic acids could deactivate oxidative 
phosphorylation (OXPHOS), leading to mitochondrial function disorder (Papa 
et al., 2012). Arachidonic acid is the predominant product of phospholipids 
degraded by cPLA2, and subsequently bio-transforms through different 
pathways into several mediators that are endowed with pivotal roles in 
the regulation of inflammatory processes (Gorica and Calderone, 2021). 
For instance, PGE2, as a metabolite of AA, can induce the inflammatory 
reaction of astrocytes (Song et al., 2021). A closed head injury model showed 
significant correlation between increased cPLA2 activity and PGE2 at 4 
and 24 hours post trauma (Shohami et al., 1989). The elevation of PGE2 
production was eliminated when pretreated with 70,000 dextrans, which 
has been previously shown (Shohami et al., 1989) to inhibit cPLA2 activity. 
Besides AA can induce mitochondrial swelling in glial cells and damage 
membrane permeability via channel regulation in brain tissue (Farooqui et 
al., 1997). Other products induced by AA including TXA2 can facilitate the 
synthesis of TNF-α and IL-10 (Mitsuhashi et al., 1994), together with LTB4 
that promote the ability of mononuclear cells and macrophages to release 
IL-1, IL-2, and IFN-γ (Filgueiras et al., 2015). The results of a recent study 
interestingly found that different from other metabolites of AA, lipoxin A4 
(LXA4) works as an anti-inflammatory and catabolic lipid mediator that 
contributes to the resolution of inflammation (Dennis and Norris, 2015). It 
promotes macrophage recruitment to clear cell debris (Mei et al., 2021) and 
inhibits macrophage/microglia activation, thus reducing neuropathic pain 
(Martini et al., 2016). In a TBI model, LXA4 inhibiteds elevation of mRNA 

and protein levels of TNF-α, IL-1β, and IL-6 and attenuated brain edema and 
reduced lesion volume (Luo et al., 2013). Besides in a SCI model, Wei et al. 
(2021) showed that LXA4 exerted a neuroprotective effect through Akt/Nrf2/
HO-1 signaling pathway in Erastin-induced ferroptosis of primary spinal cord 
neurons. According to studies of these researchers, we hypothesized that 
LXA4, as an anti-inflammatory element in inflammatory response, might 
be involved in the inhibition of cPLA2 targets based on a negative feedback 
mechanism.

Apart from AA, another major product mediated by cPLA2 at sn-2 of 
glycerophospholipids is lysophospholipids, the downstream metabolites 
of which can also lead to a pro-inflammatory effect. Under physiological 
conditions, PAF, the product from lysophospholipid acetylation can modulate 
the function of lipid messenger through the balance between synthesis (via 
phospholipases) and degradation (via acetylhydrolases) of itself (Piwowarek 
et al., 2021). However, once this balance is broken under pathological 
conditions of SCI and TBI (Wang et al., 2016; Yin et al., 2017), PAF will become 
a proinflammatory mediator and neurotoxic agent. Recently, the downstream 
product of lysophospholipids, including S-1-P and lysophosphatidic acid (LPA), 
were found to function as receptor-mediated signaling molecules; this has 
especially drawn acute scientific interest because of its critical roles in the 
CNS system (Gaire and Choi, 2021). In cultured microglia, S-1-P can influence 
ATP release through volume-regulated anionic channel, which is associated 
with the motion of microglia (Zahiri et al., 2021), suggesting that S-1-P can 
promote microglial activation and subsequently initiate neuroinflammatory 
responses. Additionally, López found that LPA was constitutively expressed 
in the spinal cord parenchyma, and its transcripts were upregulated after 
contusion injury by microglial cells. LPA-deficient mice showed enhanced 
motor skills and myelin sparing after SCI, suggesting LPA activation contributes 
to secondary CNS damage (López-Serrano et al., 2019). Additionally, abundant 
evidence has shown that LPC can contribute to demyelination (Hamidabadi 
et al., 2021; Yamazaki et al., 2021), and animal models of LPC-induced focal 
demyelination have been widely used in experimental research (Kataria et al., 
2018). 

Regardless of the specific metabolic pathways undertaken by AA and 
other metabolites, cPLA2 is vital in the first step of the synthesis of these 
eicosanoids (Wang et al., 2021). cPLA2 can be stimulated by some pivotal 
damage mediating factors, such as inflammatory cell factors, free radicals, 
and excitatory amino acids, which are increased after CNS trauma (Vichai 
et al., 2005; Lin et al., 2015; Wang et al., 2021). Increased cPLA2 activity 
in turn hydrolyses the neuronal membrane, further increasing the release 
of inflammatory, oxidative, and excitatory amino acids. This suggests that 
metabolites of cPLA2 might be pivotal in creating the positive feedback 
loop induced by trauma injury. The effector system that controls cPLA2 
and subsequent mobilization of AA ensures complete regulation of the 
pathological conditions closely related to arachidonic acid cascade activation.

Effect of cPLA2 on the lysosome membrane function in CNS trauma
Phosphatides serve as the key constituents of neurocyte bilayer membranes 
(Alashmali et al., 2021). They not only form the backbone of neuronal 
membranes but also offer membranes the appropriate milieu, fluidity, and 
ion permeation required for the normal functions of intact membranous 
proteins, receptors, and ionic channels (Yu et al., 2021). The barrier capability 
of lysosomal membranes is damaged under multiple pathological conditions 
including SCI and TBI (Wu and Lipinski, 2019; Ibata and Yuzaki, 2021), resulting 
in the release of lysosome contents into the cytosol, which, in return, 
enables the lysosomal lumen to absorb neutral cytosolic solution (Alashmali 
et al., 2021). The activation of cPLA2 triggers phosphatide decomposition 
and membranous breakdown via the hydrolytic action of nerve membrane 
phosphatides, leading to variations in membranous functions such as 
permeability and fluidity, activities of acceptors and transporters, and ionic 
homeostasis, and finally contributing to the dysfunction of the membrane (Li 
et al., 2019; Sun et al., 2021). Once the neural membranes are irreversibly 
impaired, their function may become completely destroyed. Then, LMP 
increases, and thus, lysosome proteases such as cathepsin D (CTSD) and 
cathepsin B (CTSB), which normally exist only in lysosomes, can enter the 
cytoplasm (Liu et al., 2018). 

Mitochondrial transcription factor A (TFAM) was recently reported to be a 
substrate of CTSB that leaked into the cytosol of microglia (Ni et al., 2019). 
Under a neutral pH, human recombinant TFAM can be degraded by CTSB, 
suggesting that CTSB leakage into the cytosol of microglia may result in 
mitochondrial disruption via a TFAM-dependent degradation pathway (Ni 
et al., 2019). Previous studies have found that SCI and TBI can alter the 
subcellular localization of CTSD—diffusive instead of discrete punctate—
revealing that LMP enables the leakage of CTSD into the cytosol, inducing 
reduced lysosome activities after CNS injury (Sarkar et al., 2020). In 
conclusion, preserving the integrity of the lysosomal membranes is essential 
not only for maintaining lysosome functions but also for defending cell 
constituents from exposure to lysosome luminal enzymes (Li et al., 2019). 
Thus, reducing the activity of cPLA2 after CNS injury by targeting cPLA2 to 
protect the stability of the lysosome membrane needs further research.
 
Effect of cPLA2 on autophagy activity in CNS trauma
Autophagy is a lysosome-reliant endocellular process that is involved in 
the decomposition of cellular proteins and organelles (Klein et al., 2021). 
Basal levels of autophagy play a significant role in the maintenance of cell 
homeostasis and seem to be indispensable for normal cell functions and the 
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survival of terminal differentiation cells such as nerve cells. Mice with nerve 
tissue-specific KO of the vital autophagic genes Atg5 (autophagy-associated 
5) or Atg7 (autophagy-associated 7) exhibit serious neural degeneration, 
with aberrant motor functions and reflexes (Hara et al., 2006; Komatsu et al., 
2006). Autophagic damage is associated with neurodegenerative diseases 
such as Parkinson’s, Alzheimer’s, and Huntington’s and related to lysosomal 
storage diseases (LSDs) (Shintani and Klionsky, 2004; Klionsky, 2006). Previous 
studies confirmed that autophagy is inhibited after SCI or TBI, thereby 
contributing to secondary neuronal cell death (Klionsky and Emr, 2000; 
Shintani and Klionsky, 2004; Mizushima and Komatsu, 2011; Li et al., 2019). 

Autophagy consists of several steps such as the formation of the phagophore, 
formation of autophagosomes, and fusion of autophagosomes with 
lysosomes to produce autophagic lysosomes followed by decomposition of 
the autolysosome (Zhang et al., 2021; Rickman et al., 2022). Autophagy flow 
is a kinetic process in which these steps occur persistently in cells (Kim et al., 
2020). If any obstacle occurs during autophagic flux, the autophagic process 
cannot be completed. As cPLA2 can exert its lysosomal formation as discussed 
above, cPLA2-induced lysosomal dysfunction can also impair the autophagy 
process, thus contributing to cell death. Several recent studies have proven 
that elevated cPLA2 activities and its transfer to the lysosomal fraction are 
essential factors during lysosome impairment and the subsequent damage 
to autophagic flow after CNS trauma (Li et al., 2019; Sarkar et al., 2020). LC3 
serves as an autophagic biomarker. In the course of autophagy, cytoplasmic 
LC3 (LC3-I) enzymatically hydrolyses a small portion of polypeptides and 
then transforms into the autophagosome membrane type (LC3-II) (Kocak 
et al., 2021). The LC3-II/I ratio could be utilized to predict autophagy 
levels. Meanwhile, P62 is a selective autophagy receptor, forming a bridge 
connecting LC3 with ubiquitinated substrates to be degraded (Liu et al., 2021). 
P62 binds to ubiquitinated proteins and enters the autophagosome, where it 
eventually fuses with lysosomes to form autolysosomes and is then cleared. 
The P62 content increases when autophagic flux is inhibited but it decreases 
when autophagic flux is activated. After treatment with C-1-p (a cpla2-specific 
activator), neuroglioma cells exhibited higher LC3II/LC3I and p62 levels. 
Additionally, upstream autophagy regulators remain unaltered (Sarkar et 
al., 2020). These results show that cPLA2-induced impairment of autophagy 
acts mainly by blocking autophagosome lysosome fusion. However, another 
study showed that cPLA2-activated lipid mediator pathways are involved in 
autophagy induction (Qi et al., 2011) and confirmed that cPLA2 appears to 
be able to trigger or amplify autophagy responses. The authors hypothesized 
that the initiation of cPLA2-induced autophagy may be ATG5-dependent 
and independent of autophagy flow suppression. It should be noted that 
this research only detected the autophagy marker LC3 but did not detect 
p62. LC3II/LC3I levels alone cannot fully reflect changes in autophagic flux. 
In addition, the differences between these two conclusions may be caused 
by the different types of cells (one was investigated in neural cells and the 
other in macrophages). Based on the aforementioned research, the role of 
cPLA2 in autophagy needs to be explored further. As in the CNS, microglia are 
the resident immune cells of the brain, which function as macrophages and 
primarily take part in surveillance and phagocytosis (Stewart et al., 2021). 
Therefore, more research is required to investigate the effect of cPLA2 on the 
levels of autophagic flux in microglia after CNS trauma.

Anti-Cytosolic Phospholipase A2 Therapies in 
Central Nervous System Trauma 
Generally, cPLA2 has a great impact on the meditation of inflammation 
after CNS secondary injury, as discussed above. Therefore, researchers have 
developed many inhibitors targeting cPLA2. Meanwhile, suppression of the 
upstream activators and downstream target of cPLA2 has also been explored 
as a therapeutic possibility. Although there are currently no clinically approved 
cPLA2 and related inhibitors for the treatment of CNS trauma, many therapies 
are under development and have shown great promise (Table 1).

cPLA2-targeted inhibitors
Arachidonyl trifluoromethyl ketone
The carbochain of arachidonyl trifluoromethyl ketone (AACOCF3) binds 
in a hydrophobic pocket, and the carbonylic group of AACOCF3 creates a 
covalent linkage with Ser in the active parts of cPLA2 (Street et al., 1993). 
AACOCF3 is a 500-fold stronger suppressor of cPLA2 than sPLA2; it inhibits 
cPLA2 and iPLA2 with IC50 values of 1.5 and 6.0 μM, respectively (Farooqui 
et al., 2006). Accumulating evidence has shown that after the administration 
of AACOCF3, lysosomal injury, autophagic suppression, and neuronal death 
can be alleviated after SCI and TBI (Li et al., 2019; Sarkar et al., 2020). In 
addition, a study revealed a long-term favorable role of targeting cPLA2 in 
the anatomical and functional recovery in an SCI model, suggesting that long-
term inhibition of cPLA2 sites contributes to recovery from neurological injury 
(Liu et al., 2014). However, some studies have shown that the concentrations 
of AACOCF3 used in these experiments may also have a membranotropic 
effect and suppress the activity of cPLA2 (Dubinin et al., 2016). This should be 
taken into account when selecting AACOCF3 dosages for research purposes.

Palmityl trifluoromethyl ketone
Palmityl trifluoromethyl ketone (PACOCF3) is synthesized in the same manner 
as the arachidonoyl analogue (Ackermann et al., 1995), but the COOH group is 
substituted by trifluoromethyl ketone. A study showed that PACOCF3 blocked 
myelin’s proinflammatory enhancement of M1 macrophages, suggesting that 
it may improve inflammation after CNS trauma (Kopper et al., 2021). Although 
PACOCF3 is a high-selective cPLA2 inhibitor, it has off-target effects, as it can 

bond with iPLA2 and sPLA2 (Kopper et al., 2021). Besides, Jan et al. (2000)
raised an important issue: PACOCF3 may alter cellular functions by affecting 
Ca2+ signaling in a manner independent of cPLA2 inhibition. Thus, more 
potential mechanisms of PACOCF3 therapy need to be studied.

Pyrrophenone
Pyrrophenone is an inhibitor of cPLA2 derived from pyrrolidine. A previous 
study showed that pyrrophenone suppressed sera-activated cPLA2 C2 
domain-to-Golgi transfer by blocking calcium mobilization (Yun et al., 2016). 
It binds to the protein via a variety of hydrophobic pyrrophenone residues 
located distally from the active parts (Burke et al., 2009). Treatment with 
pyrrophenone can reduce cPLA2 expression levels and thus suppress 
lipopolysaccharide- and IFNγ-triggered NO generation within BV-2 cells 
(Chuang et al., 2015). However, due to its chemical properties (McKew et 
al., 2008) and the lack of validation in animal models, pyrrophenone needs 
extensive additional research before its clinical application.

ANXA1
ANXA1 (annexin-A1), a component of the annexin family of Ca2+ and 
phospholipid-binding proteins, is found in the CNS (Bolton et al., 1990). 
Recently, in Zachary’s study, the Anxa1 gene was found to participate in 
tissue repair, re-establishment, and regenerative processes and was strongly 
associated with repair and regenerative processes after SCI (Fang et al., 2021). 
The application of ANXA1 remarkably reversed cPLA2-triggered spinal cord 
neuron death in vitro, decreased tissue injury, and increased white matter 
sparing in vivo (Liu et al., 2007). Fluorogold retrograde tracing revealed that 
the application of ANXA1 safeguarded axons of long descending pathways at 
42 days after SCI and increased the number of animals responding to tcMMEP. 
Nevertheless, no detectable behavioral changes were identified in response 
to ANXA1 treatment.

AX059
AX059 is a highly selective inhibitor of cPLA2, which exhibits > 95% inhibition 
of cPLA2 at 0.091 mole fraction, while showing 0% inhibition of iPLA2 and 
sPLA2 (Kalyvas et al., 2009). In Yang’s study, AX059 reduced the onset and 
progression of experimental autoimmune encephalomyelitis (EAE) in Lewis 
rats (Yang et al., 2014). In addition, this effect was accompanied by the 
activation of regulatory T-cell and alterations in the expression of their various 
cytokines. Based on its strong specificity of inhibiting cPLA2 target and its 
successful validation in EAE models, we can suppose it is a promising drug 
that can be administrated in CNS trauma.

Table 1 ｜ Potential drugs target to cPLA2 in central nervous system trauma

Drug Target Disease Therapeutic effects References

AACOCF3 cPLA2 Spinal cord 
injury

Reducing membrane 
injury and inflammation, 
decreasing tissue damage, 
and improving behavioral 
recovery

Liu et al., 
2014

cPLA2 CCI induced 
TBI

Restoring autophagic flow, 
weakening cortical cellular 
deaths, and ameliorating 
movement and cognition 
functions

Chinmoy et 
al., 2019

PACOCF3 cPLA2 and Ca2+ Spinal cord 
injury

Blocking myelin’s 
detrimental effects of 
increasing proinflammatory 
cell factors, reactive 
oxygen species, and nitric 
oxide generation in M1 
macrophages

Kopper et al., 
2021

ANXA1 Membrane 
phospholipids 

Spinal cord 
injury

Improving tissue 
repair, reconstruction, 
regeneration, increasing 
white matter sparing, and 
protecting axons of long 
descending pathways

Liu et al., 
2007

U0126 ERK1/2 DCS spinal 
injury

Attenuating oxidative stress 
and inflammatory response, 
and improving motor 
function by upregulating 
heat shock protein 32

Quan et al., 
2021

SB203580 MAPK AP 
kinase-2&3

Spinal cord 
injury

Preventing the delayed 
progressive degeneration 
of oligodendrocytes and 
promoting recovery of 
motor function

Hideki et al., 
2003

Celecoxib LOX/COX-2 Spinal cord 
injury

Attenuating oxidative stress, 
apoptosis, and inflammation 

An et al., 
2020 

Salsalate LOX/COX-2 CCI induced 
TBI

Blocking pro-inflammatory 
gene expression and nitrite 
secretion by microglia

Lagraoui et 
al., 2017

CCI: Controlled cortical impact; COX-2: cyclooxygenase-2; cPLA2: cytosolic phospholipase 
A2; DCS: decompression sickness; ERK: extracellular signal regulated kinase; LOX: 
lipoxygenase; TBI: traumatic brain injury.
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AVX001
AVX001, a derivative of PUFA can downregulate cytokine-stimulated PGE2 
formation through a mechanism that involves blocking cPLA2-dependent NF-
kB activation. Recent studies showed that AVX001 can ameliorate collagen-
induced arthritis (Feuerherm et al., 2019) and attenuate inflammation in 
keratinocytes (Ashcroft et al., 2020) and renal mesangial cells (Huwiler 
et al., 2012). These data suggest that AVX001 may serve as a novel anti-
inflammatory drug in CNS trauma.

cPLA2 upstreaming signal pathway inhibitors
ERK1/2 signal pathway inhibitors
A previous study showed that the ERK1/2 suppressor U0126 decreased the 
phosphorylation of ERK1/2 and cPLA2 at S505 in rabbit vascular smooth 
muscle cells, inhibiting AA release (Pavicevic et al., 2008). Later, Xu et al. 
(2016) found that the use of U0126 can restore spinal cord-damaged neural 
migratory and adhesive abilities as well as the development of dendritic 
spines, suggesting that upregulation of the ERK1/2 pathway aggravated SCI. 
Recently, a study on decompression sickness spinal injury in rats proved that 
pretreatment with normobaric oxygen and the U0126 combination could 
effectively attenuate oxidative stress and the inflammatory response and 
improve motor function (Zhou et al., 2021). All of these data showed effective 
therapy with U0126. However, the ERK1/2 signaling pathway is responsible for 
the mediation of a diversity of cellular reactions, such as cellular proliferative, 
migratory, and differentiation events. Given that it mediates physiological 
functions in normal cells, additional research is necessary.

P38 signaling pathway inhibitors
SB203580, a suppressor of p38 MAPK, has no reported selectivity for other 
MAPK signaling pathways and it only blocks MAPK AP kinase-2 and kinase-3 
(Braem et al., 2012). In both in vivo and in vitro studies, accumulating 
evidence has confirmed that the SB203580 inhibitor prevented increased 
expression of p-cPLA2 and p-p38 (Shibata et al., 2011; Liang et al., 2013). 
In addition, the p38 MAPK suppressor SB203580 has been applied to CNS 
trauma models. Intrathecal SB203580 administration into the cerebral 
ventricle had a neuroprotective effect after tFCI and was correlated with 
a decrease in iNOS, TNF-α, IL-1β, and COX-2 expression (Piao et al., 2003). 
In addition, treatment with SB203580 ameliorated hindlimb functions in 
a slight compression SCI model (Horiuchi et al., 2003) and attenuated BBB 
extravasation and subsequent edema in a tFCI model in rats (Nito et al., 
2008). In contrast to the above consequences, a different study showed that 
intrathecal SB203580 administration did not ameliorate functional results 
after a medium contusive SCI (Stirling et al., 2008). The discrepancy between 
the outcomes may be related to the different degrees of damage used in the 
different studies. 

cPLA2 downstreaming signal pathway inhibitors
Lipoxygenase/COX-2 pathways inhibitors 
Experimental evidence has shown that the level of COX-2 was found to 
be overexpressed primarily in brain and activated macrophages after CNS 
trauma (Resnick et al., 1998). Celecoxib, a well-known pyrazole-based 
NSAID and selective COX-2 inhibitor exhibited protective action against 
SCI via attenuation of COX-2, oxidative stress, apoptosis, and inflammation 
in male Sprague-Dawley rats (An et al., 2020). The third generation COX2 
enzyme inhibitor 5,5-dimethyl-3(3-fluorophenyl)-4(4-methylsulfonyl)
phenyl2(5H)-furanone (DFU) altered eicosanoid profiles in the traumatic 
brain and improved neurological reflexes and memory (Gopez et al., 
2005). Furthermore, another study using a CCI mouse model showed that 
salsalate has a broad anti-inflammatory effect mainly through blocking pro-
inflammatory gene expression and nitrite secretion by microglia (Lagraoui et 
al., 2017). In addition, NSAIDs have been shown to increase myelination of 
axons and promote axonal elongation and sprouting in SCI (Lambrechts and 
Cook, 2021). However, owing to the potential complications including gastric 
ulceration (Kareva, 2020), poor penetrance across the blood-brain barrier 
into the cerebrospinal fluid (Stasiłowicz et al., 2021), and increased bleeding 
risk (Murphy et al., 2021), further research is needed to evaluate whether the 
benefits outweigh the risks of administration of NSAIDs after CNS trauma.

Limitations
This review has several limitations. First, the current review mainly focused on 
cPLA2α in CNS trauma, and further understanding of other cPLA2 subtypes 
such as cPLA2β and cPLA2γ are also essential. Second, we discussed the effect 
of cPLA2 on lysosome membrane in nerve cells following TBI and SCI, but its 
potential roles on other membranous organelles such as the mitochondria 
and endoplasmic reticulum, should also be elaborated in further studies. 
Third, based on the limited literature, the mechanism of cPLA2 on autophagy 
in CNS trauma was discussed in this review. Many other types of programmed 
cell death such as ferroptosis, necroptosis, or pyroptosis may be also related 
to cPLA2, which need extensive investigation. Finally, to determine the effect 
of cPLA2 in CNS trauma, pharmacological inhibitors of cPLA2 were commonly 
used in previous studies. However, these inhibitors are not specific. Therefore, 
using cPLA2-KO mice is a better choice in future research studies. 

Conclusion and Perspectives 
Accumulating evidence has proven that acute SCI and TBI can cause a 
secondary injury by several bioprocesses. cPLA2, the heavyweight component 
of cellular signal transduction in inflammatory responses, acts as a “trigger” 
in regulating the production of several major inflammatory mediators. In 

this review, we provide an overview of the cPLA2 family, together with its 
upstream signaling pathways. We discussed a series of current studies on 
cPLA2 in SCI and TBI and analyzed the potential pathogenesis of cPLA2. 
Among them, we focused on exploring the mechanism of cPLA2 and its 
metabolites that participate in neuroinflammation, causing an increase 
in lysosomal membrane permeability and inducing damage to neuronal 
autophagic flux. Next, we listed cPLA2-related inhibitors and their therapeutic 
effects, but most of these drugs are still in the experimental stage, and very 
few are currently being used in the clinic.

In addition, several unanswered questions and key questions remain that 
are likely to guide subsequent studies. Although previous studies have 
explored the role of cPLA2 and its metabolic products in neuroinflammation 
in CNS trauma, the specific mechanism of its positive feedback cascade 
amplification and whether it also depends on upstream MAPK pathways 
remains unclear. cPLA2 was proven to damage the lysosomal membrane 
and cause lysosomal enzyme (CTSB and CTSD) extravasation, but whether 
other contents of the lysosome are released and how they aggravate the 
damage of neuroinflammation are unknown. Moreover, it is worth noting 
that the leakage of CTSB caused by lysosomal membrane rupture is one of 
the mechanisms inducing pyroptosis, and pyroptosis is involved in cell death 
after CNS trauma (Hu et al., 2020). Moreover, given the heterogeneity of the 
cerebrum and spinal cord and their different cell populations, the roles of 
cPLA2 in the brain and spinal cord should be investigated in more detail in 
a cell type-specific manner. As discussed above, many cPLA2-related drugs 
are emerging and produce different therapeutic effects through the different 
targets. Because cPLA2 exerts its effects through phosphorylation and binding 
with intracellular calcium ion, we hypothesize that the combination of using 
MAPK inhibitors and calcium ion antagonist (such as pyrrophenone) may be 
an effective method to thoroughly block cPLA2 activation and produce good 
curative effect. Early cPLA2-target inhibitors such as AACOCF3 and PACOCF3 
for the treatment of SCI and TBI have shown a few adverse reactions due to 
their off-target effect. Thus, we expect more novel, potent, and highly specific 
inhibitors of cPLA2 (including AX059 and AVX001) to emerge and be tested 
in models of CNS trauma. Therefore, more research is required to shed light 
on these processes. We believe that research regarding the targets of cPLA2 
will contribute to the treatment of TBI and SCI, which continue to be serious 
clinical challenges.
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