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Abstract

Background

Serum amyloid A (SAA), a potent inflammatory mediator, and Janus kinase 2 (JAK2), an

intracellular signaling kinase, are increased by diabetes. The aims were to elucidate: 1) a

JAK2-mediated pathway for increased SAA in the kidneys of diabetic mice; 2) a JAK2-SAA

pathway for inflammation in podocytes.

Methods

Akita diabetic mice (129S6) with podocyte JAK2 overexpression and angiotensin II infusion

(4 weeks) were given a JAK1,2 inhibitor (LY03103801, 3 mg/kg/day orally for the last two

weeks). Kidneys were immunostained for SAA isoform 3 (SAA3). SAA3 knockout and con-

trol mouse podocytes were exposed to advanced glycation end products (AGE) or exoge-

nous SAA with JAK2 inhibition (Tyrphostin AG 490, 50μM). JAK2 activity (phosphorylation,

Western blot, 1 hour) and mRNA for SAA3 and associated inflammatory genes (Cxcl5,

Ccl2, and Ccl5) were measured by RT-PCR (20 hours).

Results

SAA3 protein was present throughout the diabetic kidney, and podocyte JAK2 overexpres-

sion increased tubulointerstitial SAA3 compared to wild type diabetic controls, 43% versus

14% (p = 0.007); JAK1,2 inhibition attenuated the increase in SAA3 to 15% (p = 0.003).

Urine albumin-to-creatinine ratio (r = 0.49, p = 0.03), mesangial index (r = 0.64, p = 0.001),

and glomerulosclerosis score (r = 0.51, p = 0.02) were associated with SAA3 immunostain-

ing scores across mouse groups. Exposing podocytes to AGE or exogenous SAA increased

JAK2 activity within one hour and mRNA for associated inflammatory genes after 20 hours.

JAK2 inhibition reduced SAA3 mRNA expression in podocytes exposed to AGE or SAA.

SAA3 knockout podocytes had >85% lower AGE-induced inflammatory genes.
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Conclusion

JAK1,2 inhibition reduced SAA and histological features of DKD in podocyte JAK2-

overexpressing mice. In podocytes exposed to a diabetes-like condition, JAK2 inhibition

reduced expression of SAA, while SAA knockout blocked expression of associated pro-

inflammatory mediators. SAA may promote JAK2-dependent inflammation in the diabetic

kidney.

Introduction

Pro-inflammatory mediators in the diabetic kidney are induced by activation of various signal-

ing cascades [1–3]. Comparison of transcriptional networks between humans with diabetes

and corresponding mouse models identified shared signals in the diabetic kidney [4, 5]. These

signals, and their downstream pro-inflammatory mediators, provide candidate targets for new

therapeutics for diabetic kidney disease (DKD). Janus kinase 2 (JAK2) is an intracellular tyro-

sine kinase that transduces cytokine-mediated signals. Compared to non-diabetic individuals,

JAK2 is expressed at higher levels in the glomeruli and tubulointerstitium of patients with

DKD [5]. In diabetic mice, podocyte-specific JAK2 overexpression exacerbated histological

features of DKD and produced a phenotype similar to human DKD [6].

Serum amyloid A (SAA) is a family of acute phase reactants that exert numerous pro-

inflammatory actions in many tissues and cells including the kidney [7, 8]. SAA is expressed

in mice as acute-phase isoforms 1,2 and 3. Isoforms 1 and 2 are largely homologous (SAA1,2)

while isoform 3 (SAA3) is more distinct and highly expressed in the kidney [7, 8]. In non-kid-

ney tissue, SAA expression is up-regulated by JAK signaling. In synovial fibroblasts from the

joints of patients with rheumatoid arthritis, JAK2 inhibition abrogated IL-6 induced expres-

sion of SAA mRNA [9]. Additionally, a non-specific JAK inhibitor reduced blood levels of

SAA and associate pro-inflammatory mediators among patients with rheumatoid arthritis [10,

11]. In humans with advanced diabetic kidney disease, 24 weeks of JAK1/2 inhibition with

baricitinib reduced albuminuria by 41% while also reducing circulating levels of SAA and

other inflammatory biomarkers.[12]. Inflammation is clearly involved in DKD progression,

and emerging evidence suggests that increased SAA production in the kidney promotes dam-

age characteristic of DKD [7, 8]. SAA is up-regulated in cells by exposure to diabetes-like con-

ditions (e.g. advanced glycation end products: AGE). Moreover, SAA itself induces pro-

inflammatory responses in glomerular podocytes and mesangial cells [7]. Amounts of SAA

mRNA are increased in both glomerular and tubulointerstitial compartments in kidneys from

patients with DKD compared to non-diabetic glomerular disease and normal controls [7].

SAA protein also associated with histological severity of DKD in patients with both types 1

and 2 diabetes [7]. Similar findings have been observed in two experimental models of DKD,

C57BL/6 streptozotocin mice (type 1 diabetic model) and BTBR ob/ob mice (type 2 diabetic

model) [7].

Relationships between SAA and JAK2 signaling in the pathophysiology of DKD have not

been previously explored. Currently there is a gap in the knowledge of how JAK2 inhibition

attenuates inflammation in the diabetic kidney and which downstream effectors are involved.

The study aims were to elucidate: 1) a JAK2-mediated pathway for increased SAA in the kid-

neys of diabetic mice; 2) a JAK2-SAA pathway for inflammation in podocytes.

SAA and JAK2 in a mouse model of diabetic kidney disease
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Methods

Mouse model of diabetes

Podocyte JAK2-overexpressing 129S6 Akita mice (JAK2 mice; S1 Fig) were generated from a

previous study and stored samples and data were used for the present study [6]. Non-diabetic

wild-type (WT; n = 8) and diabetic WT (n = 8) controls, podocyte JAK2-overexpressing non-

diabetic (n = 8) and diabetic (n = 15) male mice were implanted with Alzet osmotic mini-

pumps (Model 1004; ALZA Scientific Products, Mountain View, California, USA) at 10 weeks

of age [6]. Sterile 0.9% sodium chloride solution containing angiotensin II was infused at a rate

of 700 ng/min/kg to accelerate pathologic changes in the kidney and produce a sufficiently

severe phenotype for DKD in which to test JAK2 inhibition. Podocyte JAK2-overexpressing

non-diabetic mice (n = 4) and diabetic mice (n = 9) also received a JAK1,2 inhibitor (com-

pound LY03103801; Eli Lilly and Company, www.lilly.com) orally at a dose of 3 mg/kg/day in

supplemental water (citric acid, pH 3.2) for the last two weeks of the angiotensin II infusion

period (S1 Fig). Other mice received only supplemental water at the same volume. Mouse care

and procedures were approved by the University of Michigan Committee on the Use and Care

of Animals. Veterinary care was provided by the University of Michigan Unit for Laboratory

Animal Medicine.

Analytes in mouse urine and serum

Urine and blood samples were collected prior to euthanasia. Blood levels of glycated hemoglo-

bin, triglycerides, and cholesterol were measured by the Michigan Diabetes Research Center

Chemistry Laboratory [6]. Serum and urine samples were stored at −70˚C for other assays [6].

Mouse SAA3 was measured by ELISA in serum (Mouse Serum Amyloid A-3 kit, EMD Milli-

pore, www.millipore.com). Urinary albumin concentration was determined by ELISA (Cat.

No. 1011, Albuwell, www.exocell.com), and urinary creatinine measurements were performed

by a picric acid based assay (www.tecodiagnostics.com).

Histological studies of mouse kidneys

Under general anesthesia, both kidneys were flushed under constant 100 mm Hg pressure

with phosphate buffered saline (PBS) containing sodium heparin (50 U/ml) through a cannula

placed in the abdominal aorta. The left kidney was ligated while the right kidney was perfused

with a ferric oxide slurry for later isolation of glomeruli. The left kidney was removed and

weighed. Kidney cortical regions were dissected and snap frozen in liquid nitrogen, or fixed

overnight in a solution of 2% paraformaldehyde in PBS. Paraffin-embedded, paraformalde-

hyde-fixed tissue sections were stained with PAS (periodic acid-Schiff, immunostained with

WT-1 antibodies to identify podocytes, and counter-stained with picrosirius red. Fifteen glo-

meruli per mouse were chosen randomly for quantification of glomerulosclerosis by propor-

tionally scoring areas positive for PAS staining (MetaMorph Imaging Software version 6.1;

Molecular Devices Corporation, Downingtown, PA, www.moleculardevices.com) and mesan-

gial index [6].

SAA protein in mouse kidneys

Immunostaining for mouse SAA3 and SAA1,2 proteins were performed with SAA isoform-

specific rabbit antibodies [7, 13, 14]. Non-immune rabbit IgG (Sigma Chemical Co,

www.sigmaaldrich.com) was used as a negative control. Tissue sections from paraffin-

embedded, paraformaldehyde-fixed kidneys were de-paraffinized, hydrated, and subjected to

antigen retrieval for 15 minutes at 97˚C in citrate buffer, pH 6.0 (Vector laboratories, Inc.,

SAA and JAK2 in a mouse model of diabetic kidney disease
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www.vectorlabs.com). Kidney sections were incubated overnight at 4˚ with anti-SAA3 (1:500)

or anti-SAA1,2 (1:400) and non-immune rabbit IgG antibodies (5 ug/ml). Bound primary

antibodies were detected by incubation with Impress-HRP Reagent (Vector laboratories, Inc.)

for one hour at room temperature followed by 3,3’-diaminobenzidine. Kidney tissue sections

were counterstained with hematoxylin.

SAA3 Immunostaining was assessed by two masked observers on 4 to 7 mice per group

(two kidney sections per mouse) and 5 randomly-selected areas per section for scoring of

abundance and intensity. Scoring for tubulointerstitial staining was based on staining area (0,

25, 50, 75, or 100% of visual field) and intensity (0—none; 1—light; 2—medium; and 3—dark-

est) [7]. The immunostaining score was the product of area and intensity. Scoring for glomeru-

lar staining was based on the proportion of positively stained glomeruli from 10 random

glomeruli per section and two sections per mouse. Scores of two observers were averaged for a

final score for tubulointerstitial and glomerular staining [7].

RNA analyses in mouse glomeruli

RNA was harvested using the RNeasy Mini Kit with QIAshredder (Qiagen, www.qiagen.com)

from glomeruli of podocyte JAK2-overexpressing diabetic mice (n = 12). Half of these mice

(n = 6) had received the JAK1,2 inhibitor and the other half (n = 6) had received vehicle alone

for two weeks. Gene expression profiling was performed by the Affymetrix Mouse Gene 2.1 ST

platform. Image CEL files were log-transformed, analyzed at the single probe level, and sum-

marized at the gene level with Chip Inspector [5].

Mouse podocyte cell culture

Immortalized mouse podocytes (gift from Stuart Shankland, University of Washington) were

grown on Collagen I (BD Biosciences, www.bdbiosciences.com) coated Primaria plates (VWR,

www.vwrsp.com) in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma Chemical

Company) [15]. Podocytes were grown at 33˚C in media containing 10% heat inactivated fetal

bovine serum (Atlas Biologicals Incorporated, www.atlasbio.com) and interferon-gamma (50

units/mL). Cell differentiation was promoted by incubation at 37˚C in media without inter-

feron-gamma for 8 to 10 days. Podocytes tested positive for nephrin by real-time PCR after dif-

ferentiation. Podocytes were placed on RPMI with reduced fetal bovine serum (0.5%) for one

day prior to exposure to exogenous SAA, AGE or control conditions (1 hour for JAK2 activity;

24 hours for mRNA assays). To make AGE-BSA, fatty acid-free fraction IV BSA (Sigma) was

incubated with 0.5 M glucose for 45 days at 37˚C. The resulting AGE-BSA solution was dia-

lyzed with phosphate-buffered saline (PBS, pH 7.4) and sterile filtered; endotoxin was unde-

tectable (E-TOXATE, Sigma). For exogenous SAA, recombinant human SAA1 protein

(rSAA), (#300–53, PeproTech, www.peprotech.com) was used at 10 μg/mL [7]. AGE-bovine

serum albumin was used at 300 ug/mL [7]. The JAK2 inhibitor, Tyrphostin AG 490 (50 μM;

LC Laboratories, www.lclabs.com) was added to media along with experimental conditions.

SAA3 knockout by CRIPSR/Cas9 in mouse podocytes

Knockout of SAA3 in podocytes was achieved by the CRISPR/Cas9 system. One 23-base

sgRNA (50-GAACTATGATGCTGCCCGGA-30) was designed to the target site, exon three

of the SAA3 gene (chromosome 7: NC_000073.6; Gene ID: 20210). The sgRNA expression

cassette was driven by a U6 promoter. The T7 promoter was added upstream of the Cas9

sequence. mCherry, a fluorescent tag, was engineered into the vector controlled under an Sv40

promoter. All sequences were synthesized by Genecopeia (www.gencopeia.com). Podocytes

were transfected according with a Lipofectamine 3000 (Invitrogen, www.thermofisher.com)

SAA and JAK2 in a mouse model of diabetic kidney disease
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protocol at 60% confluency in 6-well plates with 340 ng/μL of plasmid and 1.5 μL Lipofecta-

mine 3000. After 48 hours of transfection, cells seeded on coverslips were examined for

mCherry expression by confocal microscopy (Leica SPE Confocal Microscope, www.leica-

microsystems.com) to assess uptake of plasmid. After confirmation of suitable transfection,

cells were placed on neomyocin-containing (500 ng/μL) medium for 10 days. Neomycin-resis-

tant colonies were passaged using serial dilutions into 60 mm dishes. After 72 hours, individual

colonies were selected using cloning rings for culture in 60 mm dishes and non-neomyocin

containing media. Gene knockout was verified by the absence of SAA3 mRNA (real-time

PCR) and SAA3 protein in the media (ELISA) after exposure to AGE (S2 Fig).

Western blot for JAK2 and phosphorylated-JAK2 in mouse podocytes

Cell lysates were prepared from podocytes grown in 60 mm dishes. Cells were washed and

scraped from the plate with ice cold PBS. Podocytes were pelleted by centrifugation at 1000 x g

for 10 minutes. The cell pellets were lysed in RIPA buffer (50 mM Tris pH 8.0, 150 mM sodium

chloride, 0.5 mM ethylenediaminetetraacetic acid, 1 mM dithiothreitol, 1% NP-40, 0.5%

sodium deoxycholate, 0.1% sodium dodecyl sulfate) containing HALT protease and phospha-

tase inhibitors (Pierce, www.thermofisher.com). Soluble cell lysates were denatured in reduc-

ing sodium dodecyl sulfate sample buffer at 95˚C for 5 minutes. Samples were electrophoresed

through denaturing sodium dodecyl sulfate-polyacrylamide gels (4 to 20% gradient, Bio-Rad)

and proteins were transferred to nitrocellulose membranes. The membranes were blocked in

Tris-hydrochloric acid buffered saline, pH 7.2, containing 0.05% Tween 20, and 5% non-fat

dry milk, for one hour and then incubated with primary antibodies overnight at 4˚C at 1:1000

dilutions (JAK2 #D2E12; phosphorylated-JAK2 #C80C3, Cell Signaling Technology, www.

cellsignal.com). Bound antibodies were detected with horseradish peroxidase-conjugated anti-

rabbit IgG (Cell Signaling Technology), followed by detection using SuperSignal West Chemi-

luminescent Substrate (Pierce). Digitized images were analyzed using a Chemidoc Touch

Imaging system and Image Lab software version 5.2.1 (BioRad Laboratories, www.bio-rad.

com).

RNA analyses for SAA3 and inflammatory mediators in mouse podocytes

Total podocyte RNA was isolated and DNAse-I-treated by the RNAqueousmicro kit (Thermo-

fisher, www.thermofisher.com). RNA was quantified using the Quant-iTRiboGreen RNA

Reagent and kit (Thermofisher). cDNA was synthesized from equal amounts of RNA using

Superscript III (Thermofisher). Expression of mRNA for SAA3, C-X-C motif chemokine

ligand 5 (Cxcl5), C-C motif chemokine ligand 2 (Ccl2) and C-C motif chemokine ligand 5

(Ccl5) was measured by quantitative real-time PCR on an Applied Biosystems 7900HT Fast

RT-PCR System using SA Biosciences SYBR Green reagent (Thermofisher) Gene amplifica-

tion results were quantified with Sequence Detection System v2.4 software (Applied Biosys-

tems) and normalized to mouse TATA-box binding protein.

Statistical analysis

Data were assessed for normality using the Shapiro-Wilk test and verified using a Q-Q plot.

Data for the urinary albumin-to-creatinine ratio (UACR) was log-transformed for analysis

and back-transformed for data presentation. Analysis of variance was used to evaluate differ-

ences between groups for normally distributed data: mouse body weight, log UACR, and JAK2

and phosphorylated-JAK2 protein. Tukey’s honest significant difference test was used for mul-

tiple comparisons of positive F-tests. Pairwise Wilcoxon rank sum tests with Hommel adjusted

p-values were used for non-normally distributed data: blood levels of glycated hemoglobin,
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total cholesterol, triglycerides; kidney tissue mesangial index and SAA immunostaining score;

and mRNA expression data from podocyte experiments. The Significance Analysis of Microar-

rays method that utilizes a false discovery rate-controlling procedure to generate q values was

utilized for the glomerular RNA data generated from microarrays [16]. The threshold for sta-

tistical significance for all analyses in this study were set at a significance level of p<0.05. Statis-

tical analyses were conducted using R version 3.12 and Chip Inspector.

Results

Characteristics of diabetic and non-diabetic mice

Diabetic mice weighed less and had higher blood levels of glycated hemoglobin, total choles-

terol, and triglycerides. JAK2 overexpression did not significantly affect these parameters

(Table 1). Diabetes increased the UACR, but JAK2 overexpression did not significantly

increase it. Treatment with the JAK1,2 inhibitor lowered UACR and the mesangial index in

JAK2 mice (Fig 1).

SAA in the kidneys and blood of diabetic and non-diabetic mice

Kidney mRNA and protein for SAA3 along with serum SAA3 were analyzed to determine the

effect of diabetes and JAK2 overexpression at the tissue and systemic levels, respectively. Dia-

betic JAK2 mice had quantifiably greater SAA3 protein in the tubulointerstitium compared to

diabetic WT controls, 43% versus 14%. JAK1,2 inhibition attenuated the increases in SAA3 in

JAK2 diabetic mice (15%, Fig 2). Differences in SAA3 protein in the glomeruli were not pres-

ent by diabetes status or JAK2 overexpression (Fig 2). With JAK1,2 inhibition, SAA3 in the

glomeruli of the JAK2 diabetic mice was similar to control WT diabetic and non-diabetic mice

(Fig 2).

RNA was harvested from micro-dissected glomeruli of a subset of diabetic JAK2 mice that

received either supplemental water (n = 6) or the JAK1,2 inhibitor (n = 6). In the diabetic

JAK2 mice, JAK1,2 inhibition reduced SAA3 mRNA by 50% (q<0.01, n = 6 for each group)

compared to the JAK2 diabetic mice that did not receive the inhibitor.

Across mouse groups, SAA3 protein levels in the kidney correlated with indicators of glo-

merular damage: UACR, mesangial index, and glomerulosclerosis score, (Fig 3). Plasma SAA3

was not increased by diabetes or JAK2 overexpression (Fig 4).

SAA and JAK2 signaling and inflammation in mouse podocytes

Exposure to AGE or SAA for 1 hour significantly increased JAK2 phosphorylation (Fig 5).

Exposure to AGE or exogenous SAA significantly increased expression of SAA3 mRNA (Fig

6). Exposure of podocytes to exogenous SAA also significantly increased mRNA expression of

Table 1. Body weight, glycemia, and lipids in mice.

Non-Diabetic Diabetic

Wild Type JAK2 p-valuea Wild Type p-valuea JAK2 p-valuea p-valueb

Body Weight (g) 26 ± 2 26 ± 1 0.95 21 ± 2 <0.001 23 ± 2 0.025 0.27

Glycated Hemoglobin (%) 5 ± 0 5 ± 0 0.99 12 ± 2 <0.001 13 ± 2 <0.001 0.94

Total Cholesterol (mg/dL) 109 ± 5 112 ± 9 0.99 244 ± 108 <0.001 168 ± 50 0.27 0.10

Triglycerides (mg/dL) 90 ± 32 59 ± 16 0.42 137 ± 47 0.13 173 ± 66 0.004 0.38

a versus non-diabetic wild-type
b versus diabetic wild type

https://doi.org/10.1371/journal.pone.0211555.t001
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Fig 1. Albuminuria and structural markers of kidney damage in mice. A) UACR and B) mesangial index scores

from non-diabetic and diabetic mice from wild type (WT) and podocyte specific JAK2 -overexpressing mice with and

without the JAK1,2 inhibitor. WT non-diabetic control (n = 3), JAK2 non-diabetic control (n = 4), JAK2 non-diabetic +

JAK1,2 inhibitor (n = 4), WT diabetic control (n = 4), JAK2 diabetic control (n = 6), and JAK2 diabetic + JAK1,2

inhibitor (n = 9).

https://doi.org/10.1371/journal.pone.0211555.g001

SAA and JAK2 in a mouse model of diabetic kidney disease
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Cxcl5, Ccl2, and Ccl5, while JAK2 inhibition significantly inhibited expression of Cxcl5 and

Ccl2 but not Ccl5 (Fig 6). Control and SAA3 knockout podocytes were exposed to AGE for 20

hours. Knockout of SAA3 in podocytes significantly inhibited AGE-induced expression of

SAA3, Cxcl5, Ccl2, and Ccl5 by greater than 85% (Fig 7).

Fig 2. Mouse kidney immunostaining for SAA3 protein. Representative sections of non-diabetic and diabetic mouse kidneys from both wild type

(WT) and podocyte specific JAK2-overexpressing mice with and without the JAK1,2 inhibitor. Magnification bars are shown in the lower right corner

of each image. (B) SAA3 quantification by immunostaining scores in tubulointerstitium and (C) in glomeruli. WT non-diabetic control (n = 3), JAK2

non-diabetic control (n = 4), JAK2 non-diabetic with inhibitor (n = 4), WT diabetic control (n = 4), JAK2 diabetic control (n = 6), and JAK2 diabetic

with JAK1,2 inhibitor (n = 9).

https://doi.org/10.1371/journal.pone.0211555.g002

SAA and JAK2 in a mouse model of diabetic kidney disease
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Fig 3. Associations of SAA protein with features of diabetic kidney disease. SAA protein was measured by the

quantification of immunostaining and relationship were determined for to albuminuria (UACR), mesangial index

(mesangial expansion), and glomerulosclerosis (PAS stained area) score. Mouse groups: WT Control (n = 3), JAK2

control (n = 4), JAK1,2 inhibitor (n = 4), WT diabetic control (n = 4), JAK2 diabetic control (n = 6) JAK2 diabetic with

JAK1,2 inhibitor (n = 9).

https://doi.org/10.1371/journal.pone.0211555.g003

SAA and JAK2 in a mouse model of diabetic kidney disease
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Fig 4. SAA3 protein concentrations in mouse plasma by diabetes and JAK2 status with or without the JAK1,2

inhibitor. Wild type (WT) control (n = 3), JAK2 control (n = 4), WT diabetic control (n = 4), WT diabetic + JAK1,2

inhibitor (n = 4), JAK2 diabetic control (n = 6) JAK2 diabetic + JAK1,2 inhibitor (n = 9).

https://doi.org/10.1371/journal.pone.0211555.g004

Fig 5. The effect of exposure to AGE and exogenous SAA on JAK2 activity. Podocytes were exposed to AGE or SAA for 1 hour. A)

Representative Western blot showing phosphorylated and non-phosphorylated JAK2 (C: control sample). B) Quantitative data from Western

blots showing effect of exposure to either AGE or SAA on JAK2 phosphorylation (n = 3 for each condition).

https://doi.org/10.1371/journal.pone.0211555.g005
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Discussion

Podocyte JAK2 overexpression in diabetes independently and synergistically increased SAA in

the mouse kidney, which directly correlated with glomerular damage. Exposure to AGE or

Fig 6. The effect of JAK2 inhibition on AGE or SAA induced inflammatory cytokine expression. Podocytes were exposed to AGE or SAA for 20

hours with or without the JAK2 inhibitor. A) Levels of SAA3 mRNA after exposure to AGE or SAA with and without the JAK2 inhibitor. B) Levels of

SAA3, Cxcl5, Ccl2, and Ccl5 mRNA after exposure to SAA with or without the JAK2 inhibitor. n = 5 for each condition.

https://doi.org/10.1371/journal.pone.0211555.g006
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SAA activated JAK2 signaling to produce a pro-inflammatory response in podocytes, while

knockout of SAA3 had a profound inhibitory effect on expression of JAK2-associated inflam-

matory mediators. Taken together, the present data show SAA to be a downstream mediator

of JAK2 that may mechanistically contribute to podocyte-derived inflammation and conse-

quent kidney damage in diabetes.

Fig 7. The effect of podocyte SAA3 knockout on AGE-induced SAA3 Cxcl5, Ccl2 and Ccl5 mRNA. Control and SAA3 knockout (KO) podocytes

were exposed to AGE for 20 hours. n = 5 for each condition.

https://doi.org/10.1371/journal.pone.0211555.g007
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SAA3 protein was present in the tubulointerstitium and glomeruli of diabetic mice and

increased by podocyte JAK2 overexpression. Non-diabetic mice did not have detectable SAA3

in the kidney except with podocyte JAK2 overexpression. In contrast, there was nominal

immunostaining in the mouse kidneys for SAA1,2, the main systemic isoforms of SAA (S2

Fig). The present findings of SAA3 protein in the kidneys of this mouse model of type 1 diabe-

tes expand our previous findings of robust amounts of SAA3 in the C57BL/6 streptozotocin

type 1 diabetes model and the BTBR ob/ob type 2 diabetes model of DKD [7]. These data also

correspond to the kidney-expressed human SAA isoform in patients with DKD due to either

type 1 or type 2 diabetes [7]. JAK1,2 inhibition attenuated the amount of SAA3 protein in the

tubulointerstitium of diabetic mice and JAK2 diabetic and non-diabetic mice. Furthermore,

JAK1,2 inhibition reduced SAA3 mRNA expression by approximately 50% in glomeruli from

diabetic JAK2 mice. In sum, locally-produced SAA3, rather than systemic SAA 1,2, is the pri-

mary isoform present in the diabetic mouse kidney [7].

Blood levels of SAA3 were not different between diabetic mice and their controls in the

present study in contrast to previous observations [7]. This may be due to the infusion of

angiotensin II, which induces expression of SAA3 in non-kidney tissues, and in this way, may

increase systemic levels to mitigate between group differences [17]. However, despite similar

levels of systemic SAA3 across experimental groups, marked increases in SAA3 protein in the

kidneys of diabetic and/or podocyte JAK2-overexpressing mice are consistent with local pro-

duction. These data support earlier findings that SAA3 is highly expressed in the mouse kidney

and contributes minimally to circulating SAA [7, 14, 18]. Additionally, the present observa-

tions suggest that urine, a direct effluent from the kidney, may be a better sample source than

blood to potentially target for SAA biomarker development [19, 20].

This study advances the understanding of how JAK2 is involved in the pathogenesis of

DKD by identifying a particular downstream mediator, namely SAA and an associated inflam-

matory response. JAK2 is expressed at greater levels in the tubulointerstitium and glomeruli of

humans with DKD compared to non-diabetic controls. Enhanced expression of JAK2 specifi-

cally in podocytes markedly augmented the DKD phenotype in the present model of type 1

diabetes in mice [5, 6]. In cultured podocytes, exogenous SAA induced JAK2 activity and

SAA3 overexpression along with associated inflammatory mediators. Inhibition of JAK2 activ-

ity in podocytes reduced the AGE or exogenous SAA-induced expression of SAA3 and corre-

sponding inflammatory mediators. Notably, SAA3 knockout in podocytes abolished AGE-

induced expression of JAK2-upregulated inflammatory mediators. As such, increased SAA

appears to be both a consequence and a cause of JAK2 signaling, and therefore, may drive a

“feed forward” loop that leads to a broad inflammatory response.

Exposure of cultured podocytes to AGE, a diabetes-like condition, increased JAK2 activity

and induced expression of SAA3 as well as pro-inflammatory mediators including Cxcl5, Ccl2,

and Ccl5. In particular, Ccl2 is a central chemokine for tissue macrophage recruitment. A link

between local SAA production and Ccl2 expression has been observed in other mouse models

[21–23]. For example, in C57BL/6 mice fed a pro-inflammatory diet (high-fat, high-sucrose),

knockout of SAA3 attenuated increases in Ccl2 expression and macrophage accumulation in

visceral adipose tissue compared to control C57BL/6 mice fed the same diet [24]. Local pro-

duction of SAA3 also induces Ccl2 and inflammation in adipose tissue of ob/ob mice [22].

Inhibition of JAK2 did not reduce SAA-induced CCL5, suggesting that there are JAK2 inde-

pendent mechanisms by which inflammation is regulated. In sum, these data support the over-

all concept that local SAA expression is causal for tissue inflammation.

The present study integrates understanding of inflammation in DKD mediated by JAK

signaling and SAA, thereby, identifying a novel mechanistic pathway. JAK2 is known to be

up-regulated in the kidneys of humans with DKD. Independent work demonstrated both

SAA and JAK2 in a mouse model of diabetic kidney disease
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increased expression of SAA mRNA and protein associated with histological injury in the

kidneys of humans with DKD [5,7]. In a randomized controlled clinical trial of patients with

advanced DKD, administration of a JAK1/2 inhibitor reduced systemic levels of SAA with

concurrent reductions in albuminuria. Thus, there is therapeutic evidence for JAK1/2 regula-

tion of SAA in humans with DKD [12]. The present data provide further evidence that a

JAK2-SAA pathway may be involved with direct effects on the kidney. Furthermore,

JAK2-induced SAA may be responsible for driving a panoply of additional inflammatory

mediators.

An inherent limitation of this study is that a mouse model does not fully replicate human

DKD. However, podocyte JAK2 overexpression produced a more “humanized” representa-

tion of the diabetic kidney [6]. Moreover, the cross-species comparison of glomerular gene

expression profiles between mice and humans provided a unique opportunity to determine

the role of JAK2 and SAA in DKD. Specifically, the murine SAA3 gene is locally expressed in

the kidney [25]. Mouse SAA3 is most comparable across sequence similarity, tissue expres-

sion, and biological function to the SAA isoforms found in the human diabetic kidney [26].

Therefore, the demonstration of local expression of SAA3 in the mouse diabetic kidney may

allow translation of these findings into understanding the role of kidney-specific SAA iso-

forms in human DKD. Another limitation of the present study is that we did not observe sig-

nificant increases in glomerular staining by JAK2 overexpression, the compartment in which

JAK2 overexpression occur. However, we did see changes in the tubulointerstitial, which may

indicate that our measurements were not sensitive enough to detect changes in immunostain-

ing in the glomerular compartment. The use of AGEs in the in vitro studies is also a limitation

as it does not fully recapitulate the in vivo environment, which also includes high glucose,

high insulin, and myriad inflammatory mediators. However, the use of AGEs has shown to be

a robust model of inducing inflammation in resident glomerular cells, specifically the expres-

sion of SAA [7,8].

In conclusion, SAA, a potent pro-inflammatory mediator, was uniquely present and

increased in the kidneys of diabetic mice and further augmented by podocyte JAK2 overex-

pression. Inhibition of the JAK1,2 pathway ameliorated histological features of DKD in

this mouse model. JAK2-dependent inflammatory mechanisms associated with diabetes

were mediated by SAA in podocytes. Further investigation of JAK2-SAA associated inflam-

matory networks represent a promising area for therapeutic and biomarker development in

DKD.
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