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Abstract

Orthologs document the evolution of genes and metabolic capacities encoded in extant and ancient genomes. However, the

similarity between orthologs decays with time, and ultimately it becomes insufficient to infer common ancestry. This leaves ancient

gene set reconstructions incomplete and distorted to an unknown extent. Here we introduce the “evolutionary traceability” as a

measure that quantifies, for each protein, the evolutionary distance beyond which the sensitivity of the ortholog search becomes

limiting. Using yeast, we show that genes that were thought to date back to the last universal common ancestor are of high

traceability. Their functions mostly involve catalysis, ion transport, and ribonucleoprotein complex assembly. In turn, the fraction of

yeast genes whose traceability is not sufficient to infer their presence in last universal common ancestor is enriched for regulatory

functions. Computing the traceabilities of genes that have been experimentally characterized as being essential for a self-replicating

cell reveals thatmanyof thegenes that lackorthologsoutsidebacteriahave lowtraceability. This leavesopenwhether theirorthologs

in the eukaryotic and archaeal domains have been overlooked. Looking at the example of REC8, a protein essential for chromosome

cohesion,wedemonstratehowatraceability-informedadjustmentof the searchsensitivity identifieshithertomissedorthologs in the

fast-evolving microsporidia. Taken together, the evolutionary traceability helps to differentiate between true absence and non-

detection of orthologs, and thus improves our understanding about the evolutionary conservation of functional protein networks.

“protTrace,” a software tool for computing evolutionary traceability, is freely available at https://github.com/BIONF/protTrace.git;

last accessed February 10, 2019.
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Introduction

The question “How old is a gene?” is fundamental in func-

tional and evolutionary genetics (Capra et al. 2013). The age

of a gene is tightly linked to many of its functional properties.

Proteins encoded by old genes tend to evolve slightly slower

than younger genes (Alba and Castresana 2005, 2007; Wolf

et al. 2009); however, as seen in Elhaik et al. (2006), they are

expressed in more tissues (Freilich et al. 2005), are more cen-

tral in protein–protein-interaction networks (Kim and

Marcotte 2008), and seem involved in more complex regula-

tory networks (Warnefors and Eyre-Walker 2011). It, thus,

comes as little surprise that gene age is a good proxy for

the essentiality of the encoded protein’s function (Gustafson

et al. 2006; Hwang et al. 2009) and that older genes are more

often associated with human diseases (Domazet-Loso and

Tautz 2008; Cai et al. 2009; Maxwell et al. 2014).

Assessing the age of a gene, however, is not trivial (Capra

et al. 2013), as none of the above characteristics can be at-

tributed exclusively to old genes (Wolf et al. 2009). Instead,

age estimates are typically derived from interpreting, for each

gene, the phylogenetic distribution of its orthologs (Mirkin

et al. 2003). Under the simplifying assumption that genes

are only transferred vertically from ancestor to descendent,

the last common ancestor of the two most distantly related

species in a phylogeny that harbors an ortholog approximates

the minimal age of the corresponding gene (see, however,

Doolittle 1999; Gogarten et al. 2002). Genes of the same age

can then be summarized in phylostrata (Domazet-Loso et al.
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2007), which inform about the lineage-specific evolution

of gene repertoires (Ebersberger et al. 2014), and allow the

correlation of genetic innovation with major changes

during organismal evolution (Slamovits et al. 2004;

Domazet-Loso et al. 2007; Sestak and Domazet-Loso 2015).

The oldest layers in the phylostrata comprise the genes whose

orthologs span a considerable range or even the full diversity

of contemporary life. These genes are likely to hold a key

position in the metabolic network, and their widespread phy-

logenetic distribution implies that a loss is detrimental for sur-

vival (Mushegian and Koonin 1996). In particular, those genes

that can be traced back to the last universal common ancestor

(LUCA) (Woese 1998; Goldman et al. 2013) have been used

to deduce a molecular scaffold essential for organismic life

(Koonin 2003).

The design of artificial life both challenges and comple-

ments the evolutionary inferences of a universal genetic

repertoire common to—and necessary for—all living

organisms (reviewed by Rancati et al. [2018]). Only re-

cently, 473 genes from Mycoplasma mycoides were de-

termined as the minimal gene (MG) set required, under

the most favorable conditions (Koonin 2003), for a self-

replicating cell (Hutchison et al. 2016). Many of these

genes have detectable homologs only in bacteria or

even only in the genus Mycoplasma (Hutchison et al.

2016), suggesting an evolutionarily recent origin. This is

at odds with the expectation that essential genes have a

wide phylogenetic spread (Jordan et al. 2002). Instead, it

seems to indicate that also essential genes are subject to

evolutionary change (Rancati et al. 2018). For example, a

gene responsible for an essential function can be

replaced by an unrelated, yet functionally equivalent

gene a process called nonorthologous gene displacement

(Koonin et al. 1996; Phadnis et al. 2012; Huynen et al.

2013; Kachroo et al. 2015; Zallot et al. 2017).

Alternatively, genes that are essential in one organism

may not be essential in another (Liao and Zhang 2008;

Koo et al. 2017). This is, for example, because a closely

related paralog can complement its function, because its

metabolic network has become more robust by evolving

redundancy, or because the metabolic network was

rewired to bypass the essentiality of individual proteins

(Kim et al. 2010; Rancati et al. 2018). In any case, this

would imply that the M. mycoides MG set represents only

a minor step toward unraveling the universal building

plan of organismic life.

However, sequence similarity used to identify orthologs in

present-day gene sets decays with time (Dayhoff 1978).

Ultimately, a twilight zone (Doolittle 1981) is hit where two

related proteins are no longer similar enough to infer com-

mon ancestry (Dayhoff 1978; Rost 1999). The time to reach

the twilight zone varies between proteins and depends on

their sequence composition as well as their substitution rate

(Dayhoff 1978) but not on their essentiality (Hurst and Smith

1999; Hirsh and Fraser 2001). This links the accuracy of the

gene age assessment to the sensitivity of the ortholog identi-

fication methods. This issue was first raised by Elhaik et al.

(2006) who used a simulation-based approach to show that

the sensitivity of BlastN (Altschul et al. 1997) can be a limiting

factor in the identification of homologs when evolutionary

distances are large. As a consequence, the sharing of essential

genes between distantly related or fast-evolving species will

be overlooked, and gene ages will be underestimated (Elhaik

et al. 2006; Luz et al. 2006; Moyers and Zhang 2015, 2016,

2017). The risk of misinterpreting the evolutionary past is

therefore high (Liebeskind et al. 2016; Mart�ın-Dur�an et al.

2017). Using more sensitive search algorithms that are dedi-

cated to a remote homolog detection (e.g., PSI-Blast [Altschul

et al. 1997] or HHsearch [Soding 2005], for an overview see

Chen et al. [2018]) can ameliorate this issue, in principle.

However, these algorithms do not differentiate between

orthologs and paralogs. In the context of inferring the evolu-

tionary history of a particular gene they must, thus, be used

with caution. They should only then be applied when suffi-

cient evidence exists that an ortholog might have diverged to

an extent that it is no longer detectable by a conventional

ortholog search tool. Individual approaches exist that aim at

delineating, for a given protein, the evolutionary distance be-

yond which orthologs no longer share a significant sequence

similarity (Moyers and Zhang 2016); standardized solutions

that have been cast into a dedicated software are not yet at

hand.

Here, we introduce for each protein its (evolutionary) trace-

ability. This measure informs over what evolutionary distances

the sequence similarities between orthologs should be still

high enough to allow their detection with standard ortholog

search software. Using the yeast gene set as an example, we

find that genes with a consistently high traceability index

across species are enriched for catalytic functions in the cell

metabolism. The subset of yeast genes whose evolutionary

origins have been dated back to LUCA almost entirely belongs

to this group. For a substantial fraction of the yeast genes

however, among them many with essential functions, the

traceability index decays quickly. For these genes, the sensi-

tivity of a standard ortholog search can become a limiting

factor in more distantly related species. These findings suggest

a new interpretation of the evolutionary conservation pattern

of the MG set. The vast majority of the MG-set proteins that

appear confined to bacteria show low traceabilities, which

indicates that the sensitivity of the ortholog search becomes

limiting in species other than bacteria. Thus, there is a high

chance that archaeal or eukaryotic orthologs exist but have

been overlooked. Looking at the example of yeast Rec8, a

protein essential for recombination, we show how a

traceability-informed increase of the ortholog search sensitiv-

ity can lead to the identification of hitherto overlooked rep-

resentatives in fast-evolving species.
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Materials and Methods

Data Sets

Our analyses are based on 232 species representing the three

domains of life (supplementary table S1, Supplementary

Material online). The taxonomic tree for these species was

obtained from NCBI CommonTree (https://www.ncbi.nlm.

nih.gov/Taxonomy/CommonTree/wwwcmt.cgi; Last accessed

February 10 2019).

The LUCA gene sets (1,203 genes) were downloaded from

LUCApedia (Goldman et al. 2013), a database consisting of all

LUCA gene sets proposed by different studies. The essential

genes set (1,110 genes) for Saccharomyces cerevisiae was

obtained from database of essential genes (Luo et al. 2014).

The LUCA genes and the essential genes are listed in supple-

mentary table S3, Supplementary Material online. Aligned

orthologous groups from the sensu stricto group of yeast

species were retrieved from http://www.saccharomycessen-

sustricto.org/current/aligns/coding_allfiles.fasta.tgz last

accessed February 10, 2019 (Scannell et al. 2011).

Compilation of Orthologous Groups

First, orthologs for the seed protein are retrieved from the

corresponding ortholog group provided by the OMA data-

base (Altenhoff et al. 2015). We then extend the OMA

ortholog group with sequences from a collection of 232

species (supplementary table S1, Supplementary Material

online) using HaMStR (Ebersberger et al. 2009), a profile

hidden Markov model (pHMM)-based ortholog search

tool. HaMStR was run with the following parameters: -strict,

-checkCoorthologsRef, -hit_limit¼ 1, and -representative.

For query proteins without orthologs in the OMA database,

we directly perform a targeted ortholog search using

HaMStR-OneSeq (https://github.com/BIONF/HaMStR; last

accessed February 10, 2019; Ebersberger et al. 2014) in

the gene sets of 232 species. HaMStR-OneSeq is an ex-

tended version of HaMStR that compiles in an iterative pro-

cedure an initial core-ortholog set for pHMM training. Once

the training is completed, a final ortholog search in all taxa

concludes the procedure. HaMStR-OneSeq is run with the

following parameters: -coreOrth¼ 5, -minDist¼genus, -

maxDist¼ superkingdom, -checkCoorthologsRef, -strict,

and -rep. Alternatively, we used ortholog groups provided

by OrthoDB (Zdobnov et al. 2017) for parameterizing the

evolutionary models.

Maximum Likelihood Distance Estimation

We computed pairwise maximum likelihood (ML) distances

between proteins using TreePuzzle v5.225 (Schmidt et al.

2002). To arrive at an average ML genetic distance between

any pair of species, we extracted and aligned all pairwise

orthologs for the two species from the OMA database

(Altenhoff et al. 2015). In the case of 1:many ortholog

groups, we considered all induced pairwise orthology rela-

tionships. The alignments were then concatenated and

served as input for TreePuzzle to compute an average ML

distance. The procedure was repeated for all species pairs in

the reference tree to obtain an all-against-all ML distance

matrix.

Annotation of Pfam Domains

We annotated Pfam (Finn et al. 2016) domains using

hmmscan (Finn et al. 2011) with parameters –notextw and -

E 0.01.

Prediction of Subcellular Localization

We predicted the subcellular localization of the yeast proteins

following the approach of Sojo et al. (2016). Precisely, we

annotated transmembrane domains with tmhmm v2.0

(Sonnhammer et al. 1998) to differentiate between mem-

brane and water-soluble proteins. For the fraction of water-

soluble proteins, we subsequently used signalp v4.1 (Petersen

et al. 2011) to distinguish them into extracellular proteins and

intracellular proteins.

Gene Ontology Term Enrichment Analysis

We searched for Gene Ontology (GO) terms enriched in a set

of yeast proteins with GOrilla (Eden et al. 2009). The entire

gene set of S. cerevisiae served as the background set. An E-

value cutoff of 10�3 was applied. Significantly enriched GO

terms were then visualized using Revigo (Supek et al. 2011).

Phylogenetic Analysis

The domain annotation of REC8 in yeast (S. cerevisiae)

revealed the presence of a Rad21_REC8_N domain

(PF04825). Using the Rad21_REC8_N profile HMM obtained

from Pfam (Finn et al. 2016), we searched with hmmsearch

(Finn et al. 2011) for proteins harboring this domain in the

gene sets of ten microsporidia (Encephalitozoon cuniculi,

Encephalitozoon hellem, Encephalitozoon intestinalis,

Antonospora locustae, Nosema ceranae, Enterocytozoon

bieneusi, Edhazardia aedis, Anncaliia algerae, Vittaforma cor-

neae, and Nematocida parisii) and of yeast. The search in yeast

resulted in a second protein, MCD1/SCC1, also containing the

Rad21_REC8_N domain. We then retrieved REC8 and MCD1/

SCC1 orthologs from training data used for the traceability

calculation in the following fungal and outgroup species—

Ashbya gossypii, Yarrowia lipolytica, Fusarium graminearum,

Verticillium dahliae, Phanerochaete chrysogenum,

Schizosaccharomyces pombe, Tremella mesenterica, Ustilago

maydis, Heterobasidion irregulare, Phycomyces blakesleeanus,

Batrachochytrium dendrobaditis, Capsaspora owczarzaki,

Monosiga brevicollis, Amphimedon queenslandica,

Nematostella vectensis, Drosophila melanogaster, and Homo

sapiens. Because both OMA and HaMStR found no orthologs
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to yeast REC8 in animals, we complemented the data with

the H. sapiens REC8 protein (NCBI accession:

NP_001041670), and its InParanoid (Ostlund et al. 2010)

orthologs from Gasterosteus aculeatus, and Daphnia pulex.

All sequences were aligned with MAFFT v7.304 using the

option L-INS-i. From the resulting multiple sequence align-

ment (MSA), we computed an ML tree with 100 bootstraps

using RAxML v8 (Stamatakis 2014), modeling the substitution

process with PROTGAMMALG, the best model obtained from

ProtTest v3 (Abascal et al. 2005). Tree topology testing was

performed using the routines implemented in RAxML. Pfam

domain architecture display on a phylogenetic tree was done

with doMosaics (Moore et al. 2014).

Data Availability

All data that support the finding of this study are available via

figshare: https://figshare.com/projects/yeast_traceability_

metadata/56348; last accessed February 10, 2019.

Results and Discussion

protTrace: A Simulation-Based Workflow to Estimate the
Evolutionary Traceability of a Protein

protTrace determines for a user-defined protein–the seed pro-

tein—ts traceability as a function of evolutionary time. The

procedure comprises four main steps—1) parameterization of

a site-specific evolutionary model, 2) simulation of protein

sequence evolution, 3) the calculation of the traceability,

and optionally 4) the display of the traceabilities on a refer-

ence tree. The general workflow is represented in figure 1 and

more detailed information is provided in supplementary figure

S1A, Supplementary Material online, and in the software doc-

umentation on GitHub.

Step 1—Parameterization of the Evolutionary Process

First, protTrace infers the evolutionary characteristics of the

seed-protein. We compile a group of orthologs, Oseed, for the

seed-protein. protTrace facilitates the use of precompiled

orthologs from OMA (Altenhoff et al. 2015), InParanoid

(Ostlund et al. 2010), and OrthoDB (Zdobnov et al. 2017).

Optionally, a targeted ortholog search with HaMStR

(Ebersberger et al. 2009) can be employed. In the next step,

the orthologous sequences are aligned with MAFFT v7.304

(Katoh and Toh 2008), and an ML tree, Tseed, is computed

with RAxML v8 (Stamatakis 2014). The resulting tree and the

MSA are then used to determine the evolutionary parame-

ters of the proteins as follows. A maximum parsimony algo-

rithm infers the seed-protein-specific insertion and deletion

(indel) rates (supplementary fig. S1B, Supplementary

Material online). Note, we preferred the parsimony algo-

rithm over more elaborated methods to infer the indel

rate, such as Sparta (Levy Karin et al. 2015) or SpartaABC

(Ashkenazy et al. 2017), for performance reasons. The run

times for these programs can be in the range of hours for

alignments of hundred or more sequences, in contrast to

seconds for the parsimony algorithm. A comparison of indel

rates estimated once with the parsimony algorithm and

once with Sparta revealed rates in the same range (supple-

mentary fig. S2, Supplementary Material online). The distri-

bution of the insertion rates, in this yeast protein set

example, is shown in supplementary figure S3A,

Supplementary Material online. Finally, the indel lengths of

one most parsimonious solution are used for estimating p,

FIG. 1.—Workflow to assess the evolutionary traceability of a protein. We show as examples two yeast proteins, PHD 1(blue) and DIM1 (yellow). For

each seed protein, we use a simulation-based approach to infer its traceability, TI(t), that is defined on the interval [0, 1]. From its traceability graph and the

evolutionary distance to any target species, the traceability index of the seed in the target species can be extracted. Relating this information to 1) a species

tree highlights taxa where the ortholog search sensitivity becomes limiting (red clades), 2) phylogenetic profiles identifies cases where orthologs might have

been overlooked, and 3) the gene ontology identifies molecular functions that coincide with low traceability.
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the parameter of the geometric indel length distribution.

With hmmscan (Finn et al. 2015) (parameters: –notextw

and -E 0.01) we identify regions in the seed protein repre-

senting Pfam-A (Finn et al. 2016) domains. From the corre-

sponding pHMMs of the Pfam domains, we extract the

information for a site-specific domain constraint on the evo-

lutionary process (Koestler et al. 2012).

In a phylogenomic setting, the evolutionary parameters are

inferred for many seed-proteins, for example, all proteins

encoded in a species’ genome. To account for different ab-

solute substitution rates between the individual seed-proteins,

we introduce the rate scaling factor jseed (eq. 1). We compute

jseed for each seed-protein as

jseed ¼
Median

i 6¼ jð Þ
dseed i; jð Þ

�d species i; jð Þ

)
; 1ð Þ

(

where dseed(i, j) is the ML distance between the orthologs in

Oseed for species i and j, and �d speciesði; jÞ is the average ML

distance across all pairwise orthologs for the two species i and

j. In the context of this study, we used the pairwise ortholog

assignments from OMA (Altenhoff et al. 2015), but any other

assignment method can be applied, in principle. If
dseed i;jð Þ

�d species i;jð Þ > 1, then the seed protein evolves for species pair

(i, j) faster than the average protein in OMA, otherwise (<1)

slower. jseed is then the median of the ratios inferred from all

species pairs i, j in Oseed. Supplementary figure S3B,

Supplementary Material online, shows the distribution of jseed

exemplarily across all yeast proteins.

Steps 2 and 3—Simulation of Protein Sequence Evolution
and Calculation of the Traceability Curve

Once the evolutionary model is fully parameterized,

protTrace uses REvolver (Koestler et al. 2012) to simulate

the evolution of the seed protein in time steps of 0.1 sub-

stitutions per site. In brief, REvolver takes the seed protein

and the substitution model together with the substitution-

and indel rates as input. As the main feature that distin-

guishes REvolver from other simulators (e.g., ROSE [Stoye

et al. 1998] or Indel-SeqGen [Strope et al. 2007]), the pro-

gram can take, the Pfam domain annotation for the seed

protein into account. The pHMMs of Pfam domains are de-

rived from curated alignments of homologous proteins or

protein domains. Thus, they capture information regarding

which sequence sites remained conserved over time and

where in a sequence insertions or deletions are more likely

to occur. In essence, they describe constraints on the evolu-

tionary process acting on these sequences. REvolver uses this

information for automatically parameterizing site-specific

models of sequence evolution for the seed protein. After

each step, the simulated sequence serves as a query for a

BlastP (Altschul et al. 1997) search with default settings

against the full protein set of the species the seed-protein

was derived from (seed species). We use BlastP for this

search, because this tool, or a comparable database search

algorithm using local sequence alignments, is implemented

in many popular ortholog search tools (e.g., OMA [Altenhoff

et al. 2015], InParanoid [Remm et al. 2001], OrthoDB

[Zdobnov et al. 2017], or orthoMCL [Li et al. 2003]). If the

seed-protein sequence is identified as one of the top five hits,

the success is marked with a “1,” otherwise a “0” is noted.

Repeating the simulation 100 times yields for each time step

a fraction of successes. To determine the traceability index of

the seed protein as a function of time, TI(t), we fit the inverse

of a nonlinear least square logistic growth curve to these data

(eq. 2) using the nonlinear least square (nls) package in R:

TI tð Þ ¼ 1� N0erjseedt

1þ N0 erjseedt � 1ð Þ : 2ð Þ

We estimate the parameters N0, and r, the rate change of

traceability, from the data. For a given evolutionary time t1,

the TI ranges between 0 and 1. A TI(t1) of 0 indicates that in

none of the 100 simulations the simulated sequence that was

evolved up to time t1 had its seed protein within the top five

BlastP hits. An ortholog search based on sequence similarity is

bound to fail. In turn, a TI(t1) of 1 indicates that in each of the

100 simulations the seed protein was within the top five

BlastP hits. The sequence similarity should be, thus, sufficiently

high for an ortholog detection.

Step 4—Tree Display

To provide for each seed protein an intuitive overview,

protTrace can display the traceability information along a spe-

cies phylogeny (supplementary fig. S4, Supplementary Material

online). Here, the color of the leaf labels indicates the trace-

ability index of the seed-protein in the respective species.

Implementation

protTrace is implemented as a command-line tool in Python

2.7, and helper scripts are written in Java, Perl, and R (R Core

Team 2018). It runs on the three main operating systems,

Linux, MacOS, and Windows, although we have tested

protTrace only on Linux and MacOS. protTrace is distributed

as open source according to the GNU-GPL3.0 license via

GitHub (https://github.com/BIONF/protTrace; last accessed

February 10, 2019), and an accompanying WIKI is provided

with the software.

The Evolutionary Traceability of the Yeast Gene Set

Yeast (S. cerevisiae), as a genetically and functionally well-

characterized model organism, provides an excellent starting

point for exemplifying the concept and implications of protein

traceability (fig. 1). We compiled for each of the 6,352 yeast
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proteins its ortholog group, and then used these data to es-

timate the scaling factor, j, and the indel rate. Supplementary

Figure S5, Supplementary Material online, gives an overview

of the ortholog group sizes. Both scaling factors and indel

rates are negatively correlated with the ortholog group size

(supplementary fig. S6, Supplementary Material online). This

indicates that methodological issues, such as difficulties in

aligning distantly related sequences in large and phylogenet-

ically diverse ortholog groups, do not interfere with the evo-

lutionary rate estimation. We then used protTrace to

determine the traceability indices, TI(t), for 6,352 yeast pro-

teins in 232 target species representing all three domains of

life (supplementary tables S1 and S2, Supplementary Material

online). For the 1,381 yeast proteins with <3 sequences, we

used as default the mean of the indel rate distribution across

the entire protein set (0.08) (supplementary fig. S3A,

Supplementary Material online). In addition, we set the pa-

rameter p of the geometric distribution, from which we draw

the length of insertions and deletions in regions not covered

by a Pfam domain, to 0.25, the default value implemented

into REvolver (see supplementary fig. S7, Supplementary

Material online, for further discussion). If no ortholog was

detected for a seed-protein, we used the mean of the scaling

factor distribution across all yeast proteins (jmean¼1.57) as

the default value (supplementary fig. S3B, Supplementary

Material online). The result of the traceability computation

for these proteins is summarized in supplementary figure

S8, Supplementary Material online. Orthologous groups

based on OMA and complemented with HaMStR (see

Materials and Methods), or compiled with OrthoDB obtained

highly correlated results (r¼ 0.92; see supplementary fig. S9,

Supplementary Material online). The choice of the ortholog

search method has therefore little impact on the traceability

estimate, and we used the traceability indices obtained from

the OMA/HaMStR approach for the remainder of the analysis.

Likewise, there was virtually no impact on the traceability

estimates if we recruited the orthologs for estimating the evo-

lutionary parameters from species across the entire tree of life

or only from fungal species (supplementary fig. S10,

Supplementary Material online). This indicates that already

the fungal orthologs are sufficient to capture the long-term

evolutionary characteristics of the seed proteins.

Figure 2A displays the traceabilities of the yeast proteins for

four eukaryotes, one archaeon, and one bacterium. For 2,040

proteins, the traceability indices decrease only very slowly with

increasing evolutionary distance between yeast and the target

species (TI(t)� 0.95 for all target species). As we cover the full

phylogenetic diversity in the tree of life, the rate and pattern

of evolutionary sequence change for these proteins should

not hinder ortholog detection in any extant species. For the

remaining 4,312 proteins, phylogenetic distance and the evo-

lutionary rate of the target species jointly determine protein

traceability. When moving from the closely related fungus, A.

gossypii, to archaea and bacteria, the number of proteins with

a traceability of 0.0 increases by an order of magnitude

(fig. 2A). Likewise, the traceability indices are considerably

smaller in the microsporidium E. cuniculi, an obligate intracel-

lular parasite closely related to fungi (Thomarat et al. 2004),

than in human and Arabidopsis that belong to different king-

doms. This is an effect of the extraordinarily high substitution

rate in the microsporidian lineage, which is among the highest

across all eukaryotes (Slamovits et al. 2004).

We next calibrated the traceability index. It should inform

in real data about the evolutionary distance beyond which

orthologs are too diverged to be detected with BlastP-based

ortholog search tools For the 6,352 yeast proteins, we

searched for orthologs in the 232 target species, and we tab-

ulated the number of yeast-species pairs in which at least one

ortholog was found. In 95% of the cases where an ortholog

was detected, the traceability was at least 0.75 (fig. 2B). Thus,

we conclude, when the traceability is below 0.75, an ortholog

search will probably fail. If an ortholog exists, it has likely di-

verged beyond recognition. Based on the TI threshold of 0.75,

we distinguish two scenarios for the cases where no ortholog

was identified (fig. 2C). For the 53% of cases where the TI is

larger or equal to 0.75, we conclude that the ortholog is ab-

sent, as we should be able to detect it otherwise. For the

remaining 47%, the TIs do not reach the threshold of 0.75,

and such cases occur in almost all target species (fig. 2D). In

other words, in almost half of the cases where we do not find

an ortholog for a yeast protein, we cannot distinguish, with-

out further evidence, between true absence and insufficient

search sensitivity.

We are aware of one study that used a simulation-based

approach to predict for yeast genes the maximal evolutionary

distances in which BlastP still finds a homolog gene (Moyers

and Zhang 2016). In this study, the authors inferred their

constraints on the evolutionary process for each yeast protein

from the alignment of orthologs of five sensu stricto yeast

species. Because Moyers and Zhang (2016) did not link their

findings to the actual phylogenetic profiles of the yeast pro-

teins, comparing their results with our study is hard. We there-

fore reproduced their analysis in part. Moyers and Zhang

(2016) used site-specific substitution rate scaling factors in-

ferred with TreePuzzle (Schmidt et al. 2002) as information to

constrain the evolutionary process. We recreated these con-

straint vectors, once with the original approach by Moyers

and Zhang (2016) using the five sensu stricto yeast sequences,

and once with an alignment using orthologs selected from

the full diversity of fungi. This revealed that the phylogenetic

diversity of the input alignment has a strong effect on the

constraint pattern. When using the sensu stricto yeast ortho-

logs, on average 80% of the alignment sites are assigned a

relative rate of zero. Such positions remain unchanged in the

course of simulated evolution. In contrast, when using the

phylogenetically diverse training data, on average only about

15% of the alignment sites get assigned a relative rate of zero

(supplementary fig. S11, Supplementary Material online).
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Thus, the evolutionary constraint information—and as a con-

sequence the traceability of the protein over time (supplemen-

tary fig. S12, Supplementary Material online)—changes with

the underlying training data. In the particular case of the sim-

ulated yeast protein evolution (Moyers and Zhang 2016), it

appears that the use of the closely related yeast sequences for

inferring the site-specific puts a too harsh constraint on the

evolutionary process (supplementary fig. S11, Supplementary

Material online). Using our terminology, this is bound to result

in an overestimated traceability, an aspect that the authors

have noted themselves (Moyers and Zhang 2017).

Unobserved Domain Constraints Result in Underestimated
Traceabilities

The integration of traceability and ortholog search for the

yeast proteins reveals that we sometimes (5%) detect an

ortholog although the traceability index of the seed protein

predicts that we should not. Reducing the traceability cutoff

has little effect on this number (fig. 2B). Reasons that explain

the discrepancy between the traceability index estimate and

the outcome of an ortholog search are diverse. On the one

hand, overestimates of the protein-specific evolutionary rates

can artificially decrease the traceabilities—although protTrace

is considerably robust with respect to variation in the rate

estimates (supplementary fig. S13, Supplementary Material

online). On the other hand, spurious ortholog assignments

can mimic the presence of an ortholog, an artifact that is

obviously hard to control (supplementary text,

Supplementary Material online). One main—but not the

only (supplementary text, Supplementary Material online)—

factor determining a protein’s traceability, however, is its

Pfam domain content (Finn et al. 2016), as protTrace exploits

the characteristic sequence features of Pfam domains to de-

duce constraints on the evolutionary process (Koestler et al.

2012). In the yeast data, 1,255 out of 6,352 proteins do not

have Pfam domains. In the simulated sequence evolution,

these proteins evolve without position-specific constraint,

and correspondingly many have overall low traceability indices

(supplementary fig. S9, Supplementary Material online). This

implies that protTrace, if information concerning local con-

straints on the sequence-specific evolutionary process is not

available, can underestimate the traceability of a protein.

Figure 3 describes an illustrative example. The yeast protein

MRS2 is a mitochondrial inner membrane Mg2þ transporter

(Wiesenberger et al. 1992), and its traceability indices in spe-

cies outside fungi are substantially below the threshold of

0.75 (supplementary table S2, Supplementary Material on-

line). The overall low traceability estimate coincides with the

absence of Pfam domains in the MRS2 sequence (fig. 3A).

However, we find yeast MRS2 orthologs across the entire

eukaryotic domain (fig. 3B), indicating that protTrace under-

estimates the traceability in this case. An MSA of these ortho-

logs resolves the apparent discrepancy (fig. 3C). MRS2

harbors evolutionarily highly conserved domains, which do

not occur in Pfam, and thus could not be taken into account

A B

D

C

FIG. 2.—The evolutionary traceability of yeast proteins. (A) Traceability indices for 6,352 yeast proteins in Ashbya gossypii (Fungi), Encephalitozoon

cuniculi (Microsporidia), Homo sapiens (Metazoa), Arabidopsis thaliana (Viridiplantae), Methanocaldococcus jannaschii (Archaea), and Escherichia coli

(Bacteria). Proteins are ordered according to their traceability index in E. cuniculi. The inlay shows a stacked bar plot providing, for each species, the fraction

of proteins in each of the four traceability bins. The color code identifying the individual species is specified in the phylogenetic tree. (B) Cumulative

distribution of the detected yeast orthologs relative to the protein’s traceability index. Of the detected orthologs, 95% coincide with a traceability index of

0.75 or above in the respective species (hatched line). (C) Relation between results of the ortholog search and protein traceability. (D) Per-species results with

the color code following (C).
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during the traceability estimation. Notably, when we generate

a custom pHMM from the MRS2 alignment and use this as a

constraint model for the sequence simulation within

protTrace, the mean traceability of this protein increases

from 0.07 to 0.97 (data not shown). Thus, it is crucial for a

correct estimate of TI to have full feature information about a

protein, which will increase in the future. Within 2 years, the

number of Pfam models increased from 14,831 (release 27,

Finn et al. 2014) to 16,295 (release 29, Finn et al. 2016). It

might be interesting to note that discrepancies between

traceability and evolutionary profile, as exemplified by

MRS2, can be easily applied to automatically screen for fur-

ther such instances, where a functional domain is currently

not described in Pfam. In these cases, it is then advisable to

start protTrace with the option to extract site-specific con-

straints on the evolutionary process directly from an MSA of

orthologs, similar to previous approaches (Alba and

Castresana 2007; Moyers and Zhang 2015, 2016).

Traceability and Subcellular Localization Are Linked

Protein traceability informs whether or not the sensitivity of an

ortholog search is sufficient to accurately determine the phy-

logenetic profile of a protein even in distantly related species.

Initial evidence that this measure can provide an alternative

view on the interpretation of conservation patterns of ortho-

logs across species comes from the analysis of proteins with

different subcellular localization. It was reported that

A

C

B

FIG. 3.—Missing information about domain constraints results in underestimated traceabilities: the yeast mitochondrial inner membrane Mg2þ trans-

porter MRS2. (A) MRS2 displays no significant hit against any Pfam domain and contains as sole features a central coiled-coil domain and two transmem-

brane domains. (B) The phylogenetic profile of MRS2 reveals the existence of orthologs across the entire eukaryotic kingdoms despite a predicted low

traceability. The presence of an ortholog in a given species is indicated by a dot. The cell color represents protein traceability. (C) Section of the MRS2

alignment considering orthologs from different representatives across the eukaryotic tree of life. The selected region shows exemplarily for the entire

alignment that MRS2 orthologs share conserved sequence motifs that most likely are associated with the functionality of this protein as an Mg2þmembrane

transporter. As these conserved domains are not represented in a Pfam domain, protTrace cannot consider the corresponding evolutionary constraints during

its simulation.
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extracellular proteins and, to a somewhat lesser extent, trans-

membrane proteins have higher evolutionary rates when

compared with intracellular proteins (Julenius and Pedersen

2006; Cui et al. 2009; Liao et al. 2010). To see whether this is

reflected in differences in the evolutionary traceability, we

performed a GO term enrichment analysis in the set of yeast

proteins with a TI(tE.coli) < 0.75, using the cellular component

ontology. This revealed that proteins annotated with the GO

terms cell wall, anchored component of membrane, and ex-

tracellular region are significantly enriched in this set (supple-

mentary fig. S15, Supplementary Material online).

Subsequently, we classified the yeast proteins into three

groups—membrane proteins, extracellular proteins, and in-

tracellular proteins. We then plotted the TI(tE.coli) distribu-

tion for each of the three protein sets (fig. 4). In line with the

findings from the GO enrichment analysis, we find that a

greater fraction of proteins with a predicted extracellular

localization have a TI(tE.coli) < 0.75 than is the case for in-

tracellular proteins. Proteins predicted to be anchored to the

cell membrane show an intermediate pattern. In light of

these results, we expect that an ortholog search is prone

to more often miss a distantly related ortholog for extracel-

lular and membrane proteins than for intracellular proteins.

This is in line with a recent observation that extracellular

proteins have sparser phylogenetic profiles and fewer

detected orthologs than intracellular proteins (Sojo et al.

2016). The authors of this study provided two alternative

explanations for this difference in size and taxonomic com-

position of the ortholog groups. A rapid evolutionary turn-

over, particularly in the case of membrane and extracellular

proteins, that is, their replacement by nonorthologous pro-

teins, is a result of ecological niche adaptation. It results in

smaller ortholog groups. Alternatively, the higher evolution-

ary rate of membrane and extracellular proteins could inter-

fere with the remote ortholog identification. Although they

provided empirical examples in support of the “turnover

hypothesis,” they did not show in which cases the higher

evolutionary rate becomes a limiting factor. The evolution-

ary traceability of a protein, introduced by us, facilitates a

more differentiated view. We can now identify such pro-

teins—together with the critical evolutionary distance—for

which an ortholog identification is likely to fail due to sen-

sitivity issues, and those where sensitivity is not an issue.

Protein Traceability, Molecular Function, and Gene Age
Estimates Are Linked

Earlier studies have reported the rapid evolution of proteins

that are part of the immune defense, reproductive processes,

cell adhesion, and transmembrane transport (Swanson and

Vacquier 2002; Panhuis et al. 2006; Voolstra et al. 2011).

For the yeast example, we evaluated the link between the

traceability of a protein and its function, as represented in

the assignment of GO terms (Ashburner et al. 2000). We split

the 6,352 yeast proteins into three bins based on their TIs in E.

coli (TI(tE.coli) � 0.75: 3,947 proteins; 0.75 > TI(tE.coli) � 0.25:

742 proteins; TI(tE.coli) < 0.25: 1,663 proteins). A subsequent

characterization with GOrilla (Eden et al. 2007, 2009) and

visualization of the results with Revigo (Supek et al. 2011)

reveal that GO terms are not identically distributed across

the three categories (supplementary fig. S10,

Supplementary Material online). The 3,947 high-traceability

yeast proteins (TI(tE.coli) � 0.75) are significantly enriched for

catalytic functions (supplementary fig. S16A, Supplementary

Material online). Among these, we find 98% of the 980 yeast

enzymes annotated by the Enzyme Commission (EC).

Regulatory functions, in turn, are overrepresented in the

group of 742 proteins with intermediate traceability indices

between 0.75 and 0.25 (supplementary fig. S16B,

Supplementary Material online). The proteins with a traceabil-

ity index in E. coli below 0.25 are preferentially involved in cell

aggregation and cell reproduction (supplementary fig. S16C,

Supplementary Material online). Altogether, we find that

17% of essential proteins (Giaever et al. 2002) and 70% of

the yeast transcription factors have a TI below 0.75 in E. coli

(supplementary table S3, Supplementary Material online). The

low traceability implies that the orthology between regula-

tory proteins, as well as between proteins of other essential

functionalities, is difficult to detect across distantly related

species. Consequently, such functions should be underrep-

resented in the reconstructions of ancient gene sets, not

because they are necessarily evolutionary younger, but be-

cause information about their evolutionary ancestry decays

rapidly.

The 1,203 yeast proteins that are represented in the recon-

structed gene set of LUCA (Goldman et al. 2013) exactly

match this prediction. They are almost exclusively (96%)

recruited from the high-traceability bin. They comprise about

half (47%) of all EC annotated yeast enzymes, but merely 4%

of the 245 transcription factors with a known binding site (de

FIG. 4.—Density plot of the TI(E. coli) for yeast proteins in dependence

of their subcellular localization. Water-soluble intracellular proteins tend to

have higher traceability indices in E. coli compared with proteins with a

predicted extracellular localization, and to proteins localized in the cell

membrane.
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Boer and Hughes 2012). When taken at face value, this ob-

servation translates into a complex evolutionary scenario: The

molecular “hardware” of contemporary species, consisting

mainly of enzymes, ion transporters, and proteins involved

in ribonucleoprotein complex assembly, was largely already

established first in LUCA. The regulatory “software” control-

ling the transcription of genes, however, was either indepen-

dently rebuilt or invented multiple times in individual

evolutionary lineages (Charoensawan et al. 2010). In light of

the limited traceability of proteins involved in regulation, it is

worth considering a second, more parsimonious explanation.

In addition to enzymatic activity, other essential functions

might have had a unique genesis early in organismal evolu-

tion. However, because rate and pattern of evolutionary se-

quence change for some of these proteins has eradicated all

traces of their ancient origins, it appears as multiple indepen-

dent inventions of the same function on individual evolution-

ary lineages.

Evolutionary Traceability of the Bacterial MG Set Syn3.0

A reanalysis of the data generated by the Artificial Life

Project (Hutchison et al. 2016) corroborates the findings

from the previous section. The artificial life project synthe-

sized a self-replicating bacterium (Syn3.0) on the basis of

only 438 protein-coding genes from the bacterium M.

mycoides (Hutchison et al. 2016) (MG). This collection of

essential genes comes close to what Koonin (2003) re-

ferred to as an absolute MG set, that is, the set of genes

that an organism requires under the most optimal condi-

tions. One could naively assume that many of these genes

are essential for cellular life in general, and are thus con-

served across the tree of life. As a consequence, they

should be represented in the gene set assigned to LUCA.

To assess the phylogenetic distribution of the 438 genes,

we replaced the unidirectional BLAST search performed by

Hutchison et al. (2016), which does not inform about the

precise evolutionary relationships of the identified homo-

logs, with an ortholog search (fig. 5 and supplementary

table S4, Supplementary Material online). This revealed

that 170 of these genes have no detectable ortholog out-

side Mycoplasma, and for 149 genes the exact biological

function is unclear. On the first sight this might imply that

Mycoplasma has evolved its own path to organismal func-

tionality, reflecting that a set of genes essential for one

species may not be essential for another organism

(Gerdes et al. 2003; Koo et al. 2017). However, we found

that 60 proteins in MG have traceability indices below

0.75 in any tested species outside Mycoplasma. Among

these are the majority of proteins with unknown functions

(41/65), and additionally 15 of the 84 proteins with only a

generic function assigned (fig. 5). Whatever essential tasks

these 60 proteins have, it may be premature to mark them

as Mycoplasma-specific inventions. Instead, we

hypothesize that their low traceability blurs the evolution-

ary link to related proteins with the same function in other

organisms. Given their participation in fundamental cellu-

lar functioning, it is tempting to speculate that these pro-

teins can provide relevant hints toward the nature of the

“software” that appears missing in the current reconstruc-

tions of the LUCA gene set.

Protein Traceability Limits Ortholog Identification in the
Fast-Evolving Microsporidia

Microsporidia, intracellular parasites closely related to fungi

(Corradi and Keeling 2009) are a hallmark example that a

low traceability can result in essential genes being overlooked.

All microsporidia analyzed so far share two characteristics:

First, their genomes harbor between 2,000 and 4,000 genes,

due to an ancient radical reduction in genome size (Slamovits

et al. 2004). Second, their genomes, together with the pro-

teins encoded therein, evolve extraordinarily fast. Although

the first characteristic makes it tempting to generally equate

a nondetection of an ortholog to a yeast protein with a gene

loss, the high evolutionary rate of microsporidia indicates that

a low traceability may be another reason for the lack of ortho-

logs. Katinka et al. (2001) and Cuomo et al. (2012) showed

that key metabolic functions, for example, the fof1-ATPase

complex, fatty acid synthesis, the tricarboxylic acid cycle, and

the formation of peroxisomes are absent in microsporidia

(Katinka et al. 2001; Cuomo et al. 2012). We determined

the phylogenetic profiles for the corresponding yeast proteins

and could confirm that for many proteins no ortholog was

detectable in our microsporidian representatives (fig. 6A and

supplementary table S5, Supplementary Material online). For

most of these proteins, the traceabilities in microsporidia are

in the range of 0.9 and above. This indicates that the corre-

sponding genes have been lost on the microsporidian lineage.

The situation is different for proteins involved in meiosis

and recombination. Yeast, as well as most other eukaryotes,

share a conserved set of 29 proteins involved in these pro-

cesses (Malik et al. 2007). Microsporidia lack orthologs to six

of these proteins (Cuomo et al. 2012) (supplementary table

S6, Supplementary Material online). However, for three out of

these six cases the traceability of the yeast protein in micro-

sporidia is low. This provides a clear indication that orthologs

might have been overlooked. One protein, REC8, exemplifies

the problem best. In yeast, REC8 forms with IRR1, SMC1, and

SMC3 the cohesin complex, a ring-like structure that keeps

sister chromatids connected during meiosis (Klein et al. 1999)

(fig. 6B). Interestingly, E. cuniculi harbors orthologs to three of

the four genes (fig. 6A and supplementary table S6,

Supplementary Material online). This raises the question about

the whereabouts of REC8, the fourth member of this com-

plex, which closes the ring-like structure. So far, a single report

claims the presence of REC8 in the microsporidium E. cuniculi

(Malik et al. 2007). However, the search strategy that was
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used—a unidirectional PSI-BLAST search (Altschul et al.

1997)—lacks the precision to support this conclusion (Chen

et al. 2007). Consequently, a study based on ortholog

searches reported the absence of this protein in E. cuniculi,

and it identified N. parisii as the only microsporidian species

harboring an ortholog to the fungal REC8 (Cuomo et al.

2012). To explain the sporadic presence of REC8 among

microsporidia, Cuomo et al. (2012) hypothesized that the

shorter period of time that N. parisii has been passaged in a

laboratory setting, compared with other microsporidian spe-

cies, caused the retention of REC8 only in this species. To

resolve the controversy, we consulted the traceability of

REC8 (fig. 6A). With a value of 0.5, the traceability index in

E. cuniculi is substantially below the empirically determined

threshold of 0.75. We took this as a reason for increasing the

search sensitivity to identify highly diverged microsporidian

REC8 orthologs, taking, however, the risk to end up with false

positive predictions. In the first step, we screened the protein

sets of ten microsporidian species for sequences harboring the

Rad21_Rec8_N Pfam domain (PF04824), which occurs in

REC8. This identified in six of the 11 species two proteins

each, among them E. cuniculi. In each of the remaining

four species, only a single protein carried the PF04824 do-

main, among them N. parisii. We then extended the search

to other eukaryotes (supplementary fig. S17, Supplementary

Material online). Fungi, in general, possess two proteins with

the PF04824 domain. In yeast, these correspond to REC8 and

MCD1 (synonym SCC1). MCD1 is the protein that replaces

REC8 in the cohesin complex during mitosis (Klein et al.

1999). Thus, the identification of two microsporidian proteins

with the Rad21_Rec8_N domains resembles the situation

generally seen in fungi. However, at this step of the analysis,

the precise identity of the microsporidian proteins remains

unclear.

In the next step, we reconstructed the evolutionary rela-

tionships of a subset of fungal and nonfungal REC8 and

MCD1 (SCC1) orthologs together with the microsporidian

candidates (fig. 6C). Although this tree is not well resolved

and renders, for example, the fungal REC8 proteins paraphy-

letic, it already supports a grouping of the microsporidian

sequences with fungal and animal REC8 orthologs.

Subsequently, we rearranged the tree topology to reflect

the accepted evolutionary relationships of fungi, microspori-

dia, and animals. A topology test revealed that the likelihood

of the rearranged tree is with a DLogLikelihood ¼ 25.7 not sig-

nificantly worse than the ML tree ( Shimodaira–Hasegawa

test: P< 0.05; Shimodaira and Hasegawa [1999]). The data

are therefore compatible with the hypothesis that microspori-

dian REC8 candidates form the sister clade of the fungal REC8

proteins, to the exclusion of the animal REC8 proteins

(fig. 6D). Paired with the observation that the domain archi-

tecture of the microsporidian proteins agrees with that of

yeast REC8 (supplementary fig. S18, Supplementary

Material online), this indicates that we have indeed identified

the missing REC8 orthologs in microsporidia.

In summary, the REC8 example shows that missing ortho-

logs in the quickly evolving microsporidia are not exclusively

an effect of the rampant gene loss that is characteristic for the

group (Corradi and Slamovits 2011). Here, we provide for the

first time convincing evidence that REC8 orthologs are wide-

spread among microsporidia. The meiotic cohesin complex

might therefore function in microsporidia as described for

yeast. It should be noted, however, that we find no trace of

MCD1 (SCC1), the mitotic counterpart of REC8. As this pro-

tein has a high traceability in the microsporidia, we propose a

genuine gene loss of the Mcd1 gene (supplementary table S6,

Supplementary Material online). In this context, it is intriguing

that we observe two paralogous REC8 proteins in the micro-

sporidia, whose emergence via a gene duplication can be

dated to the last common ancestor of the microsporidia.

Notably, six out of ten microsporidian species harbor both

paralogs. It is tempting to speculate that the apparent loss

of the Mcd1 (Scc1) gene on the microsporidian lineage was

compensated by a duplication of Rec8.

Conclusion

Orthologs form the essential basis to propagate functional

annotations between proteins of different species and to re-

construct the evolutionary past. So far, it has largely remained

a matter of speculation as to what extent limitations in the

sensitivity of ortholog searches have influenced insights

gained from these reconstructions. Here, we have presented

a software, protTrace, facilitating a simulation-based

FIG. 5.—Phylogenetic distribution and traceability profile for the Syn3.0 minimal gene set. The background color gives the information of the traceability

index. The categorization according to the functional annotation status of the individual proteins was adapted from Hutchison et al. (2016).
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procedure to assess the evolutionary traceability of a seed

protein over time when using standard ortholog searches. In

contrast to existing approaches, protTrace infers constraints

on the evolutionary sequence change of the seed protein

from the presence of Pfam domains. This has two main

advantages: The constraint estimates are independent from

the availability and the phylogenetic diversity of orthologs to

the seed protein; and the constraint pattern for a protein

depends only on its Pfam domain composition and not on

the species it was derived from. The generally high traceability

of enzymes indicates that orthologs are readily identifiable

throughout the tree of life, explaining why ancestral gene

set reconstructions are enriched for catalytic functions. This

is contrasted by proteins involved in regulatory processes, for

which traceability implies that most of the signal informing

about any ancient evolutionary origin has long been lost.

Future attempts to reconstruct the evolutionary history of a

protein from its phylogenetic profile will now have the possi-

bility to adapt the sensitivities of ortholog searches according

to the traceabilities of the individual proteins. If the traceability

A

B C D

FIG. 6.—(A) Phylogenetic profiles for the components of fungal key metabolic pathways across ten representative species from the tree of life. The

background color gives the information of traceability index ranging from green (high traceability) to red (low traceability). (B) The four proteins of the yeast

cohesin complex form a ring-like structure. Font color of the protein names indicates that TI(t) in the microsporidium Encephalitozoon cuniculi is either 0.75 or

higher (green), or below (red). (C) Maximum likelihood tree of REC8 and MCD1 (syn. SCC1) orthologs. The microsporidian REC8 candidates are colored in

red. Branch labels represent percent bootstrap support. (D) Alternative phylogeny for the REC8/MCD1 (SCC1) protein family. It features monophyletic fungal

REC8 and MCD1 (SCC1), respectively. The animal REC8 proteins are placed as sister to monophyletic fungal and microsporidian REC8 proteins. The

branching orders in the fungal subtrees follow the accepted species phylogeny. The alternative tree is with a DLogLikelihood¼ 25.7 not significantly worse than

the ML tree shown in (C) (Shimodaira–Hasegawa test: P>0.05). The asterisk indicates a gene duplication on the microsporidian lineage that gave rise to the

two paralogous microsporidian REC8 lineages.
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of a protein is high, an increase of the search sensitivity—

which naturally comes at the cost of a reduced specificity—

is bound to result in false positive predictions. However, if the

traceability is low, more sensitive searches may detect faint

signals of an evolutionary relationship between proteins in

two species. In these cases, a careful downstream analysis

including domain architecture comparison, phylogenetic

tree reconstruction, and screen for interacting partners is

then required to validate candidates resulting from such a

relaxed search. For the example of yeast REC8, we demon-

strated that a limited traceability is indeed an issue that com-

promises ortholog detection and can lead to wrong

evolutionary conclusions. Contrary to current belief, we could

show that REC8 is present and widespread in microsporidia,

rendering the cohesin complex complete and probably func-

tional. Thus, microsporidia bring along the necessary prereq-

uisite for both meiosis and recombination.

In summary, the evolutionary traceability of proteins brings

us one step closer toward deciding when the absence of ev-

idence for an ortholog is evidence for its absence and when it

is not (Alderson 2004).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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