
 

 

 
 

OPEN ACCESS | www.microbialcell.com 118 Microbial Cell | April 2014 | Vol. 1 No. 4 

www.microbialcell.com 

Review 

ABSTRACT  Ageing is a complex and multi-factorial process that results in the 

progressive accumulation of molecular alterations that disrupt different cellu-

lar functions. The budding yeast Saccharomyces cerevisiae is an important 

model organism that has significantly contributed to the identification of con-

served molecular and cellular determinants of ageing. The nutrient-sensing 

pathways are well-recognized modulators of longevity from yeast to mam-

mals, but their downstream effectors and outcomes on different features of 

ageing process are still poorly understood. A hypothesis that is attracting in-

creased interest is that one of the major functions of these “longevity path-

ways” is to contribute to the maintenance of the proteome during ageing. In 

support of this hypothesis, evidence shows that TOR/Sch9 and Ras/PKA 

pathways are important regulators of autophagy that in turn are essential for 

healthy cellular ageing. It is also well known that mitochondria homeostasis 

and function regulate lifespan, but how mitochondrial dynamics, mitophagy 

and biogenesis are regulated during ageing remains to be elucidated. This 

review describes recent findings that shed light on how longevity pathways 

and metabolic status impact maintenance of the proteome in both yeast age-

ing paradigms. These findings demonstrate that yeast remain a powerful 

model system for elucidating these relationships and their influence on ageing 

regulation. 
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INTRODUCTION 

Ageing is a complex and multi-factorial biological process 

driven by genetic, environmental and stochastic factors 

that lead to cellular degeneration and the progressive de-

cline of multiple physiological functions. The decline of 

these functions constitutes one of the most important risk 

factors for the development of numerous age-related dis-

eases. The possible combinations of events occurring dur-

ing ageing make it particularly challenging to reveal the 

interplay and hierarchical order of these events as well as 

to study their consequences at a molecular level. In the 

past few decades, various model organisms (invertebrate 

and vertebrate) and systems have been extensively ex-

ploited to investigate the mechanisms of ageing, including 

its determinants, risk factors and the so called “longevity 

pathways”. The budding yeast Saccharomyces cerevisiae 

offers an attractive eukaryotic model that has dramatically 

accelerated ageing research [1-4]. It has been particularly 

useful for elucidating cellular ageing mechanisms and for 

the identification of promising potential anti-ageing drugs 

such as rapamycin, resveratrol and spermidine that were 

first identified and characterized in yeast before finding 

common ground in the broad scientific community and 

confirmed in higher organisms.  

S. cerevisiae provides two separate, but overlapping 

paradigms for ageing studies, replicative lifespan (RLS) and 

chronological lifespan (CLS). RLS measures the number of 

daughters cells produced by a single mother cell before 

senescence and constitutes a model for studying the age-

ing of mitotically active cells. CLS determines the time that 

cells survive in a non-dividing state after depletion of nu-

trient sources in stationary phase and allows for the study 

of ageing in post-mitotic cells.  

In this review, the role of metabolism on primary dam-

age responses and the relevance of mitochondria-specific 

dysfunction and reactive oxygen species as ageing deter-

 

doi: 10.15698/mic2014.01.136 

Received originally: 10.02.2014;  

in revised form: 21.03.2014,  

Accepted 29.03.2014, 

Published 07.04.2014.  

 

 

Keywords: nutrient-sensing 

pathways, autophagy, mitophagy, 

chronological lifespan, replicative 

lifespan, ageing, yeast. 

 



B. Sampaio-Marques et al. (2014)  Ageing determinants and autophagy/mitophagy regulation 

 
 

OPEN ACCESS | www.microbialcell.com 119 Microbial Cell | April 2014 | Vol. 1 No. 4 

minants will be discussed in the context of novel insights 

into interventions that extend yeast lifespan, such as calor-

ic restriction and hormesis. This review will particularly 

focus on the interconnection between nutrient-sensing 

pathways and the maintenance of proteostasis during age-

ing and its study in both yeast paradigms of ageing.  

 

THE CRITICAL ROLE OF NUTRIENT-SENSING PATHWAYS 

IN AGEING 

Many of the interventions that extend lifespan of diverse 

organisms, including yeast, flies, worms, fish, rodents, and 

rhesus monkeys, decrease activity of nutrient-signaling 

pathways. In yeast, a reduction in the activity of two nutri-

ent-sensing pathways, the target of rapamycin (TOR)/the 

serine-threonine kinase Sch9 [5, 6] and the Ras/protein 

kinase A (PKA) [7, 8], can extend the two types of yeast 

lifespans. Deletion of TOR1 or SCH9 causes an increase in 

both CLS and RLS [5, 6, 9, 10]. Regulation of CLS by Sch9 

can occur independently of Tor1, given that Sch9 can be 

specifically phosphorylated by the Pkh1/2 kinases, which 

activity is regulated by phytosphingosine (PHS), an inter-

mediate in sphingolipid metabolism [11]. A downregulation 

of sphingolipid synthesis results in yeast CLS extension 

indicating that Sch9 may function as an integration point of 

both nutrient- and sphingolipid-derived signals for appro-

priate regulation of yeast CLS [12, 13]. The contribution of 

Sch9 to the modulation of RLS can also occur independent-

ly of Tor1 through mechanisms involving the Sucrose Non-

fermenting protein (Snf1) kinase, the yeast orthologue of 

the mammalian AMPK kinase, as discussed below [14]. 

Extension of CLS by reduced TOR activity depends on 

the transcription factors Gis1 and Msn2/4, which are acti-

vated by Rim15 and lead to an increase in many protective 

systems including glycogen accumulation, glycerol accumu-

lation, anti-oxidant enzymes and mechanisms related to 

the maintenance of proteostasis, such as heat shock pro-

teins (HSPs) and autophagy (reviewed in [1]). Interestingly, 

RLS extension promoted by Tor1 inhibition is also depend-

ent on the transcription factors Msn2/4 but this mecha-

nism appears to be dependent on a sirtuin deacetylase, 

Sir2, as discussed further on [15]. 

The second pathway mediating yeast longevity exten-

sion is Ras/PKA. A reduced activity of PKA results in an in-

crease in yeast lifespan in both ageing paradigms [7, 16]. 

Nevertheless, abrogation of RAS1 and RAS2 that lead to 

the activation of the PKA pathway, results in opposite ef-

fects on the replicative and chronological lifespans. Dele-

tion of RAS1 gene increases RLS but is associated with a 

slight decrease of CLS, while deletion of RAS2 decreases 

RLS, but intriguingly extends CLS [16-18]. The activation of 

the transcription factors Msn2/4 is a crucial event for the 

extension of CLS [5], and probably of RLS [15], promoted 

by reduced Ras/PKA. 

Overall, the results of many studies support the model 

that extension of yeast lifespan by the nutrient-sensing 

pathways requires the up-regulation of antioxidant en-

zymes, particularly Mn-dependent superoxide dismutase 

(Sod2), which scavenges the superoxide anions [19, 20]. 

This is also supported by the elevated levels of Sod2 de-

tected in cells deleted in SCH9 [21] or RAS2 [16] and by the 

reduction of superoxide anion levels observed after inacti-

vation of TOR pathway [21, 22]. Nevertheless, the pro-

longevity effects attributed to the activation of a general 

stress response by decreasing the nutrient-sensing path-

ways activity seem to be also associated with an increase 

of mitochondria function. In fact, it has been established 

that lack of mitochondrial respiration severely affects the 

survival of stationary phase cells and thus the CLS [22-25]. 

In addition, long-lived cells deleted of TOR1 [22, 24, 25] or 

SCH9 [26] display an increased respiratory capacity. 

Inactivation of TOR/Sch9 and Ras/PKA nutrient-sensing 

pathways can be achieved by caloric restriction (CR), which 

is an experimental manipulation that extends the lifespan 

of a variety of eukaryotic organisms from yeast to mam-

mals [10]. CR in yeast corresponds to the reduction of glu-

cose content in growth media from the regular 2 to 0.5% or, 

in some studies, 0.05%. Under these conditions, mitochon-

dria respiration is released from glucose repression at an 

earlier time point and nuclear genes, important for mito-

chondrial biogenesis and function, are upregulated. Im-

portantly, it was recently shown that extension of CLS by 

CR requires mitochondria respiration during exponential 

growth, which increases stress resistance, relieving the 

need for respiration in stationary phase [25]. Under CR 

conditions, Rim15 kinase is also released from Tor1, Sch9 

and Ras/PKA inhibition, and superoxide dismutases and 

other oxidative stress defenses are upregulated in a Rim15 

partially dependent fashion [19]. Recently, we have shown 

that CR also promotes pro-longevity effects in a Rim15-

independent manner [20, 27]. We found that CR or inacti-

vation of catalases also extends CLS by inducing elevated 

levels of hydrogen peroxide, which inhibit the accumula-

tion of intracellular superoxide anions by activating super-

oxide dismutases by a Rim15-independent pathway [20, 

27]. These findings point to a hormetic role for hydrogen 

peroxide during ageing. This study as well as other recent 

studies challenge prior paradigms for understanding the 

role of reactive oxygen species (ROS) in ageing and the free 

radical theory of ageing that posits oxidative damage to 

macromolecules as a primary determinant of lifespan [28]. 

It has also been shown that in some scenarios, longevity is 

enhanced by inactivation of oxidative stress defenses or is 

correlated with increased ROS and oxidative damage [29]. 

More recent findings established that increased mitochon-

drial ROS levels produced during cells growth reduce the 

accumulation of ROS at later stages of survival and conse-

quently increased longevity [24]. The early production of 

ROS was suggested to be dependent on the inhibition of 

TOR activity, contributing to the extension of CLS [24]. Re-

cently, the beneficial effects of hormesis were shown to 

also involve epigenetic alterations [30]. It was demonstrat-

ed that yeast DNA damage response kinases, Tel1 and 

Rad53, homologs of the mammalian DNA damage re-

sponse kinases ATM and Chk2, mediate a hormetic mito-

chondrial ROS longevity signal that extends yeast CLS [30]. 

This pathway senses mitochondrial ROS in a manner inde-

pendent and distinct from the nuclear DNA damage re-
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sponse, but connected with telomere functional status 

through the inactivation of a histone demethylase [30]. 

Nevertheless, it is suggested that although epigenetic ef-

fects are essential for the adaptive response elicited by 

ROS, the transcriptional changes mediated by Msn2/4 and 

Gis1 are also a fundamental part of the hormetic plan that 

mediates CLS extension.  

The results of numerous studies suggest that the de-

terminants of yeast replicative and chronological lifespans 

are distinct, but overlap [3, 31]. The fact that both replica-

tive and chronological lifespans are extended in response 

to CR and other interventions decreasing nutrient-sensing 

pathways demonstrated that both yeast ageing paradigms 

share conserved features with the ageing processes in evo-

lutionarily divergent multicellular organisms [3]. Neverthe-

less, it remains unclear whether similar downstream mo-

lecular events are common to both yeast ageing paradigms. 

Both yeast ageing paradigms are interconnected; it was 

recently reported, for example, that chronologically aged 

yeast cells show a proportional reduction in RLS [32-34]. 

Recently, it was also reported that CR protects chronologi-

cally aged cells from a reduction in RLS, suggesting that the 

metabolic state and mitochondrial function of stationary 

phase cells determines their replicative potential upon 

transfer to growth conditions [31]. 

Although the evidence from many studies implies that 

both yeast ageing paradigms invoke conserved determi-

nants of ageing in multicellular eukaryotes [1, 3], many 

issues remain to be explored. These include elucidation of 

the different relationships between the nutrient-sensing 

pathways and the so called metabolic linkers such as Snf1 

and sirtuins, mitochondria homeostasis and their impact in 

proteome homeostasis of aged cells. 

 

METABOLIC SENSORS: AMPK AND SIRTUINS 

The role of nutrient-sensing pathways as determinants of 

longevity has been extensively explored, but the relevance 

to ageing of new nutrient hubs, often called metabolic 

sensors, is now attracting attention and has become the 

focus of intense investigation. One metabolic sensor is Snf1, 

which functions as an energy sensor that is able to repro-

gram cellular metabolism in order to restore normal ener-

gy levels essential to sustain cell metabolism and to the 

cellular response to different stresses [14, 35, 36]. Activa-

tion of Snf1 is dependent on the cellular ratio AMP/ATP 

but not on AMP allosteric regulation. Snf1 is also regulated 

by PKA activity, upon low glucose stress, independently of 

the AMP/ATP ratio [37]. In contrast to mammalian AMPK, 

Snf1 is negatively regulated by Tor1 [38]. Snf1 kinase activi-

ty can also be independently controlled by acetylation of 

Sip2, a regulatory subunit of the Snf1 complex [14]. In addi-

tion, Sch9, the yeast homolog of Akt and S6K, was shown 

to be a common downstream target of Snf1 complex and 

of Tor1 [14]. Notably, Snf1 activity, required for transcrip-

tion of glucose repressed genes, increases in yeast aged 

cells, even when glucose is abundant [39, 40], and this has 

detrimental effects on lifespan [41]. Sip2 acetylation is 

suggested to enhance physical interaction with Snf1 and 

thereby antagonize its catalytic activity [14]. This could 

FIGURE 1: SIR2 deletion does not have a major impact on CLS either in normal growth conditions or under caloric restriction. Chronologi-

cal lifespan of wild type (background BY4741) or sir2∆ cells submitted to (A) non-caloric restriction (non-CR) or (B) caloric restriction (CR) 

conditions. All experiments were performed in synthetic complete (SC) medium containing yeast nitrogen base and glucose, as a carbon 

source, supplemented with the appropriate amino acids and bases. The concentration of glucose used was 2% in non-CR conditions or 0.5% 

to promote CR. Cells were incubated at 26°C with shaking at 150 rpm. Cultures reached stationary phase 2 days later and this was considered 

day 0 of CLS. Survival was assessed by counting colony-forming units (CFUs) beginning at day 0 of CLS (when viability was considered to be 

100%), and then again every 2-3 days until less than 0.1% of the cells in the culture were viable. The data represent mean ± SEM of three 

biological independent replicas. No statistical significance was obtained between the CLS curves presented both in panel A and in panel B, as 

determined by two-way ANOVA. 
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explain why Sip2 is able to suppress the negative effects of 

Snf1 on RLS extension and why abrogation of SIP2 decreas-

es lifespan [42]. The detrimental effects of Snf1 in RLS can 

also be explained by its activation of Sch9, independently 

of the TOR pathway, which might lead to loss of proteosta-

sis. Snf1 was also shown to be a modulator of CLS [43, 44]. 

Deletion of SNF1 results in shortening of CLS [44], a pheno-

type that was hypothesized to be related to the role of 

Snf1 in promoting respiration and autophagy [45, 46]. 

These findings suggest that in contrast to its detrimental 

effect in RLS, Snf1 could be necessary for fitness during CLS, 

which is a phenotype resembling the promoting effects of 

AMPK activation under CR in metazoans [47-49]. 

Sirtuins, a highly conserved group of NAD+ dependent 

protein deacetylases that responds to high NAD+/NADH 

ratios, are another type of metabolic linker. Sirtuins are 

considered to be ‘‘master regulators’’ of eukaryotic ageing 

due to pioneering work showing that deletion of SIR2 de-

creases yeast RLS, whereas its overexpression increases 

RLS [50]. It was proposed that CR extends RLS by activating 

Sir2 deacetylase activity, either through an increase in the 

intracellular NAD+/NADH ratio [51], and/or a reduction in 

the nicotinamide concentration [52]. Nicotinamide, a by-

product of the deacetylation reaction, is a potent noncom-

petitive Sir2 inhibitor but CR elevates the expression of 

Pnc1, a nicotinamidase, thereby promoting Sir2p deacety-

lase activity (reviewed in [52, 53]). Although other deacety-

lases have been implicated in CR-mediated extension of 

RLS by suppressing rDNA recombination, the role of these 

sirtuins in mediating CR effects on yeast RLS remains con-

troversial [54]. Nevertheless, although Sir2 mammalian 

orthologues were shown to be linked to increased longevi-

ty, the mechanism by which Sir2 acts to extend yeast RLS 

does not seem to be relevant to ageing in multicellular 

eukaryotes [2]. 

The role of Sir2 in yeast CLS appears to be different and 

it has been mainly assigned as having a pro-ageing role in 

CLS. Depending on the strain background and growth me-

dia, deletion of SIR2 either has no effect or induces a mod-

erate increase of CLS (reviewed in [53]). Abrogation of SIR2 

combined with CR and/or mutations in the yeast SCH9 or 

RAS1/2 causes a dramatic CLS extension [44, 55]. Overex-

pression of SIR2 has no effect on CLS but reduces the CLS 

of cells lacking Sch9 activity [55]. Nevertheless, the effects 

of Sir2 in CR-mediated CLS longevity are also controversial. 

Although it was shown that Sir2 antagonizes CLS extension 

promoted by CR [55], it was later shown that CR extends 

CLS of S. cerevisiae independently of the sirtuins including 

Sir2 [54]. Consistent with these observations, our data 

showed that deletion of SIR2 does not have a major impact 

on CLS either in normal growth conditions or under CR 

(Figure 1). This suggests that the longevity promoting ef-

fects of CR are independent of Sir2 although it remains 

unclear whether CR has an impact on Sir2 activity. The fact 

that deletion of SIR2 in combination with reduced PKA or 

Sch9 activity (promoted by CR) leads to an increase of the 

expression of several stress-resistance genes and a de-

crease on the rate of DNA mutations that accumulate with 

age in post-mitotic conditions could explain the absence of 

CLS effects under CR conditions. 

Although Sir2 is not associated with CR-promoting CLS 

extension, treatments with resveratrol, an ageing modula-

tor that mimics CR, result in CLS extension by mechanisms 

that depend on Sir2 [56]. This finding supports the hypoth-

esis that under CR conditions, Sir2 can have a function in 

regulating lifespan, but by as yet undiscovered mechanisms. 

Our recent studies have shown that Sir2 upregulates 

macroautophagy and mitophagy during CLS [57]. In fact, 

during CLS under conditions of proteotoxic stress induced 

by the heterologous expression of the human alpha-

synuclein, a protein associated with Parkinson`s disease, 

Sir2 transcriptionally regulates ATG8 and ATG32 [57]. 

These findings show that similar to its mammalian 

orthologue, SIRT1, Sir2 is also a macroautophagic regulator. 

Interestingly, resveratrol, a polyphenolic compound found 

in red wine that is known to prolong lifespan in lower eu-

karyotes via sirtuin activation [56], regulates autophagy in 

a mechanism that depends on Sir2 but is independent of 

TOR [58]. Remarkably, although independent of Sir2, it was 

shown that the deacetylation of histone H3 in response to 

spermidine is associated with increased autophagy, re-

duced oxidative stress and CLS extension [59]. These re-

sults indicate that the role of Sir2 on CLS is complex and 

raise the interesting possibility that Sir2 is part of an elabo-

rate signaling network that regulates autophagy and ageing.  

 

PROTEOSTASIS COLLAPSE, AUTOPHAGY AND AGEING 

Ageing and some ageing-related diseases are linked to im-

paired protein homeostasis or proteostasis [60, 61]. As 

mentioned above, long-lived phenotypes are usually asso-

ciated with increased stress resistance and altered me-

tabolism, particularly mitochondria bioenergetics. A hy-

pothesis that is becoming well accepted is that one of the 

major function of these “longevity pathways” is to contrib-

ute to the maintenance of the proteome during ageing [62]. 

To maintain proteostasis, cells possess quality control 

mechanisms such as the degradation of proteins by the 

proteasome or the lysosome/vacuole that function in a 

coordinated fashion [63-65]. Different studies have 

demonstrated that proteostasis is altered with ageing [64] 

and that the inefficient removal of non-functional mole-

cules and cellular components associated with a general 

decline in the cellular housekeeping mechanisms seem to 

have a pivotal role in the progression of ageing [66]. 

Macroautophagy, herein called autophagy, is one of 

the cellular proteolytic systems that guarantees the quality 

of proteins and organelles via their sequestration within 

double-membrane vesicles called autophagosomes that 

are delivered to lysosomes/vacuoles for degradation [67]. 

Importantly, and as described above, autophagy is a com-

mon downstream target of the so-called “longevity path-

ways”, which points to a crucial cytoprotective role of au-

tophagy during ageing. These signaling pathways are nega-

tive regulators of autophagy with partial overlapping 

branches and as yet undetermined hierarchical connec-

tions [66]. Tor1 is considered to be the main negative regu-
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lator of autophagy [68, 69] either through its direct phos-

phorylation of Atg proteins such as Atg13 or through a 

signaling cascade involving the phosphorylation of Tap42, 

which activates the catalytic subunits of PP2A (the ser-

ine/threonine protein phosphatase 2A), a negative regula-

tor of autophagy [70]. Atg1 and Atg13 are also targets of 

PKA, which negatively regulates autophagy through their 

phosphorylation at residues distinct from those targeted 

by Tor1 [71, 72]. TOR and PKA pathways appear to operate 

in parallel and to be involved in an elaborated network 

regulating autophagy (reviewed in [73]). Like Tor1 and PKA, 

inactivation of Sch9 also induces autophagy [72, 74]. Sch9 

acts in parallel with PKA and its activity is partly dependent 

of TOR [75]. Regulation of autophagy by Sch9 appears to 

be different from the post-translational mechanisms im-

plied by Tor1 and PKA above described and it is partly me-

diated by the inhibition of Rim15 (a positive regulator of 

autophagy) and the Msn2/Msn4 transcription factors [75]. 

PKA dependent regulation of autophagy is also partially 

dependent on Rim15 (Figure 2) [74]. 

Mutant cells defective in autophagy-related genes ex-

hibit reduced CLS in SD minimal medium compared to con-

trol strains [76]. This phenotype could be suppressed by 

increasing the availability of essential and non-essential 

branched side chain amino acids by a mechanism that like-

ly involves inactivation of Gcn4, which regulates general 

amino acid control [76]. 

Autophagy has been shown to be required for the ex-

tension of yeast CLS promoted by CR [44, 76, 77] but not 

for CR-mediated yeast RLS extension [78]. These and other 

reports indicate that the interconnection between autoph-

agy, CR, and longevity in yeast is still unclear. While au-

tophagy seems dispensable for CLS extension during CR in 

a low glucose synthetic complete media [44], some genes 

involved in vacuolar membrane homeostasis and indirectly 

implicated in autophagy are required for lifespan extension 

during CR promoted by transferring cell to water [79, 80]. A 

recent study showed that autophagy is upregulated by the 

two CR interventions mentioned above but while autopha-

gy seems to be always required for full extension of CLS 

during caloric restriction promoted by water wash, its re-

quirement for CR longevity effects produced by low glu-

cose is dependent on strain background [77]. In both cases 

autophagy seems to contribute to the maintenance of res-

piration proficiency during ageing [77]. 

The picture of autophagy’s function in CLS and particu-

larly in CR-mediated lifespan extension is even hazier if we 

consider the intervention of the metabolic linkers Snf1 and 

Sir2 on autophagy regulation and ageing. For instance, in 

the absence of nitrogen, the depletion of glucose is a posi-

tive signal for autophagy induction but in this situation, the 

Snf1 kinase is involved in regulation [45], although the de-

tails have not yet been elucidated (Figure 2).  

Curiously, anti-ageing drugs such as resveratrol, sper-

midine and rapamycin are autophagic regulators/activators 

[81]. While rapamycin stimulates autophagy in a TOR-

dependent fashion, resveratrol and spermidine elicit a 

TOR-independent autophagy by distinct pathways. Sirtuins 

are required for resveratrol induced autophagy [82] but 

not for spermidine-stimulated autophagy [59, 81].  

Thus, a great deal of evidence supports the model that 

autophagy and ageing are coordinately regulated by a 

network of different signaling pathways, with partial over-

lapping branches. 

 

MITOCHONDRIAL DYNAMICS, MITOPHAGY AND BIO-

GENESIS DURING AGEING 

Dysfunctional mitochondria can generate ROS, release cell 

death-inducing factors, such as cytochrome c, into the cy-

tosol, or generally burden the metabolic machinery of the 

cell by decreasing the efficiency of ATP generation [83]. 

Therefore, mitochondria need to be constantly repaired or 

degraded to prevent additional damage to the cell. Conse-

quently, maintaining mitochondria homeostasis is ex-

tremely important during ageing [84], which is accompa-

nied by a decline in mitochondrial turnover caused by re-

duced mitochondrial biogenesis and/or mitochondrial deg-

radation [85]. Mitophagy is a selective form of autophagy 

in which severely impaired mitochondria are degraded [86]. 

The regulation of the mitophagy process is still poorly un-

 

 

FIGURE 2: Autophagy regulation by nutrient-sensing pathways. 

Tor1 is the main negative regulator of autophagy. Tor1 can direct-

ly exert its negative regulation through phosphorylation of Atg13 

and Atg1 or through its downstream target, PP2A (ser-

ine/threonine protein phosphatase 2A), a negative regulator of 

autophagy. Atg1 and Atg13 could also be phosphorylated by PKA, 

at residues distinct from those targeted by Tor1. PKA and Sch9 

pathways are also negative regulators of autophagy. Apparently, 

TOR and PKA pathways operate in parallel, whereas Sch9 acts in 

parallel with PKA and partially dependent on TOR. Regulation of 

autophagy by Sch9 and PKA can be mediated by the inhibition of 

Rim15 and the Msn2/4 transcription factors. Tor1 is also able to 

inhibit the activity of the metabolic sensor Snf1, which is a posi-

tive regulator of autophagy by still unknown mechanisms. Green 

arrows indicate interactions that induce autophagy, red bars indi-

cate inhibition. See the text for details. 
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derstood. Genomic screening for yeast mutants defective 

in mitophagy using a library of non-essential deletion 

strains identified genes involved in diverse pathways, such 

as membrane trafficking, protein modification/degradation, 

lipid metabolism or mitochondrial metabolism [87]. Mech-

anistically, Atg32 was found to be essential to mitophagy 

and has been proposed to function as a mitochondrial re-

ceptor that during mitophagy interacts with Atg11, an 

adaptor protein for selective types of autophagy [88, 89]. 

Mitophagy is intimately connected to mitochondrial 

dynamics and thus to the mitochondria fission/fusion ma-

chinery, which in turn is inactivated when a bioenergetic 

collapse takes place. Although in mammalian cells mitoph-

agy is impaired when mitochondrial fission is blocked, in 

yeast the role of mitochondrial dynamics in mitophagy and 

mitochondrial quality control has been proposed to be 

independent of mitochondrial fission machinery (see for 

discussion [90]). Mitophagy regulation in yeast also seems 

to occur by other mechanisms distinct from those operat-

ing in higher eukaryotic cells. This is demonstrated by the 

fact that drugs affecting the electron transport chain are 

not strong inducers of mitophagy in yeast, as they are in 

mammalian cells. Such differences may reflect the fact that 

yeast have evolved to prefer fermentation to respiration, 

and unlike some mammalian cells, they can dilute out 

damaged or superfluous organelles by division.  

Whi2, a protein required for full activation of the gen-

eral stress responses, was shown to act as a mitophagy-

promoting factor [91]. Whi2 was shown to interact with 

Msn2 [92] and to have an important regulatory role of 

Ras/PKA pathway [93]. WHI2 deletion results in the hyper-

activation of PKA and a dramatic decrease in Msn2/4 activ-

ity. Thereby, Whi2 has been proposed to be a key player in 

adapting the complex network of signaling pathways in 

response to the nutritional status of the cell [90, 93]. Nev-

ertheless, the role of Whi2 in yeast ageing is still unclear 

although it was reported that WHI2 mutant cells have a 

reduction of RLS [94].  

An important pathway in mitochondrial homeostasis is 

the retrograde signaling response. This pathway compen-

sates the accumulation of mitochondrial dysfunctions that 

occur during ageing and crosstalks with other relevant sig-

naling pathways including pathways involved in metabolic 

stress response such as TOR pathway (reviewed in [95]). 

Mitophagy occurring in post logarithmic phase is controlled 

by Aup1, a phosphatase that localizes to the mitochondrial 

intermembrane space, which regulates Atg33 [96]. Aup1 

also mediates the dephosphorylation and nuclear import 

of Rtg3, a key component of the retrograde signaling 

pathway, which is also required for post-log phase mitoph-

agy [97]. Although it is well accepted that mitophagy has 

an important role in the maintenance of mitochondria ho-

meostasis during ageing, this is still an overlooked aspect 

of ageing, and relatively little is known about the proteins 

involved in regulating selective autophagy. It is suggested 

that mitophagy, probably activated by the retrograde re-

sponse, is responsible for extending RLS in mtDNA-

deficient strains [98]. As far as CLS is concerned, both star-

vation-dependent and stationary phase, it is known that 

mitophagy is partially regulated by two separate mitogen-

 

FIGURE 3: SIR2 deleted cells exhibit increased mitochondrial mass and altered mitochondria network. Wild type and sir2∆ (background 

BY4741) cells expressing, GFP-Atg8 and mtDsRed were analyzed for mitophagy by confocal fluorescence microscopy. The cells were collect-

ed and analyzed at day 3 of chronological lifespan. Mitophagy was analyzed by the pattern of co-localization between GFP-Atg8 and 

mtDsRed, as exemplified. Images were acquired in a confocal Olympus FLUOVIEW microscope with an Olympus PLAPON 60X/oil objective, 

with a numerical aperture of 1.35. GFP and DsRed were excited with and argon laser and a helium-neon laser (GFP: 488 nm excitation; 

DsRed: 559 nm excitation). Background reduction was performed with appropriate saturation levels using software FV1000 (Olympus) and 

Adobe Photoshop CS. Image stacks for analysis were acquired with sequential steps of 0.25 to 0.5 µm per plane in the z-direction and a total 

thickness of 4-6 µm. The acquired stacks were rendered with FV1000 software. Scale bars: 5 µm. 
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activated protein kinase (MAPK) pathways. Bck1, a MAPK 

kinase, was identified in a screen for mitophagy-defective 

strains [87] and was shown that together with upstream 

and downstream kinases and the cell surface sensor Wsc1 

is required for mitophagy [99]. The second MAPK, Hog1, 

appears to be also regulated by a cell surface sensor, Sln1 

[99]. The downstream targets of these MAPKs are still not 

identified but is expected the involvement of certain tran-

scription factors. However, regulation of mitophagy during 

CLS is not restricted to MAPKS control. Our previous stud-

ies have shown that in CLS measurements made under 

conditions of proteotoxic stress, Sir2 is an important regu-

lator of the transcription of ATG32 encoding a mitochon-

drial protein that confers selectivity during mitophagy [57]. 

Microscopic analysis of mitophagy revealed that SIR2 mu-

tant cells have an increased mitochondrial mass and sug-

gested alterations in mitochondria networks, although the 

CLS of SIR2 mutant cells is not significantly different from 

wild-type cells (Figure 3 and 1). These results also reinforce 

the role of Sir2 in the regulation of mitophagy during CLS 

and point to an exploitation of SIR2 mutant cells to unveil 

more about mitochondria homeostasis during ageing. Nev-

ertheless, under proteotoxic stress, we have shown that a 

deregulated increase in mitophagy leads to a shorter CLS, 

indicating that similar to autophagy the selective degrada-

tion of mitochondria has to be maintained around a 

threshold above which it aggravates ageing and reduces 

CLS [57]. This seems to be counter-intuitive as autopha-

gy/mitophagy are viewed as protective mechanisms. How-

ever, it’s clear that a tight equilibrium between mitochon-

drial dynamics, mitophagy and biogenesis must be main-

tained during ageing.  

 

CONCLUSION 

Accumulating evidence points to a role for conserved nu-

trient-sensing pathways in the regulation of ageing de-

pendent and independent of general stress responses. 

Both yeast ageing paradigms have contributed enormously 

to the understanding of how inactivation of conserved 

nutrient-sensing pathways impact on longevity. Although 

some nutrient-sensing pathways, downstream effectors 

and outcomes are distinct in the two yeast lifespan models, 

replicative and chronological, important shared features 

have also been detected. Nevertheless, it appears that the 

CLS model shares more aspects of the ageing process in 

higher eukaryotic cells than does RLS. What also appears to 

be the case is that together with increased stress respons-

es and mitochondria bioenergetic capacity, the reduced 

activity of nutrient-sensing pathways, observed in long-

lived phenotypes, is also a regulating process crucial for 

cellular proteostasis. Nevertheless, many questions remain 

unanswered, such as the role of and interconnections be-

tween nutrient-sensing pathways and “metabolic sensors” 

such as Snf1 and sirtuins, in the coordinated regulation of 

ageing. In the past, the role of mitochondria degradation 

(mitophagy)/biogenesis during ageing has been largely 

ignored. Although it is recognized that the maintenance of 

functional mitochondria and the degradation of dysfunc-

tional ones is a fundamentally important component of 

ageing, the regulation of these events and how they impact 

lifespan is poorly understood. This is even more important 

in the context of ageing, during which biogenesis, and par-

ticularly mitochondria biogenesis, is quite limited and cells 

have to simultaneously integrate catabolic and anabolic 

signals to avoid triggering cellular pathways that will ulti-

mately culminate in death. Therefore, one of the main 

challenges in ageing research is to understand how the 

events that constitute hallmarks of cellular ageing are 

regulated and interconnected.  However, our ability to 

make sense of the complexity of the networks and their 

branches is limited.  In the last decades, yeast has become 

not only the leading model for eukaryotic cell biology but 

also the pioneer organism that has facilitated the estab-

lishment of an entirely new approach to study biological 

modules (cells, pathways, networks, regulation) called sys-

tems biology. Systems biology will be helpful to understand 

ageing and lifespan determinants through for example 

large-scale analyses of gene expression and transcriptional 

networks, genetic interactions, protein-protein interactions, 

proteomes, phosphoproteomes, acetylomes, metabolomes 

or fluxomes. Therefore, we believe that yeast still have 

important secrets to divulge relevant to these questions 

and that yeast studies are likely to produce many addition-

al novel findings relevant to ageing and ageing interven-

tions in mammals, including humans. 
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