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Abstract: The influence of static compressional stress on the anisotropy of piezoelectric ceramics of
BaTiO3 and PZT types is considered theoretically and experimentally. Static compression changes
the domain structure of piezoceramics. These changes occur due to the reorientation of mostly
90◦ domain axes. As a result, all the parameters of the material change—elastic, piezoelectric,
and dielectric. Some of them increase, and some, on the contrary, decrease. Changes occur in a
nonlinear way, and higher-order parameters appear. The relationship between the total volume of
the reoriented domains and the change in elastic moduli and piezomoduli is theoretically considered.
The corresponding theoretical dependences are obtained. To confirm these theoretical dependences,
experimental measurements were performed using the ultrasonic pulse-interference method at a
frequency of 8 MHz. There is practically no oscillation movement of domain boundaries at this
frequency, therefore, the change in the system of elastic and piezoelectric moduli is structural, not
dynamic. The possibility of predicting changes in the structure of modules as a result of static
compression is shown.

Keywords: piezoceramics; static compression; stress; anisotropy; elastic moduli; piezomoduli; nonlinearity;
higher-order parameters; piezoelectric domains; ultrasonic measurements

1. Introduction

Piezoelectric ceramics [1] are widely used in various MEMS devices [2], electroacoustic
devices [3], automation systems [4], electric drives [5,6], and piezoelectric harvesters [7].
In many cases, the piezoelectric elements work under large (and sometimes extreme)
mechanical static and/or dynamic loads and in strong or superstrong electric fields [8–10].
When working under such conditions, all material parameters mechanical, dielectric, and
piezoelectric are subject to change [11]. In addition, we know that piezoceramics are highly
nonlinear, and this nonlinearity is inherent in all properties without exception [12]. This
means that each zero-order parameter mechanical, piezoelectric, or dielectric also has
several higher-order parameters. Thus, the complete set of parameters includes a very
large number of components, the simultaneous measurement of which is a difficult and
sometimes unsolvable problem. To this, we can add that each parameter also depends on
frequency (i.e., it exhibits dispersion), temperature, and time (i.e., it has a strong creep). It
was shown earlier [13–15] that the relative change in Young’s modulus of perovskite-type
piezoceramics (i.e., BaTiO3 or PZT with various additives) decreases under the action of
uniaxial compression while the frequency increases. Within the frequency range of about 3
MHz, the moduli defect becomes frequency-independent [16]. At the same time, uniaxial
compression being applied along different directions changes different elastic moduli in
different ways. Some of them increase while others decrease. The same effect appears under
a static electric field applied in different directions. This means that uniaxial compression
or/and uniaxial electric fields change the degree of anisotropy of piezoceramics. In this
paper, we discuss this process, but consider only the action of mechanical load.
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2. Theory

Piezoelectric ceramics are a homogeneous polycrystalline medium, anisotropic in the
polarized state. Homogeneous anisotropic bodies are usually divided into two groups.
The first group includes bodies having natural anisotropy, which is a consequence of their
lattice structure. The second group includes media that are not single crystals, but have
anisotropy of properties determined by artificial or natural orientation of crystalline grains.
These are so-called textures [17]. A special place among them is occupied by piezotextures,
which include polarized piezoceramics. Piezotextures consist of crystals with piezoelectric
properties, but the properties of textures differ significantly from similar properties of
their constituent crystals both qualitatively and quantitatively, for example, by the number
of piezoelectric constants. This is due to the fact that the distribution of the axes of the
crystals that make up the texture leads to an averaging of the values that characterize the
piezoelectric effect [18].

Textures can be formed in various ways, for example, by polarization, application
of a constant electric field, or mechanical stress of uniaxial compression. The properties
of piezoelectric textures depend on the properties of the crystals forming them. These
dependences can be obtained in various ways. The approach developed in ref. [19] on the
basis of the method proposed earlier in [20] gives very good approximations. This method
makes it possible to calculate the change in the degree of anisotropy introduced by the
mechanical stress of uniaxial compression.

It is well known [21], the elastic properties of piezoceramics significantly depend on
its domain structure. Piezoceramic is a polycrystalline medium with a random angular
distribution of the crystallographic axes of individual crystallites. Each crystallite has a
polydomain structure. Therefore, apolarized piezoceramic is an isotropic medium. In
perovskite-type piezoceramics, such as BaTiO3, the crystal lattice within a certain tempera-
ture range has a tetragonal structure in which two types of domains are possible: 180◦ and
90◦. Under the influence of external stress or an electric field, the vectors of spontaneous
polarization of individual domains tend to reorient themselves in such a way that the
internal energy of each individual crystallite would be minimal. The texture obtained
as a result of external action depends on the type of this action. Only two directions of
polar axis reorientation are possible: 180◦ and 90◦. The external electric field causes mainly
180◦ reorientations [22], whereas mechanical uniaxial stress leads to 90◦ rotations of the
polar axes. In both cases, piezoceramics become anisotropic. If it is already anisotropic
(for example, as a result of polarization), then under the influence of a mechanical uniaxial
stress, the degree of anisotropy changes. It can decrease or increase, depending on the
mutual orientation of the compression axis and the polar axis.

Polarized piezoceramics, for example, BaTiO3 or PZT types, are a type of transversely
isotropic media with an axis of symmetry “Z” of infinite order. As for piezoelectric proper-
ties, ceramics belong to a point-symmetry group ∞•m, whereas the anisotropy of elastic
properties is characterized by a symmetry group m•∞ : m. These properties can be ex-
pressed as matrices [23–25]:

Matrix of piezoelectric moduli: Matrix of relative permittivity: 0 0 0 0 h15 0
0 0 0 h15 0 0

h31 h31 h33 0 0 0

 ε11 0 0
0 ε11 0
0 0 ε33


Matrix of elastic moduli: Flexibility Matrix:

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66 = c11−c12

2





s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66 = 2(s11 − s12)


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The relationship between the constants of individual crystallites and the piezoceramic
constants is described by the following system of equations:

uij = sE
ijklσkl + dm,ijEm

Dn = εσmnEm + dn,klσkl

}
(1)

where uij are components of the elastic strain tensor; σkl components of the elastic stress
tensor; Dn, Em components of electric induction vectors and field strength, respectively; sE

ijkl
components of the flexibility tensor at a constant field; dmij components of the piezomodulus
tensor; and εσmn components of the dielectric permittivity tensor.

A pair of Equations (1) is applicable for both a single crystal and piezoceramics in
general. Let u1

ij(ϑ,ϕ,ψ) be the components of the strain tensor in a single crystal whose
main axes are connected to the coordinate axes of ceramics by Euler angles ϑ,ϕ,ψ.

The strain of ceramics is determined by the following tensor:

uij =

t
u1

ij(ϑ,ϕ,ψ) f (ϑ,ϕ,ψ) sin ϑdϑdϕdψ
t

sin ϑdϑdϕdψ
(2)

where f (ϑ,ϕ,ψ) is angle ϑ,ϕ,ψ of distribution function u1
ij.

If ceramics are apolar, single crystals are oriented randomly, so f (ϑ,ϕ,ψ) = 1 and
Euler angles can take values within the following intervals:

0 ≤ ϑ ≤ π; 0 ≤ ϕ ≤ 2π; 0 ≤ ψ ≤ 2π.

If a texture is somehow created in ceramics, then the polar axes are distributed within a
certain solid angle Ω. In this case, the limits of integration in expression (2) will be as follows:

Θ1 ≤ ϑ ≤ Θ2; 0 ≤ ϕ ≤ 2π; 0 ≤ ψ ≤ 2π,

with Θ1, Θ2 < π.
The values Θ1 and Θ2 depend on the type of texture being created. For example, if a

texture is created by polarization along the Z or Y axis, then, as shown in [4], 0 ≤ ϑ ≤ π
2 ,

since polarization is mainly accompanied by 180◦ reorientations.
A small number of 90◦ reorientations also take place. If the texture is created by

compression along the X axis (which in this case becomes the axis of symmetry of infinite
order), then with full reorientation Θ1 = π

4 and Θ2 = 3π
4 , since in this case only 90◦

reorientations are allowed.
The orientation distribution of the polar axes of monocrystals within a certain fixed

solid angle Ω should be uniform, since in the process of creating a texture they can rotate
only by a certain angle (90◦). Therefore

f (ϑ,ϕ,ψ) = 0 if ϑ < Θ1 or ϑ > Θ2,
f (ϑ,ϕ,ψ) = 1 if Θ1 ≤ ϑ ≤ Θ2.
With this in mind, we get

uij =
1

4π2(cos Θ1 − cos Θ2)

2π∫
0

2π∫
0

Θ2∫
Θ1

u1
ij(ϑ,ϕ,ψ) sin ϑdϑdϕdψ (3)

Then, the first equation of the system (1) is

u1
ij = s1E

ijklσ
1
kl + d1

m,ijE
1
m, (4)
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where σ1
kl and E1

m are the mechanical stress and electric field strength acting on the
monocrystal accordingly. Substituting (4) into (3), one can obtain

uij =
1

4π2(cos Θ1 − cos Θ2)
×

 2π∫
0

2π∫
0

Θ2∫
Θ1

s1E
ijkl σ

1

kl
sin ϑdϑdϕdψ+

 2π∫
0

2π∫
0

Θ2∫
Θ1

d1
mij E

1

m
sin ϑdϑdϕdψ

(5)
The values s1E

ijkl and d1
mij can be expressed in terms of the corresponding values s•Epqrs

and d•npq, reduced to the main axes of the monocrystal:

s1E
ijkl = αipαjqαkrαlss•Epqrs

d1
mij = αmnαipαjqd•npq

}
(6)

where α are the guiding cosines of the angles between the main axes of the microcrystalline
and the axes associated with the ceramic specimen:

X1 X2 X3

X1
1 α11 α12 α13

X1
2 α21 α22 α23

X1
3 α31 α32 α33

Substituting (6) into (5) and comparing the resulting expression with (1), we obtain

sE
ijkl =

1
4π2(cos Θ1 − cos Θ2)

2π∫
0

2π∫
0

Θ2∫
Θ1

αipαjqαkrαlss•Epqrs sin ϑdϑdϕdψ (7)

dmij =
1

4π2(cos Θ1 − cos Θ2)

2π∫
0

2π∫
0

Θ2∫
Θ1

αmnαipαjqd•npq sin ϑdϑdϕdψ (8)

εσmn =
1

4π2(cos Θ1 − cos Θ2)

2π∫
0

2π∫
0

Θ2∫
Θ1

αmpαnqαjqε
•σ
mn sin ϑdϑdϕdψ (9)

Using expressions (7)–(9), it is possible to obtain expressions for all parameters of
piezoelectric ceramics through the parameters of the monocrystals of which it consists. If,
for example, we need to obtain relationships for flexibilities, then, after integrating (7) and
taking into account the relationships between Euler angles and guide cosines, we obtain
expressions for piezoceramic flexibilities, which are generalizations of the expressions
obtained in [20].

In this paper, we do not give a complete set of parameters, limiting ourselves only
to those that are of interest for practical usage, i.e., the elasticity and flexibility moduli
having indices 11 and 33 under constant values of electric field strength or induction. The
other parameters can be obtained similarly and do not cause difficulties. The following
expressions were obtained for them:

sE
33 = sE

22 = 1
cos Θ1−cos Θ2

{
sE

11
[
−0.056

(
cos5 Θ2 − cos5 Θ1

)
−0.062(cos3 Θ2 − cos3 Θ1)− 0.28(cos Θ2 − cos Θ1)]
−
(
2s•E12 + s•E66

)[
0.0125(cos5 Θ2 − cos5 Θ1) + 0.01(cos3 Θ2 − cos3 Θ1)

+0.047(cos Θ2 − cos Θ1)]
+2
(
2s•E13 + s•E44

)[
0.0375(cos5 Θ2 − cos5 Θ1)− 0.042(cos3 Θ2 − cos3 Θ1)

−0.0625(cos Θ2 − cos Θ1)] + s•E33

[
−0.075(cos5Θ2 − cos5 Θ1)

+0.25(cos3Θ2 − cos3 Θ1)− 0.375(cos Θ2 − cos Θ1)
]}

(10)
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and

sE
11 = 1

cos Θ1−cos Θ2

{
s•E11

[
0.15(cos5Θ2 − cos5 Θ1) + 0.5(cos3Θ2 − cos3 Θ1)

−0.75(cos Θ2 − cos Θ1)] +
(
2s•E12 +s•E66

)[
−0.025(cos5Θ2 − cos5 Θ1)

+0.083(cos3Θ2 − cos3 Θ1)− 0.125(cos Θ2 − cos Θ1)
]

+2
(
2s•E13 + s•E44

)[
0.1(cos5Θ2 − cos5 Θ1)−0.167(cos3Θ2 − cos3 Θ1)]

−0.2s•E33 (cos5 Θ2 − cos5 Θ1)
}

(11)

These expressions remain valid if instead of flexibilities sE
ij and s•Eij we substitute the

corresponding flexibilities under constant induction D (sD
ij and s•Dij ).

If now, instead of (1), we choose another pair of initial equations:

σik = cE
iklmulm − eu

p,ikEp

Dk = εu
kpEp + ek,lmulm

}
(12)

and perform all the above transformations, it turns out that expressions (10) and (11) remain
valid, even if, instead of flexibilities, we substitute the corresponding values of the inverse

elastic moduli
(

cE
ij

)−1
and

(
c•Eij

)−1
.

Similar relationships are obtained for inverse elastic moduli
(

cD
ij

)−1
and

(
c•Dij

)−1
.

The elastic moduli can be calculated [26] using the formula

cE,D
ij =

(−1)i+j∆s
ij

∆s (13)

where ∆s is a determinant obtained from a matrix of flexibilities, and ∆s
ij the corresponding

minor, obtained by crossing out the i-th row and the j-th column. The flexibility matrix
looks like that given above.

The full set of BaTiO3 single crystal-flexibility constants was published by Berlincourt
and Jaffe [22]. Table 1 shows the values of flexibilities according to [22] and the values of
elastic moduli cE,D

ij (in SI) calculated by Formula (13).

Table 1. The full set of BaTiO3 single crystal-flexibility constants.

ij sE
ij × 10−11 sD

ij × 10−11 cE
ij × 10−11 cD

ij × 10−11

11 0.85 0.725 4.28 2.82
12 –0.235 –0.315 1.79 1.86
13 –0.524 –0.326 1.51 1.412
33 1.57 1.08 1.65 1.78
44 1.84 1.24 0.543 0.807
66 0.884 0.884 1.13 1.13

Using Table 1 and expressions (10) and (11), some estimates can be made. For example,
for apolar ceramic BaTiO3, we have

Θ1 = 0, Θ2 = π, sE
11= sE

33 = 0.712× 10−11 Pa–1.

Young’s Modulus

Y11 =
1

sE
11

= 1.40× 1011 Pa.

The real value of Young’s modulus according to experimental data is Y11 = 1.1× 1011

Pa. In the experiment, we used ordinary porous ceramics. If we introduce a correction for
porosity, then the real Young’s modulus is equal to Y11 = 1.1× 1011 Pa, which corresponds
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well to the experimental data. If we assume that the polar axes of all domains are completely
reoriented under the action of compressive stress, then

Θ1 =
π

4
, Θ2 =

3π
4

, sE
11 = 0.591× 10−11 Pa−1,

that is, the reverse flexibility
(
sE

11
)−1 increases by 20.7%, and taking into account porosity

by
∆(sE

11)
−1

(sE
11)
−1 = 20%. In the same way, we can calculate the increase in reverse flexibility(

sD
11
)−1, which will be 12.7%, and taking into account porosity, then 12.2%.
If it is necessary to calculate the change in the inverse flexibilities for the case when

only part of the domains of the polar axes were reoriented and the rest of them retained
the original direction of the polarization, then expression (2) should be integrated, taking
into account the spatial distribution function f (ϑ,ϕ,ψ) of the polar axes of the domains.
We must take into account that in completely apolar ceramics, the polar axes are evenly
distributed, and the distribution function has the form

f (ϑ,ϕ,ψ) = 1 (14)

for any values of angle ϑ. If we load uniaxially the nonpolar ceramics, then the polar axes
of a part of the domains will rotate by a certain angle, and the distribution function will
look like this:

f (ϑ,ϕ,ψ) =
{

a ifπ4 ≤ ϑ ≤
3
4π

1− a if 0 ≤ ϑ < π
4 or 3π

4 < ϑ ≤ π , (15)

where a—is the total volume occupied by the rotated domains.
This distribution function must obey the normalization condition

2π∫
0

2π∫
0

π∫
0

f (ϑ,ϕ,ψ)sinϑdϑdϕdψ =

2π∫
0

2π∫
0

π∫
0

sinϑdϑdϕdψ (16)

After integration, we obtain a simple equation:

a
(

1− 1√
2

)
+

b√
2
= 1 (17)

The values a and b = 1− a are determined from the condition γ = 1−a
a , where γ is the

ratio of the volume of the reoriented domains (1 − a) to the volume of the retained domains
(0 ≤ γ ≤ 1). If a = 1 (i.e., γ = 0), then we have the first limiting case, a completely apolar
ceramic, and if γ = 1, then this is a case of total reorientation.

The dependences of the elastic constants on γ, taking into account the distribution
function (15), are shown in Figure 1.

We can note that the values under constant electrical induction
(
sD

11
)−1 or cD

11 change

less than the corresponding values change under a constant electric field
(
sE

11
)−1 or cE

11.
The elastic moduli cE

11 and cD
11 change less than corresponding values of reverse flexibilities(

sE
11
)−1 and

(
sD

11
)−1.
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3. Theoretical Basics of the Experiment

We measured different elastic moduli and their behavior under the action of compres-
sive stresses using the ultrasonic pulse-interference method [19,27]. Here, we consider the
possibilities of the high-frequency ultrasound method and the main results obtained.

To describe the propagation of an elastic wave in an anisotropic, in general, medium,
additionally deformed by uniaxial compression, we use the approach proposed by Man
and Lu [28]. The precompression stress Σ is included as an additional term in the basic
elasticity equation:

σ = Σ + c · u + H · Σ; (18)

where σ—total stress; Σ—pre-compression stress; u—elastic strain caused by the elastic wave;
H—displacement gradient; c—stress-dependent modulus of elasticity (fourth-rank tensor).

With small elastic displacements during wave propagation in a prestressed medium,
the wave equation has the form

∇ · σ = ρ
∂2p
∂t2 , (19)

where p—displacement vector; ρ—density.
Using (18), we can write (19) in the tensor form for components

∂

∂xi

(
cijkl + σilδjk

)∂uk
∂ul

= ρ
..
pi, (20)

where δjk—Kronecker symbol. Stress σil may be caused by preload or residual stress. We
assume that the material within the width of the ultrasonic beam is homogeneous and the
stresses are also homogeneous. The solution of Equation (20) for a plane wave we can write
in the form

p = p0eik(nr−vt), (21)
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where p0—initial (amplitude) displacement vector; k—wave number; n—the vector of the
unit wave normal in the direction of wave propagation.

Substituting solution (21) into Equation (20) leads to the Christoffel dispersion equation
for the case of a stressed anisotropic material∣∣∣cijklninl + (σilninl − ρv2)δjk

∣∣∣pk = 0 (22)

where v—normal (phase) wave propagation velocity; pk—guiding cosines of the displace-
ment vector in an elastic wave; ni, nl—guiding cosines of the wave vector n; δjk—Kronecker
symbol (unit tensor); cijkl—elastic moduli tensor.

Equation (22) was obtained in ref. [29] using the assumption of superplasticity, and
was used in refs. [30,31].

Considering the symmetry of the elastic modulus tensor

cijkl = cklij = cjikl = cijlk, (23)

we can replace tensor indexes as follows:

11→ 1 23, 32→ 4

22→ 2 13, 31→ 5 (24)

33→ 3 12, 21→ 6

Then, the elastic moduli matrix of piezoceramics looks like this:

cjk =



c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 (25)

Then Equation (22) can be written in matrix notation∣∣∣Qjk −
(
ρv2 − σilninl

)
δjk

∣∣∣pk = 0, (26)

where Qjk–effective elasticity modulus. For piezoelectric media it can be written as

Qjk = cE
ijkl · ninl +

ep,ij · np·nj ·el,nm · nl·nm

εu
pj · np·nj

, (27)

with ni, nl—guiding cosines of the wave vector; ep,ij—piezoconstant tensor; —the relative
permittivity tensor.

The first term in (27) defines the elastic moduli realized under a constant electric stress
(E = const), i.e., in the absence of a piezoelectric reaction of the medium. The second term
expresses the piezo addition to elasticity moduli. In this case, elastic moduli are realized
under a constant electrical induction (D = const), i.e., Qjk = QD

ijkl .
The dispersion Equation (22) is a system of three equations with respect to velocity v:∣∣Q11 −

(
ρv2 − σilninl

)∣∣p1 + Q12 p2 + Q13 p3 = 0
Q11 p1 +

∣∣Q22 −
(
ρv2 − σilninl

)∣∣p2 + Q23 p3 = 0
Q31 p1 + Q32 p3 +

∣∣Q33 −
(
ρv2 − σilninl

)∣∣p3 = 0

. (28)

Various combinations of compression directions and the direction of propagation of
the ultrasonic wave are possible. In addition, different orientations of the displacement
vector are possible during wave propagation, i.e., both longitudinal and shear waves can
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propagate. In the latter case, the displacement vector can also be oriented at different
angles relative to the direction of compression. Various combinations of compression
directions, wave-propagation directions, and displacement directions in an elastic wave
are also possible with respect to the polarization vector of piezoceramics.

In Figure 2, the direction of the Z axis (3) coincides with the direction of the symmetry
axis of infinite order for a transversely isotropic medium, (poled piezoceramics). Locations
of the other two coordinate axes—X (1) and Y (2)—are arbitrary. Vector P corresponds to
the direction of polarization.
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Ceramics is also polarized along the Z axis (3). Uniaxial compression is also directed along
the Z axis (3). The directions of the wave vector and the polarization vector of the wave in
this case coincide, and the guiding cosines are the following:

n1 = n2 = 0; n3 = 1; p1 = p2 = 0; p3 = 1.

From the third equation of the system (28) it turns out:

Q33 −
(
ρv2 − σ33

)
= 0or cE

3333 +
e2

3,33

εu
33

+ σ33 = ρv2
n.

And finally:

cD
33 + σ33 = cE

33 +
e2

33
εu

33
+ σ33 = ρv2

l , (29)

where vl—the velocity of propagation of an elastic longitudinal wave. Thus, in this case, by
measuring the propagation velocity of the elastic wave, it is possible to obtain the elasticity
modulus cD

33.
In the second case, the longitudinal wave propagates along the Y axis:

n1 = n3 = 0; n2 = 1; p1 = p3 = 0; p2 = 1.

From the second equation of the system (28) we obtain

Q22 −
(
ρv2 − σ22

)
= 0 or cE

2222 +
e2

2,22

εu
22

+ σ22 = ρv2
n.
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Finally:

cD
22 + σ22 = cE

33 +
e2

22
εu

22
+ σ22 = ρv2

l , (30)

where vl—the velocity of propagation of an elastic longitudinal wave.
Since

cE
22 = cE

11 , e22 = 0,

then
cE

11 + σ22 = ρv2
l . (31)

Thus, in this case, by measuring the propagation velocity of the elastic wave, we obtain
the elasticity modulus cE

11.
The same is obtained when the longitudinal wave propagates along the X-axis.
The third case shows the elastic shear wave propagating along the Z axis, and the

displacement vector is oriented along the X axis. Guiding cosines

n1 = n2 = 0; n3 = 1; p1 = 1; p2 = p3 = 0.

The dispersion equation in this case looks like this:

cE
3113 +

e1,31 · e3,13

εu
11

+ σ33 = ρv2
n,

or
cE

55 +
e15 · e35

εu
11

+ σ33 = ρv2
n.

Since
cE

55 = cE
44 , e35 = 0 (e15 6= 0),

then
cE

44 + σ22 = ρv2
t . (32)

We obtain the elasticity modulus cE
44. In practice, this case is realized by exciting a

shear wave in the sample using a Y-piezoquartz transducer, which is located in the XOY
plane of the sample in such a way that its (i.e., the transducer) optical axis is oriented along
the Y axis.

The fourth case. The elastic shear wave propagates along the Y axis and the displace-
ment vector is oriented along the X axis. Guiding cosines:

n1 = n3 = 0; n2 = 1; p1 = 1; p2 = p3 = 0.

The dispersion equation in this case looks like the following:

cE
2112 +

e1,21 · e2,12

εu
11

+ σ22 = ρv2
n or cE

66 +
e16 · e26

εu
11

+ σ22 = ρv2
n

Since, as in the previous case

e16 = e26 = 0,

Then
cE

66 + σ22 = ρv2
t . (33)

We obtain the elasticity modulus cE
66. In practice, this case is realized by exciting a shear

wave in the sample using an Y-piezoquartz transducer, which is located in the XOZ plane
of the sample in such a way that its (transducer) optical axis is directed along the X axis.

The same cE
66 modulus we can obtain by measuring the velocity of a shear wave

propagating along the X axis. The piezoquartz Y-plate transducer must be located in the
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YOZ plane of the sample in such a way that its (transducer’s) optical axis is directed along
the Y axis.

Modulus cE
12 we can calculate using the expression

c66 =
c11 − c12

2
.

In the fifth case, the elastic shear wave propagates along the Y axis, the displacement
vector is oriented along the Z axis. Guiding cosines:

n1 = n3 = 0; n2 = 1; p1 = p2 = 0; p3 = 1;

The dispersion equation in this case looks like the following:

cE
2332 + σ22 = ρv2

t or cE
44 + σ22 = ρv2

t . (34)

We obtain the elasticity modulus cE
44. This is realized by exciting a shear wave in the

sample with the help of a Y-piezoquartz plate transducer, which is located in the XOZ
plane of the sample in such a way that its optical axis is directed along the Z axis.

The same elasticity modulus cE
44 can be obtained by measuring the velocity of a shear

wave propagating along the X-axis. The quartz transducer of the Y-slice is located in the
YOZ plane of the sample in such a way that its (transducer’s) optical axis is directed along
the Z axis.

4. Experimental Setup

Soon after the first practical usages of piezoceramics (mainly in hydroacoustic devices
in the 1950s), it turned out that their properties strongly depend on external conditions. This
was first established by Bogoroditsky [32]. Mason [20,22,25] was first to begin the intensive
studies of these dependences. These first studies were followed by the avalanche-like
growth of research in many countries. It is not possible to list all the authors in this work.

A very short list can be found in [15,33], though it is not our main goal. It turned
out [34–37] that the properties of piezoceramics are highly nonlinear, and this nonlinearity,
in turn, depends on the frequency. Our more recent studies [13,14] have shown that the
frequency dependence of nonlinear properties is mainly determined by the dynamics of
oscillations of 90◦ domain boundaries.

Within the frequency range of about some tens of kHz, the nonlinear acoustoelastic
effect is quite strong—the elastic moduli defect can reach 30% or even more [14]. While
the frequency increases, defects in elastic moduli, piezomoduli, and dielectric permittivity
decrease. Above 3–5 kHz, the elastic moduli become almost completely independent
from the frequency, and nonlinear properties are determined mainly by textural changes
in the domain structure, i.e., elastic nonlinear dispersion is manifested. This means that
the experimental study of changes of the piezoceramic anisotropy must be provided by
high-frequency pulsed ultrasonic methods. Within the high-frequency domain, pulsed or
pulse-interference methods based on the propagation of ultrasonic pulses of longitudinal
or transverse waves are mainly used.

At frequencies exceeding several megahertz, the defect of elastic moduli does not
exceed 1–2% percent when the compression stress reaches 100–150 MPa. In this regard, the
accuracy of measurement methods is of great importance. The most suitable method here
turned out to be the classical one by Williams and Lamb [38].

Another fairly simple classical method by McSkimin [39] is based on the usage of
a single transducer. The effect of superimposing odd reflected pulses on each other is
used. In essence, this is also a pulse-interference method, but in this method the transducer
operates in a combined mode—both radiator and receiver.

These methods are widely known. Their main disadvantage is the inability to measure
the velocity of sound along the direction of compression, because of the presence of
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the compression device. Measurements are possible only in the direction transverse to
compression, which greatly limits the usage of these methods.

To measure the velocity and attenuation of sound in various materials, mainly piezo-
ceramic, under the action of uniaxial compression, we have developed the combined
method [34], which implements the pulse-interference Williams–Lamb method and the
McSkimin pulse-superposition method.

This setup (Figure 3) makes it possible to perform experimental measurements of
elastic properties of a wide variety of materials under the compressive stress within the
selected temperature range, as well as to measure the damping coefficient of elastic waves.
The measurements are possible within the frequency range of 3–10 MHz and even more,
up to 50–60 MHz.
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11—delay lines, 12—specimen, 13—ceramic rings, 14—spherical hinges, 15—thermostatic casing.

Measurements are possible by two methods: in the direction transverse to the axis of
compression and along the axis of compression.

In the first case, the continuous sinusoidal signal from the master oscillator 1 comes
to the input of the modulator unit 2, 3, which provides two high-frequency pulse signals
from the continuous signal. Their length, as well as the time delay relative to each other,
are determined by the operation mode of pulse oscillators 4, 5, providing pulse power to
the modulator unit and synchronization of the whole setup.

When measuring the propagation velocity of elastic waves or attenuation in the direc-
tion transverse to the axis of compression (when measuring attenuation, the oscillator 5 is
switched off), excitatory pulses come to the piezoquartz transducer 1 (while the switch is in
position 1).

When measuring the propagation velocity or attenuation of elastic waves in the
direction transverse to the compression axis (when measuring attenuation, the oscillator 5
is switched off), electric pulses excite the quartz piezoelectric transducer 1 (the switch is in
position 1). The transducer is glued to the lateral surface of the specimen 12. The received
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signal, which is a sequence of pulses that have passed through the specimen, comes out
from the same transducer 1 through a matched calibrated attenuator 6 and amplifier 7 to the
input of the oscilloscope 8. The pulse-filling frequency is measured by a frequency meter 9.
The pulse-compensation method is generally similar to the Williams–Lamb method.

In the second case, when measuring the propagation velocity of elastic waves along
the axis of compression, the setup operates in the mode of incomplete modulation of the
pulse signal. The operation mode switch is set to position 2. In this variant, the modulator
unit generates one pulse signal (oscillator 5 is out) and a sine signal.

The pulse signal comes to the piezoquartz transducer 2, which excites an elastic wave.
The emitted acoustic pulse goes through two delay lines 11, the specimen 12 and two buffer
layers. A continuous signal through the adjusting signal-level device comes directly to
the input of the amplifier. Sequential compensations of continuous and pulse signals are
recorded by the oscilloscope 8. The latter signal passes the entire acoustic path and is
received by a transducer glued to the lower delay line.

The delay lines are flat washers made of hardened tool steel. Their surfaces are treated
with a high degree of parallelism, sanded and polished. A piezoelectric transducer 2 is
glued to the inner plane of each delay line from the piezoquartz X-slice (for excitation and
reception of longitudinal waves) or Y-slice (for excitation and reception of shear waves).

Delay lines provide several actions simultaneously.
First, it is a power element of the structure. Its purpose is to act by compressive

force to the specimen without significant bending deformations. Bending deformations
can uncontrollably change the surfaces of contact with transducer 2 and contact with the
specimen. Longitudinal deformations of the delay lines are feasible, but we can account for
them by calculation or by performing control measurements.

Second, in the delay lines, as in the specimen, along and back pulses propagate, and
there exist several reflected series of pulses—from the upper interface with the specimen,
from the lower interface of the specimen—line and from the lower transducer 2. It is difficult
to share and classify all these reflected pulses; therefore, the thickness of the delay lines
should be significantly greater than the length of pulse.

Third, when performing temperature measurements, the delay lines must have the
same temperature as the specimen, so we must thermally isolate them from the rest of the
mechanical system by ceramic rings 13, which take over the temperature difference and are
also strong enough to withstand compression. These rings also electrically isolate the steel
delay lines from the rest of the structure. This is necessary to perform measurements when
the sample is polarized and there are silver electrodes adjacent to the delay lines.

To fulfill all these requirements, the delay lines are made in the form of flat disks made
of tool steel. The thickness of the discs is 15 mm, the surfaces must be strictly parallel
to each other and carefully treated. The surface to which the piezoquartz transducer is
glued must be polished, and the surface of contact with the sample also must be polished.
The transducers are glued to the surfaces of the delay lines (by salol (phenyl salicylate,
C6H5O2C6H4OH) for room temperature, or by epoxy resin for measurements under higher
temperatures). The layers between the specimen and the delay lines are silicone oil.

Very important elements of the entire structure are spherical hinges 14, the purpose of
which is to eliminate possible distortions and nonparallelism between the connected surfaces.

For measurements under varying temperature, the specimen and the delay lines are placed
into a thermostatic device (copper casing 15 having thermal insulation) with a heater. The
temperature is controlled by a thermocouple with a recording device (not shown in the figure).

The accuracy of the second method is slightly lower than the first one and is 10–3 for
absolute measurements and 10−4 for relative measurements.

Both methods, mutually complementing other, allow us to study the elastic properties
of both poled and apolar piezoceramics having different mutual orientations of the com-
pressive force vectors F, the wave vector k, the polarization vector of piezoceramics P, and
the displacement vector in the elastic wave, discussed above.
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It should be added that measurements on slices of different orientations are also possible,
which significantly expands the set of elastic moduli of higher orders available for study.

5. Experimental Results

Thus, all the above relations make it possible to experimentally determine the elastic
moduli of piezoceramics: cE

11 , cE
12, cE

44, cE
66 and also cD

33 and cD
44. Based on the results of

measurements of the moduli, it is possible to calculate the elastic modulus cE
12. This makes it

possible to experimentally investigate the change in the elastic anisotropy of piezoceramics
under the influence of uniaxial compression stress. One can calculate, using the method
described above, the change in any modulus of elasticity and obtain dependences similar
to those shown in Figure 1.

Commercially available samples of piezoceramics produced by industry were selected
for the study. Their properties were determined by the Russian standard [40]. A detailed
description of the parameters is available in [41].

The experimental results of the effect of compression stress on the elastic moduli of
apolar ceramics of the BaTiO3 type are shown in Figure 4 [13].
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Figure 4. Change of elastic moduli cD

11 (1) and cD
33 (2) of BaTiO3 piezoceramics under the uniaxial

stress along the X axis. The arrows show the relative position of the direction of the compression
vectors F and the wave vector k.

The compression is directed along the X-axis, which in this case becomes a rotary axis of
infinite order. The abscissa axis shows the values of the compression stress σ11, and along
the ordinate axis is the defect of the module, i.e., its relative change. Curve 1 shows a change
in the elastic modulus cD

11, i.e., that acts along the X axis, and curve 2 represents a change in
the modulus of elasticity cD

33 acting perpendicular to the X axis (the mutual orientation of the
compression vectors F and the wave vector k is shown in the figure by arrows).

Figure 5 shows both experimental and computed results for apolar BaTiO3 piezoce-
ramics under uniaxial stress along the X axis.
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Figure 5. Experimental and computed results for unpoled BaTiO3 piezoceramics under the uniaxial
stress along the X axis.

Experimental curves were obtained only up to the compression stress values of
110 MPa, due to the limited strength of the samples. This corresponds to the calculated
curves shown in the graph in Figure 1 up to the value γ−1 = 70, i.e., the total volume
of reoriented domains is about 70%. We see a good correspondence with Figure 1. The
elastic modulus cD

11 increases. The maximum change in this modulus is approximately
2%, whereas according to the calculation it is 3.6% (with total domain reorientation). The
experimentally measured change in the elastic modulus cD

33 is about 6% (8% for total do-
main reorientation), and the calculated increase is 8%. This means that for this type of
piezoceramics, the total reorientation of the polar axes of the domains perpendicular to the
compression axis is far above this value of compressive stress.

We also studied similar changes in various elastic moduli of poled piezoceramics of
different commercial types. The frequency was f = 8 MHz with different orientations of the
compression vectors F, the wave vector k, and the polarization vector p.

Figure 6 shows the dependences of the relative change in the elastic modulus cD
33 of

the following types of piezoceramics:

1. (Ba0.95Ca0.05)TiO3 + 0.75%CoCO3
2. Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 3%PbO
3. Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 1%Nb2O5.

The mutual orientation of the compression vectors F, the wave vector k, and the
polarization vector of ceramics P is shown in the figure by arrows. The relative change of
the modulus (module defect) as a percentage is shown along the ordinate axis. The “soft”
piezoceramic (3) undergoes the greatest change, and the “hard” type (2) undergoes the least.
In the latter, the polar domain axes for the most part are still far from total reorientation,
since, according the calculations, the limit values for types 2 and 3 should be the same.
The change for ceramic 1 (about 1.1% at σ = 100 MPa) is significantly less than the limit
determined according to the graph in Figure 1. This is evidently due to two factors.

1 is for (Ba0.95Ca0.05)TiO3 + 0.75%CoCO3
2 is for Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 3%PbO
3 is for Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 1%Nb2O5
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1 is for (Ba0.95Ca0.05)TiO3 + 0.75%CoCO3
2 is for Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 3%PbO
3. is for Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 1%Nb2O5

(1) After polarization, the axes are distributed not only within the angle θ = 90◦, but
within a slightly larger angle, since the domains for which the angle is close to 90◦

are not reoriented. Accordingly, the initial value of the elastic modulus cD
33 will be

somewhat larger than for unpoled ceramics.
(2) Polarization fixes the domain polar axes. After aging, a stable texture is formed

and ceramics become “harder”. This is also confirmed by the dependences shown
in Figure 7 for the same types of piezoceramics. Compression is now applied not
along, but across the polar axis. The convexity of the curves upwards shows that
the process of reorientation is close to “saturation”. This is also indicated by the fact
that the changes for types No. 2 and No. 3 are practically almost the same.
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Figure 8 shows the change in the elastic modulus under the compression across the
polar axis for the same piezoceramics. It can be noted here that the relative change in the
elastic modulus for all types is much more than in the previous case.
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1 is for (Ba0.95Ca0.05)TiO3 + 0.75%CoCO3
2 is for Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 3%PbO
3. is for Pb0.95Sr0.05(Zr0.53Ti0.47)O3 + 1%Nb2O5
In general, for the dependences shown in Figures 6–8, we can use an angular coefficient

α =
∂ ln cE,D

ij
∂σkl

, where cE,D
ij considered an elasticity modulus. The sign of κ depends on the

mutual orientation of vectors k and σ, and does not depend on the orientation of vectors k
and P. In those cases, the wave propagates along the compression, i.e., at F ↓↓ k coefficient
α > 0, and at F ⊥ k coefficient α < 0.

The nature of the curve change is associated with a change in the 90◦ structure of
piezoceramics and is determined by a corresponding change in elastic anisotropy in the
process of domain reorientation. The creation of a texture quasi-perpendicular to the
compression axis causes an increase of rigidity in this direction (α > 0). Accordingly, the
elastic moduli measured in the direction parallel to the compression axis increase, and the
elastic moduli measured in the perpendicular direction decrease (α < 0).

The presence of the original domain texture in the sample, as can be seen, does not
affect the general nature of the dependences under consideration (i.e., the sign of α), since
polarization has little effect on the 90◦ structure. However, the value of α significantly
depends on the mutual orientation of the vectors k and P, and at k ⊥ P, the value of α is
always greater than at P ↓↓ k. In general, this corresponds to the calculated data, but the
value of α largely depends on the fact that polarization and compression create a complex
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double structure, the calculation of which by the described method is quite possible, but
very complex.

6. Conclusions

With respect to the results obtained from the previous sections, the following conclu-
sions can be drawn:

1. Different elastic moduli change differently under the influence of compressive mechani-
cal stresses. Some of them increase and some of them decrease, depending on how the
directions of compression, wave vector, and polarization of the sample are oriented.

2. Compression leads to change in the anisotropy of piezoceramics. Measuring all
major constants and higher-order constants is a very time-consuming task, and is not
always possible.

3. The change in various elastic moduli occurs in a nonlinear manner, which indicates
the presence of higher-order moduli.

4. The obtained ratios allow us to calculate changes in some parameters based on data
obtained as a result of measuring changes in other parameters.

5. In general, the experimental results correspond to the calculated data, but the value
of κ largely depends on the fact that polarization and compression create a complex
double structure, the calculation of which by the described method is quite possible;
however, it is a very difficult problem.
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