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Abstract: Anaerobic digestion is a well-known technology with wide application in the treatment of
high-strength organic wastes. The economic feasibility of this type of installation is usually attained
thanks to the availability of fiscal incentives. In this review, an analysis of the different factors
associated with this biological treatment and a description of alternatives available in literature
for increasing performance of the process were provided. The possible integration of this process
into a biorefinery as a way for producing energy and chemical products from the conversion of
wastes and biomass also analyzed. The future outlook of anaerobic digestion will be closely linked
to circular economy principles. Therefore, this technology should be properly integrated into any
production system where energy can be recovered from organics. Digestion can play a major role
in any transformation process where by-products need further stabilization or it can be the central
core of any waste treatment process, modifying the current scheme by a concatenation of several
activities with the aim of increasing the efficiency of the conversion. Thus, current plants dedicated
to the treatment of wastewaters, animal manures, or food wastes can become specialized centers for
producing bio-energy and green chemicals. However, high installation costs, feedstock dispersion and
market distortions were recognized as the main parameters negatively affecting these alternatives.

Keywords: biogas valorization; lignocellulosic pre-treatment; techno-economic performance; process
integration; energy production

1. Introduction

Anaerobic digestion is a well-established technology for treating organic wastes with
high water content and that are very prone to biological degradation. This technology has
been applied worldwide thanks to its capacity to degrade high loads of organic materials
and producing biogas. Wastes should be considered as “renewable resources” that can
be used to generate new products [1] instead of outputs without any value. Biogas is the
main energetic component derived from digestion, but the process also provides a side-
stream product (digestate) that may not be so easily valorized. Proper transformation and
stabilization of digestate can make this slurry a valuable organic amendment. Digestate has
a high content of humic and fulvic substances and nutrients, making it ideal for agronomic
use once its biological stability is improved [2].

The dramatic effect of CO2 emissions on the global climate, the rapidly changing
price of fuels, and social concerns about the depleted fossil fuel reserves, such as crude
oil and natural gas, have increased the interest in producing bioenergy derived from
biowastes [3]. Anaerobic digestion is a process capable of providing this bioenergy thanks
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to methane production via biological transformation of substrates. Digestion technology
offers major benefits, providing eco-friendly energy and at the same time addressing the
waste management crisis [4].

One of the most extended applications of anaerobic digestion technology is the integra-
tion of this process into wastewater treatment plants. Wastewater needs to undergo a series
of treatments to meet the local allowable discharge limits. Sewage sludge is generated
at the same time that the organic loading of wastewater is reduced. This sludge can be
stabilized by anaerobic digestion, but it can also be treated in co-digestion reactors to
adjust the balance of nutrients and attain economic feasibility of the global process [5].
Basically, digestion is carried out by microorganisms that stabilize the organic materials
by transforming them into complex compounds less prone to uncontrollable degradation.
This transformation produces a slurry of black or brownish color with a less offensive odor,
which is also known as biosolids, if sewage sludge was the original organic material.

Biogas derived from anaerobic digestion can be valorized for producing thermal and
electric energy. Biogas mainly consists of methane, carbon dioxide, and low quantities of
trace gases. Its composition depends mainly on the type of substrate, process operating
conditions, applied organic loading, hydraulic retention time and digester design [6,7].
Biogas can be transformed into biomethane once carbon dioxide is separated and other
contaminants are removed. Eliminating these contaminants is of great relevance and this
is particularly true for the removal of H2S. This compound may cause serious corrosion
problems and give rise to operability issues associated with its oxidation products. In the
case of CO2, the importance of removing this compound is based on the quality standard
of biogas and the type of valorization technology this gas will be destined to [8–10].

Enhancing the efficiency of biological processes is of great relevance to increase prod-
uct yield and process performance. The valorization of organics into energy allows one to
reduce the carbon footprint of different waste management options. However, attempts for
increasing the efficiency of anaerobic digestion do not always have a successful outcome.
There exist several treatments for improving the degradation of organics to facilitate the
hydrolysis stage. Thermal hydrolysis is a well-developed technology installed as a pre-
treatment unit for enhancing biogas production in several wastewater treatment plants.
The first full-scale plant for sludge disintegration through the Cambi process was started
in Hamar, Norway, in 1995 [11]. Since then, this company has installed several other plants
worldwide [12]. Other commercial technologies include BioThelys™, which is a batch
technology just as it is the CambiTM Process (Cambi, Asker, Norway) [13]. Haarslev is a
continuous operating technology [14]. Other thermal hydrolysis processes use heat ex-
changers to increase temperature such as Exelys™ developed by Veolia Water Technologies
(Veoli, Libourne, France) [15]. Turbotec® from DMT Environmental Technology (Tualatin,
OR, USA) [16,17], and Lysotherm® from Eliquo Water and Energy BV (Barneveld, The
Netherlands) [18] are also other commercial technologies available.

Other pretreatments intended for improving hydrolysis include ultrasonication, avail-
able at a commercial scale, whereas other treatment options such as microwave pre-
treatment, electrokinetic and high-pressure disruption are mechanical pre-treatments stud-
ied mainly under laboratory conditions or using small scale prototypes [19–23]. Other pre-
treatment methods include the use of chemicals—acidic, alkali, ozonation—[24,25], and the
application of advanced oxidation processes [26,27], and biological options (temperature-
phased anaerobic digestion and microbial electrolysis cell) [28–30] or combinations on
any of the above to increase the effectiveness of solubilization. However, the capacity of
recovering the heat of the thermal hydrolysis process makes this technology superior when
evaluating the efficiency in energy use. The valorization of biogas by using combined heat
and power (CHP) units allows for exhaust gas heat to be recovered in a recovery boiler [31],
thus fulfilling the thermal needs of the hydrolysis pre-treatment.

The extended application of anaerobic digestion and the high costs associated with
these installations have given rise to extensive research activities to increase the efficiency
of the process, enhance biogas production and attain economic feasibility. The evalua-
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tion of anaerobic digestion of sewage sludge with different substrates has been widely
reported in the literature [32–34], and it is still under extensive research. There are plenty
of reports evaluating the co-digestion of sewage sludge with solid organic wastes, high
strength organic streams and different compounds acting as supplements to favor organic
degradation [35–37]. Regarding this last subject is the addition of conductive carbon
materials—char, graphene, graphite, activated carbon—to the digestion process that has
gained recent interest. The addition of these materials favors direct interspecies electron-
transfer and increases the degradation of volatile fatty acids and proteins [38,39].

Several factors influence the global performance of a process; therefore, a great variety
of key points and interacting relationships need to be evaluated for optimizing efficiency
and energy recovery. To approach a decarbonized economy by 2050, efficient bioenergy
production is essential—playing a major role will be recycling and reuse—towards a
“circular economy”. However, as Valero and Valero [40] stated, absolute circularity in
transformation processes does not exist, and this is based on the second thermodynamic
law dictating that, in each cycle, some quantity and quality of materials is unavoidably
lost. Thus, performing energy balances associated with the conversion of biomass would
allow establishing processing routes with minimum energetic constraints. When energy
is transferred in the form of heat it has a certain quality; this quality can be lost partly or
completely by the heat transfer process. The quality of the transferred energy can best be
quantified by the “exergy” concept in which energy is divided into two parts: exergy, also
called “available work”, is the maximum theoretical work obtainable from the energy [41].
Thus, exergy analysis reflects the theoretical maximum performance of energy because it
is based on the first and the second law of thermodynamics, putting emphasis on energy
amount and quality at the same time [42].

Animal manures are usually treated by anaerobic digestion, a residue with high
organic content but also with high N concentration, which may inhibit methanogens due
to the accumulation of ammonia nitrogen in the reactor. Anaerobic digestion is also widely
applied to treating the organic fraction of municipal solid wastes (OFMSW). In this case, the
presence of improper materials and relatively high concentrations of heavy metals may add
complexity to pre-treatment operations intended to prepare a homogenous feeding slurry.
The difficulty associated with the separation of inert materials and the contamination with
toxic elements make this digestate not suitable for agronomic use. The application of
anaerobic digestion for the conversion of crop wastes and agro-industrial wastes is also a
suitable management option. Still, the process needs to confront the seasonal availability
of these materials, which is restricted to a short period of the year. The disadvantage of
low nitrogen levels, which may cause nutrient deficiencies, and the need to apply long
residence time in the reactor should be added.

The addition of a co-substrate allows the adjustment of nutrient balance, improves the
stabilization of organic matter, and results cost-effectively because different substrates share
the same installations [43,44] with the mixture with higher biogas yields. As a consequence,
co-digestion is expected to increase the efficiency of the process between 25 and 400% when
it is compared to the degradation of a mono-substrate [45] thanks to the increments in
organic loading, enhancement in volatile solid removal and higher biogas productivity.

The present manuscript reviews different relevant factors in digestion performance,
addressing particular key points regarding industrial application. This manuscript intends
to share a different view of anaerobic digestion, from being considered a conventional
degradation process to being understood as a key element in clean energy production.
Anaerobic digestion is a highly efficient process that has been extensively studied, but
there is still a need to set the focus on specific parameters that are crucial, such as capital
investment cost, efficiency of degradation and valorization of digestates. This technology
can greatly aid in attaining the decarbonization of the economy and play a major role in
the future economy system based on the principles of circular economy. It also intends to
emphasize the relevance of developing sustainable processes for energy production within
the limits of economic feasibility.
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2. The Effect of Substrate Composition and Digestion Performance

Carbohydrates are present in all types of substrates and particularly plant-derived
biomasses and food industry wastes. Substrates from the food processing industry, catering
and residential activities are characterized by a readily degradable fraction, which is easily
acidified. In recent years, changes in consumer demand have been observed due to prefer-
ences for a healthier lifestyle leading to the development of a new market offering fruit and
salad products ready to eat. This affects the characteristic of waste produced and represents
new valorization opportunities [46]. Another important change in consumer preference
has been caused by the global pandemic due to the strict confinement of the population
in many countries. These restrictions led to a sudden change in waste composition and
an important decrease in the demand of energy [47]. Once the severe spring confinement
period has ended, the attempts for reactivating the economy have been intermittent due to
the recurrent appearance of infection spreading. This will probably change in one way or
the other consumption trends and therefore the quantity and quality of wastes produced.

Fruit and vegetable wastes have high content of saccharides and disaccharides that
are easily degradable by anaerobic microorganisms forming volatile fatty acids (VFAs) as
intermediaries. When carbohydrates represent a large proportion of the feeding stream, a
suppression of methanogenesis may be experienced with the overloading of the digester
due to an initial VFA build-up leading to a decrease in reactor liqueur pH [48]. This VFA
imbalance may negatively affect the production rate of biogas. This is particularly true
for systems working under a feeding recipe where the loading of the reactor is performed
in a cyclic manner during short periods of the day [49]. Thus, the biogas production rate
is increased right after the feeding procedure, then proceeds at a slower rate until the
next feeding procedure starts again. Lower methane composition may be experienced,
or variations in production rate are expected based on the accumulation of VFA caused
right after the feeding has taken place. Labatut et al. [50] studied the behavior of different
types of substrates and their performance when evaluating biochemical methane potential
(BMP) tests reporting on different cumulative methane curves with a particular shape
directly related to the degradability of substrates. Thus, when operating a digester, special
care should be taken on substrate degradation rate, acidification potential, and punctual
loadings of the reactor, rather than setting as fixed operating parameters the organic loading
rate and hydraulic retention time.

The high acidification potential of carbohydrate-rich substrates, when treated under
anaerobic digestion, has aroused interest in transforming the hydrolysis–acidification
stage into a fermentative process for hydrogen recovery. The evolution of hydrogen from
fermentation is a ubiquitous phenomenon under anoxic or anaerobic conditions, where the
oxidation of the organic matter releases electrons that need to be disposed of to maintain
electrical neutrality [51]. In these environments, where no oxygen is available, other
compounds act as electron acceptors, and therefore, protons are reduced to molecular
hydrogen (H2) [52]. Dark fermentation, also known as the fermentative production of
hydrogen, resembles anaerobic digestion due to its flexibility in assimilating different
substrates, with wastes being also the preferred option when considering large-scale
implementation [53,54]. In this case, hydrogen is produced from strict and facultative
anaerobes (Clostridia, Micrococci, Methanobacteria, Enterobacteria, etc.) [55].

The sequential production of H2 and CH4 has been proposed as a way to increase the
economic feasibility and energy recovery of waste treatment plant [56–58]. This configu-
ration is a logical approach since both processes have similar capabilities of treating the
same type of substrates. However, a second stage is always necessary when producing
hydrogen by this fermentation route because acid intermediaries (short-chain fatty acids)
and solvents may accumulate in the fermentation broth in the first stage, needing further
treatment to stabilize the organic matter completely. The recovery of hydrogen in the first
stage and the production of methane in the second one is a more efficient way to extract
energy from organics. The mixture of natural gas supplemented with hydrogen is called
hythane and its use in combustion engines presents better performance parameters regard-
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ing fuel consumption and emissions [59]. This explains the current interest in obtaining
a mixture of hydrogen and methane from biological processes, called bio-hythene. Not
only is the biological treatment enhanced, but also the final use of biofuels produced is
highly benefited.

Bolzonella et al. [60] studied the fermentation of the organic fraction of municipal
solid wastes and reported a biogas yield of 490 L/kg VS from the single-stage digestion.
However, these same authors reported a hydrogen yield of 24 L/kg VS and 570 L CH4/kg
VS when evaluating the two-stage process. Thus, the coupling of the results of these two
processes is very interesting in terms of the energy content of the gas stream. Similar results
were reported by Fernández et al. [61] using cheese whey as substrate in this case. They
obtained an H2 yield of 12 L/kg COD (chemical oxygen demand) in the first stage and
a yield of 340 L CH4/kg COD in the second stage, whereas the digestion of this same
substrate resulted in a methane yield of 314 L CH4/kg COD. There is an urgent need for
overcoming the constraints associated with the hydrogen production process as it is, the
stability of the fermentation and alkalinity needs for controlling pH. However, the results
seem to indicate great flexibility in treating different substrates and a significant potential
for integrating this process with conventional waste treatment systems.

Cellulose is another main component of food wastes and agricultural wastes, but it
may also be accompanied by a lignin structure, in this latter case. These materials are
usually denoted as lignocellulosic wastes. Cellulose is insoluble, and the initial degra-
dation of this compound occurs exocellularly, either in association with the outer cell
envelop layer or extracellularly [62]. The availability of electron acceptors usually limits
the anaerobic decomposition. During this process, intermediaries such as alcohol and
VFAs are formed, needing a syntrophic interaction between bacteria and other organisms
such as methanogens to avoid their accumulation and proceed with further degradation
of polymer materials [63]. Anaerobic bacteria are able to degrade cellulose thanks to their
unique feature of possessing an extracellular multi-enzyme complex, called cellulosome,
which is capable of attaching to the cell envelope and the substrate [64].

Cellulose is a polymer of high molecular weight composed of D-glucopyranose units
linked by β-1,4-glycosidic bonds with a repeating unit cellobiose. Its structure is not fully
understood, but it is in general considered to have a crystalline and an amorphous structure,
with this latter one more susceptible to enzymatic degradation [65]. Bacterial degradation
of cellulose has been studied by Yamazawa et al. [66], indicating that the degradation
reactions of cellulose induced the metabolic dynamics of the microbial community and
produced short-chain components, such as acetic and propionic acid, which are mainly
metabolized by clostridial species.

Cellulose compounds and hemicellulose are fully degraded by anaerobic microflora
leading to the accumulation of chemically recalcitrant aliphatic molecules [67]. Stud-
ies of anaerobic degradation of manures have been carried out by Gómez et al. [68,69]
applying spectroscopic techniques (nuclear magnetic resonance, NMR) to evaluate the
conversion of organic matter. These authors reported complete degradation of cellulose
and demonstrated the accumulation of long-chain aliphatic molecules in digestates. How-
ever, hydrolysis of cellulose may be considered a hindering step making necessary the
use of pre-treatments [70] due to the long time needed for degrading this compound if
compared with that of carbohydrates. Chapleur et al. [71] reported cellulose degradation
to be accomplished in about 40–50 days under batch anaerobic tests.

Hemicellulose is the other main component of plant material and, therefore, of crop
wastes. The lignified material conforming plant cell wall is a complex structure. Xylans are
the predominant constituents of hemicellulose in hardwoods and straw, whereas the largest
hemicellulose fraction in softwoods is composed of galactomannans [72]. The composite
structure of lignocellulosic biomass and the long time needed for degrading cellulose and
hemicellulose make it almost imperative to apply pre-treatments to reduce the complexity
of lignocellulosic biomass if microbial degradation is intended for obtaining different
valuable products. In the case of anaerobic digestion, the conversion of hemicellulose
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was reported to be higher than that of cellulose under mesophilic conditions by Ghosh
et al. [73], who also reported a much lower efficiency than that for cellulose under the
thermophilic regimen. Other results from batch degradation of plant main components
showed that the biomethane potential of cellulose was higher than that of hemicellulose,
but this latter was characterized by easier hydrolysis than the first one. On the contrary,
lignin had proven to be difficult to digest [74], experiencing small changes in its native
structure when extended digestion periods were applied, resulting in a simpler structure
with fewer functional groups than those of the native lignin [75].

Cellulose is also a suitable substrate for biological hydrogen production, although
the fermentative process still encounters several technical constraints. The coupling with
anaerobic digestion has proven to be effective and the introduction of a recirculation stream
from the methanogenic phase to the hydrogen-producing phase allows the recovery of
alkalinity, needed for pH control, and also the recycling of microorganisms to keep the
first hydrogen-producing stage active [57,76]. Qi et al. [77,78] have proved the successful
performance of the recirculating configuration and the feasibility of treating cellulose using
this combined approach by evaluating food wastes and paper waste at different mixture
ratios. These authors demonstrated that a second mesophilic stage was necessary for
allowing the growth of cellulose-degrading bacteria that need to be continuously returned
to the hydrogen-producing reactor.

The hydrothermal process has been proposed as a potential technology for aiding in
the transformation of lignocellulosic resources into biofuels through fermentation. Value-
added chemicals can be produced using new green-conversion routes thanks to the frac-
tionation of lignocellulosic biomass, thus allowing the exploration of new developments
into the biorefinery concept. The hydrolysis of hemicellulose produces oligosaccharides,
pentose (xylose and arabinose), hexose (glucose, mannose, and galactose), acids (acetic
acid, formic acid, and levulinic acid), and furans (furfural and 5-hydroxymethylfurfural),
as well as insoluble humins as by-products under harsh conditions [79].

Second-generation biofuels and biogas production from lignocellulosic material offers
great potential due to the abundance of this natural resource. It would aid in attaining
the decarbonization of the economy. However, the highly heterogeneous structure and
the recalcitrant nature of lignocellulose restrict its use as a substrate in biogas plants [80].
Effects associated with the conditions of the thermal pre-treatment and the production of
inhibitory compounds need to be well established prior to considering the introduction
of a thermal pre-treatment unit to facilitate biomass hydrolysis. Chapleur et al. [71] have
reported negative effects due to the presence of phenol when evaluating digestion batch
tests of cellulose.

Recalcitrant compounds, such as furfurals, could also be formed at high temperatures
during hydrothermal pretreatment, which may hinder the performance of the subsequent
biological process [81]. Another important fact that should also be evaluated is the high
energy demand of these pre-treatment units and the high capital investment. On the other
hand, the main advantage of this pre-treatment is the decrease attained in digester volume
because the process can be ended in much shorter times and the amount of remaining
digestate is highly reduced.

3. Co-Digestion to Increase Reactor Productivity

The co-digestion process can be seen as a promising way for improving the digestibility
of cellulose and hemicellulose, balancing nutrients, and attaining buffering effects when
high protein compounds are to be used as co-substrates [82]. Co-digestion may be balanced
for optimizing methane production, therefore higher methane yields can be obtained for
proper carbohydrates, proteins and cellulose ratios [83]. The fact is that large scale digestion
plants have to deal with the near source of resources available in their surroundings all year
round. Therefore, flexibility of the processing plant is of great relevance to attaining high
biogas yields during the whole operating life given the intrinsic variability of available
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substrates, and options for balancing and establishing specific feeding recipes may not
always be possible.

Tufaner and Avşar [84] reviewed the production of biogas when co-digesting different
substrates, indicating that the most important premise for obtaining a significant biogas
enhancement and producing high-quality digestate is evidently the use of high-quality
feedstock. Some feedstocks may be difficult to digest or unsuitable for mono-digestion
because of their unfavorable C/N ratios or high lipid content, thus would benefit from
co-digesting with manures that have high protein content. Kitchen wastes are a resource
prone to acidification and thus are suitable as a co-substrate when digesting manures.
Li et al. [85] reported a 116% increment in methane yield when this co-substrate was added
to the digestion of cattle manure. Food wastes and sewage sludge have also been proposed
as co-digesting mixtures [86,87]. Another relevant co-substrate widely studied due to
its high biogas yield and great capacity for boosting biogas production is crude glycerol
derived from the biodiesel production process. Paulista et al. [88] reported a 77% increase
when adding glycerol as co-substrate to sewage sludge digestion. However, despite its
abundance, the price of crude glycerol in the market is still too high to be considered a
feasible option [89].

Table 1 reports different values of biogas yields obtained under batch digestion tests
and continuous operation. This table shows a great variability in values, with the lowest
ones being explained by inhibitory conditions in the system [90]. Good management and
treatment of agricultural and livestock wastes must be of vital importance for any country.
Spain has a high potential in this field that should be better exploited considering that this
country leads the production and export of fruit and vegetables from the EU-28 [91].

Some works have addressed the possibility of using fruits and vegetables to be co-
digested with sewage sludge [92,93] or treating this rich carbohydrate and high-quality
waste in a decentralized manner to obtain a digestate of outstanding quality for producing
high-value agronomic materials [94,95]. When considering alternatives for the management
of fruit and vegetable wastes, it is important to take into account the fact that its production
is seasonal and, therefore, a large amount may be generated in short periods, and variations
of the type of material are also dependent on consumer preference based on the season of
the year. In either case, a flexible approach should consider the design of a waste treatment
line capable of absorbing modifications in the incoming substrate. For this reason, it is more
interesting to take advantage of synergies that may be established between the treatment
of food waste and sewage sludge from wastewater treatment plants (WWTPs) that may
exert a buffering effect in the operating dynamic of the reactor.

Table 1. Methane yields reported in literature for different substrates.

Organic Substrate
Specific Production

Potential
(M3 CH4/Kg VS) 1

Reference

Livestock manure
Pig manure 0.30–0.50 [96–101]

Poultry manure 0.03–0.11 [90,96,100,101]
Cattle manure 0.11–0.54 [102,103]

Organic industrial waste
Slaughterhouse waste 0.20–0.80 [104,105]

Brewery waste 0.3–0.51 [106,107]

Sewage sludge (SS) and co-substrate
SS 0.22–0.45 [35,108,109]

SS + grease 0.4–0.8 [108,110]
SS + glycerol 0.2–0.4 [111,112]

SS + food wastes 0.4–0.6 [86,113]
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Table 1. Cont.

Organic Substrate
Specific Production

Potential
(M3 CH4/Kg VS) 1

Reference

Energy crops
Corn stover 0.30–0.40 [97,114]
Sunflower 0.20–0.40 [115,116]
Rapeseed 0.25 [97]

Wheat straw (steam explosion pre-treatment) 0.25–0.35 [117,118]
Rice straw 0.26 [119]

Grass: Napier grass, Canary grass, King grass 0.15–0.60 [120–122]

Microalgae and cyanobacteria biomass
Microalgae Chlorella sp. 0.23–026 [99,123]

Microalgae Nannochloropsis oculata 0.3–0.35 [124]
Manure + Arthrospira platensis 0.48 [125]

1 VS: volatile solids.

Proteins are abundant in all organic substrates but mostly in animal-derived wastes.
Slaughterhouse waste, pig and chicken manure are residues that have a high content in
this material. When treating slaughterhouse waste, ammonia accumulation in the reactor
may become an issue if a balancing carbon source is not available in enough quantities.
Another residue that should also be considered as good co-substrates is animal carcasses.
The treatment of this material is under stringent regulations, but the risk associated with
the transport of carcasses can be eliminated if livestock farms could arrange a way for
safely treating this material before being used as feed in the anaerobic digester [126].

Arenas et al. [38] reported a methane yield of 0.47 m3 CH4/kg VS (volatile solids),
when evaluating batch digestion of this material. Biodegradation of proteins can lead to
high biogas yields, but the accumulation of ammonia in the digester can cause inhibitory
conditions and negatively affect performance. Ammonium ions are released from the
anaerobic conversion of proteins inhibiting microbial activity when levels reach values
close to 4.0 g/L [127]. Co-digestion of substrates with a low C/N can be alleviated by
adding substrates with high carbon content [128]. Thus, a better outcome is expected when
adding grass, straws, lignocellulosic biomass or micro-algae biomass as co-substrates.

Fats, oil and grease (FOG) mostly come from food processing industries, slaughter-
houses, and food wastes. Usually, this substrate has attracted great attention because of its
high methane potential. Compared to the theoretical methane potentials of carbohydrates
and proteins −370 and 480 m3/kg VS, respectively, FOGs have a value of 1014 m3/kg
VS [129]. Likewise, co-digestion of FOG with sewage sludge has attracted much attention
due to its capability of increasing methane yield by 83% [130]. The counterpart is that
co-digestion of FOG may cause problems in digesters such as pipe clogging and foaming
that may block gas pipe systems and also cause severe fouling of gas collection pipes [131].
Other studies have reported on digestion problems when FOG is added as co-substrate
under the use of short hydraulic retention times [132]. The degradation of FOGs releases
long-chain fatty acids, which may hinder the metabolism of methanogenic microflora.
Fortunately, these problems may be avoidable by controlling organic loading to the reac-
tor [133], and recently, the use of lipases has proven to be effective in pre-treating fats and
increasing degradation performance [104].

4. Technical and Economic Feasibility of Anaerobic Digestion Plants

The cost of biogas production by anaerobic digestion presents a wide range of values
for each feedstock, mainly due to the economy of scale. It is difficult for biogas to compete
with the low prices of natural gas worldwide [134]. Biogas is produced as a mixture of
mainly methane and CO2, and thus its energy content is much lower. Transport costs
and dispersion of substrates are also relevant factors that act as a disadvantage when
attempting the valorization of organics. Even though digestate may be considered a
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valuable agronomic resource, the large quantity produced may become a serious problem
when there is not enough land available nearby the digestion plant. If biogas is to be
considered as a possible substitute of natural gas or either used as a supplementary fuel
in different applications where natural gas is also used, then upgrading is necessary.
This increment in costs and the already high installation costs of digestion plants make
this mature technology a promising process that finds it very hard to attain economic
feasibility. Many digestion plants are unable to survive without the continuous need
for fiscal incentives. Still, several advantages can be cited to remark on the benefits of
anaerobic digestion. However, the low economic feasibility of these types of plants and the
complexity associated with its operation have prevented its further expansion.

The need for pre-treatments to facilitate hydrolysis is usually acknowledged; however,
most of these applications are associated with laboratory assays. Industrial plants already
have installed pre-treatment equipment to remove inert material, glass and grit, especially
when wet-treatment technology is used, to prevent damaging pumps, clogging and avoid
extremely high maintenance costs [135]. Dry digestion technologies are capable of manag-
ing a greater amount of inert materials, but many of these processes operate under batch
conditions and may present lower yields due to the excessive accumulation of ammonia in
the lixiviate, particularly if chicken or poultry manure is treated [90,136,137].

Digestion plants have a double function, producing biogas that serves as a renewable
fuel to aid in the mitigation of climate change. The second function is the stabilization
of organic matter to avoid uncontrollable degradation. However, these two benefits that
have a severe impact on the environment still need to cope with the economic factor. The
economic success of investing in a digestion plant keeps a close relation with incentive
policies adopted by those countries. From a public point of view, the sustainability of
energy conversion plants has to be investigated not only considering environmental, energy,
and local aspects but also the economic ones [138], because incentives provided to private
investors may distort the energy market. It does not seem reasonable to assume that the
decarbonization of the economy would be attained through a financial debt that should be
paid by conventional energy-producing systems and fossil fuels.

Installation and maintenance costs of digestion plants seem to be still too high. The
complex structure of these plants makes operation difficult, particularly those based on
wet technology having a lot of piping and pumps. Therefore, the configuration of the
equipment in the plant is imperative to reduce distance and prevent difficult clogging
situations [135]. To all these facts, the costs of the equipment associated with increasing
performance of digestion—hydrolysis units—and upgrading of biogas should be added.

Thermal hydrolysis is the technology that has experienced a widespread on the hand
of sewage sludge treatment. The experience gained by the implementation and operation
of this technology may serve as a primordial scientific base for adapting these systems
and reducing digester size. From the installation of the first full-scale plant for sludge
disintegration through Cambi thermal hydrolysis (Hamar, Norway, at the end of 1995)
reported by Kepp et al. [11], a lot of knowledge and several designs have been developed
to increase the efficiency of the batch thermal hydrolysis process to get fully operational
prototypes for continuous processes [139]. To the advantage of smaller digestion units,
the lower amount of digestate needing final disposal is added, as well as carrying out the
development of new configurations capable of greatly improving dewatering characteristics
of digestates [140].

Applied research associated with new technological developments is required to
increase biogas production by increasing reactor efficiency and making anaerobic digestion
a cost-effective process capable of producing a sustainable fuel with similar characteristics
to natural gas [134]. Imeni et al. [141] performed a techno-economic assessment for a
digestion plant associated with a livestock farm of 250 adult cattle heads. These authors
reported that revenues generated from anaerobic mono-digestion could not offset the initial
required investment, thus establishing clear numbers to what is recognized in the industrial
digestion sector. Co-digestion is imperative in order to obtain better economic performance
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and positive returns for farmers willing to implement anaerobic digestion. The other
main issues are the price of selling electricity, the price of the co-substrate, transportation
distances, and returns from excess heat. Pre-treatments applied to lignocellulosic materials
should be carefully evaluated so that the installation of the new equipment associated with
the pre-treatment does not exert an extra demand for energy, which may be higher than
that obtained from the enhancement in biogas production.

Different economic and technical analyses have been performed, but comparing their
results is not an easy task because, as Rajendran and Murthy [142] stated, the lack of
standardization of the different assessments makes impossible the direct comparison of
results. Other points needing standardization are process mapping, database development,
profitability indicators, and regional considerations. Table 2 presents a list of different
studies and their assumptions regarding digester size, treatment capacity and revenues.
Some of these studies consider a selling price for liquid digestate or the solid fraction of
this material, but this assumption may not have real application in some countries. In
any case, the main revenues are usually associated with the price of electricity, energy
incentives for producing renewable energy, and the price set for treating waste material
from other sources. If this later scheme is not possible, then finding suitable co-substrates
in the immediacies of the plant may create additional operating costs due to their transport.
There are limits based on reasonableness to the distance from where organic wastes are
collected to be subsequently treated at a centralized digestion plant [94].

Piñas et al. [143] evaluated the digestion of cattle manure as a single substrate for the
Brazilian scenario, reporting that biogas plants presented economic viability for electrical
power higher than 740 kWe, and, in the case of co-digestion, the limit was above 1000 kWe.
These data indicate that for many small livestock farms, the digestion technology results
are completely inadequate. Al-Wahaibi et al. [144] reported good economic performance
from the techno-economic evaluation of the digestion of food wastes using a low-cost
small digester from a Chinese manufacturer and setting a selling price for biogas of
USD 0.22–0.39/m3 (equivalent to EUR 0.18–0.32/m3 using a factor of USD/EUR 0.82 for
currency conversion). Small decentralized digestion may be an option for treating disperse
sources of biomasses. However, a smaller scale of the installation would make the in-situ
valorization or upgrading of biogas unfeasible. A decentralized biogas plant may be more
attractive if the raw feedstock is available near the farm. Thus, transport and storage
of co-substrates stop being an issue. Therefore, decentralized biogas plants have clear
advantages on islands, farm, and even rural regions [145]. Future studies should focus
on combining different scales for optimizing resources and minimizing installation and
maintenance costs.

Table 2. Assumptions of revenues obtained from digestion plants and capital investment of the installation reported
in literature.

Substrates Selling Prices Digester Costs (EUR)
Millions Reference

Dairy cow farm
Input: 29,200 t/year

Plant treating manure + sheep dung

Electricity: EUR 0.10/kWh
Liquid fertilizer: EUR 120/t 2713 m3 0.77 [146]

2400 beef cattle and glycerine +
biomass as co-substrate

Credit claims.
Electricity: EUR 0.012/kWh
Solid by-product: EUR 28.8/t

Liquid by-product:
EUR 2.15/t

2 digesters
3670 m3 each 2.55 [147]

8000 t/year
Dairy manure, corn stalk,

tomato residues

Electricity: EUR 0.13/kWh
Heat: EUR 0.0326/kWh

Bio-methane: 44/m3

1000 m3, wet digestion
250 m3, solid digestion

0.4–0.5 [148]
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Table 2. Cont.

Substrates Selling Prices Digester Costs (EUR)
Millions Reference

Two-phase olive oil mill pomace and
pig slurry

7500 t/year and 2450 m3/year of
wastewaters + pig slurry 9000 t/year

Electricity: EUR 0.13/kWh
Heat: EUR 0.036/kWh

Waste management savings:
EUR 5/t

Compost: EUR 70/t
Olive stones: EUR 80/t

Plant size to digest
8750 t/year. 0.6–1.1 [149]

Small-scale digestion plants
Herd size: 50–250 adult caws)

Electricity: EUR 0.158/kWh
Heat: EUR 0.295/kWh
District heating selling
thermal energy price:

EUR 0.03/kWh

Based on installed CHP
engine power (kWe):

17–55
0.29–0.52 [150]

Decentralized digestion units may be a suitable solution for treating biomass and
organic wastes in regions with a disperse population where land application of digestate
and liquid slurry may be possible. Biogas produced from these different systems may be
transported and collected in a central up-grading plant or used for electricity production.
This approach takes advantage of the fact that levelized costs of electricity are lower for
large-scale plants due to the use of more efficient conversion devices and their lower capital
cost per unit of electricity produced [151]. It also presents the advantage of treating biomass
and wastes locally where they are produced.

Increasing the efficiency of digestion processes to optimize the production of energy
has been attempted by integrating thermal conversion for treating the solid fraction of
digestates or treating the non-organic fraction of the feeding stream [152–155]. This is
particularly adequate for centralized treatment plants with no possibility of land digestate
disposal. The evaluation of performance under different configurations and types of or-
ganic materials has been studied by González-Arias et al. [156,157] and Ghysels et al. [158]
analyzing the global process performance of digestate pyrolysis and co-pyrolysis with
lignocellulosic biomass. Life cycle analysis has also been applied to the integrated approach
of digestion and pyrolysis as a treatment option for waste management [159], indicating a
higher conversion rate of the raw material to energy [160]. In fact, current wastewater treat-
ment plants (WWTPs), where anaerobic digestion is widely applied, can be transformed
into a treatment center for energy production. The dried anaerobic sludge can be converted
into biochar, bio-oil, and bio-syngas using a pyrolysis reactor. The energy contained in bio-
syngas and bio-oil can be exploited using a CHP system or a dual combustion system, and
biochar can be used as a soil additive in agriculture [161]. Figure 1 represents a schematic
configuration of this approach.

These proposals that may seem technically feasible still have to overcome excessive
installation costs of pyrolysis units. Trippe et al. [162] evaluated the techno-economic
analysis of a pyrolysis installation for a plant with a capacity of 100 MW thermal energy
input indicating a price between EUR 40.5 and 47 million. Campbell et al. [163] estimated
a value of USD 76.7 million as total capital investment for a pyrolysis plant capable of
handling 65.7 kt dry feedstock annually. Shahbaz et al. [164] estimated a cost of USD
9 million for a plant with a treatment capacity of 438 t/year of lignocellulosic material.
Whatever the assumption made to carry out the economic evaluation, the profitability of
these plants may be completely out of question. One of the factors that greatly affects
the economic feasibility of these plants is the costs associated with catalysts, which can
contribute on average about 15% of the total fuel cost, when upgrading this liquid fuel is
intended to obtain a stable oil product with low oxidation tendency. The yield of bio-oil
is also a relevant parameter affecting the process economics [165]. However, getting back
into the valorization of biomass, the management based on the combined performance of
the two processes, that are digestion and pyrolysis, is a matter that at least, at the current
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state of the art, is not possible due to the excessive costs of capital investment of these units.
Different parameters may be considered as relevant when evaluating any of these processes.
In any case, the initial investment is so high that it hardly can become a reasonable solution
to any livestock farm for treating manures.
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The recent pandemic caused by the novel coronavirus (SARS-CoV2) has affected
several countries regardless of the economic level and it has set a lot of pressure on govern-
ments to focus on protecting lives. The pandemic also created an enormous challenge for
the health care sector and completely changed the dynamic of waste generation, causing
a steep increase in the amount of medical hazardous wastes and plastics associated with
measurement for preventing infections [166]. There has been an increase in the demand for
plastic-packaged food and groceries, and the use of disposable utensils. The current use of
disposable face masks has increased, and there is excessive use of gloves recommended
in supermarkets during the early spring when the negative effects of the pandemic hit
developed countries. The use of single-dose packaging also increased along with single-use
plastics as a way for implementing hygiene measurements. These new customs greatly
increased the use of plastic materials and thus the amount of wastes produced [167]. Any
waste management systems already presenting inefficiencies have probably experienced
an aggravated situation due to the increase in the volume of plastics, which in turn may be
triggering a new environmental crisis [168].

Given the high costs for operating waste treatment plants and the number of resources
necessary to deal with health measurements, it is probable that investments in clean energy
systems will be delayed or even cancelled. Although there is great uncertainty about the
future of many industrial sectors and the fate of the economy, it is reasonable to assume
that due to the COVID-19 outbreak, the renewable energy sector may be negatively affected
because of the need for placing energy incentives to a second place due to the large number
of incentives put into practice by countries in the fight against the COVID-19 outbreak [169].
Therefore, it is imperative to find ways to effectively manage waste treatment plants and
produce renewable energy at a reasonable cost to accomplish climate change goals and
keep the economy running in line with sustainability principles.

Nagaj and Korpysa [170] studied the effect of the COVID-19 pandemic on the level
of energy poverty in Poland, reporting a negative impact on the increase in prices and
expenditure on energy carriers, with the most affected being the poorest households. These
results may probably have an extrapolation to other European and non-European countries.
Therefore, the arguments generally accepted of considering whether it is fair to pay higher
prices for electricity and heat produced from renewable sources when the economy is
rolling into a crisis scenario will no longer be acceptable since it will only set more pressure
on households that are already experiencing financial problems.
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5. Integrating Anaerobic Digestion into a Green Energy Producing System

The great capacity of anaerobic digestion to treat a wide variety of substrates and
stabilize organic compounds has made this technology a useful ally in the development
of the biorefinery concept for producing green products. The transformation processes
involved in this approach are those specifically designed and optimized for treating re-
newable raw materials. As defined by Clark and Deswarte [171], a biorefinery is a facility
capable of converting biomass, including waste materials, into a variety of chemicals,
biomaterials and energy, maximizing in these transformations the value of biomass and
minimizing the production of final wastes. A biorefinery may be analogous to today’s
petroleum-based refineries with the difference that renewable biomass is the main resource
used as feedstock [172].

There are several studies found in the literature proposing the valorization of biomass
using the biorefinery concept to obtain different products and energy [173–176]. It is
necessary to evaluate the energy demand, installation costs, operating and maintenance
costs of the different concatenations of processes dedicated to attaining full valorization
of biomass and wastes. In the case of valorizing lignocellulosic biomass, hydrolysis is an
essential step, and therefore, the development of continuous operating reactors for the
fractionation of biomass is crucial to increase product yield [177]. Batch processes are well
developed and several years of experience have been gained in the operation of these units.
The future development of thermal hydrolysis of lignocellulosic biomass under continuous
operation should be closely related to those designs that are currently being tested under
industrial large scale for continuous thermal pre-treatment of sludge [12,178] operating at
high solid content as the Cambi Solidstream® (Cambi, Asker, Norway) process [179].

The different processes associated with the conversion of biomass, lignocellulosic
biomass or organic waste materials are usually characterized by having a high energy
demand, usually needing high temperature and pressure for performing hydrolysis, or in
the case of some fermentation processes, these may need a costly cleaning step, aeration
and some even sterilization. Developing and evaluating new methods for reducing energy
consumption is of great relevance. An example of the different fields where energy effi-
ciency can be improved is the technological development of Ren et al. [180], who proposed
a novel isothermal compression method to lower energy consumption by designing an
isothermal piston where a porous medium was placed. The design allows one to absorb
the compression heat, and this heat is then conducted through the liquid at the chamber
bottom. This way, the heat transfer can be significantly enhanced, due to the large surface
area of the porous medium. As the liquid has a large heat capacity, its temperature can be
kept constant through circulation, creating near-isothermal compression and minimizing
energy loss in the form of heat, which cannot be recovered. These findings are crucial
because attaining higher efficiencies directly impacts the economic feasibility of plants. If
decarbonization of the economy is a primary goal, and it is a goal to be kept even under a
pandemic scenario with an imminent economic crisis being expected, the environmental
measurements to be taken and the transition to a cleaner energy production system should
be performed without the need for excessive fiscal incentives.

Biomass is considered an inexpensive feedstock with a great potential to replace a wide
diversity of fossil-based products within the energy sector; heat, power, fuels, materials and
chemicals, but the effective utilization of biomass constituents is necessary. The conversion
of biomass can be classified into five major steps: choice of suitable biomass, effective pre-
treatment, production of saccharolytic enzymes-cellulases and hemicellulases, fermentation
of hexoses and pentoses and downstream processing [181]. Techno-economical assessments
are necessary to develop a suitable transformation process. Biorefineries have also been
classified based on the characteristics of the different transformation processes involved
by Fernando et al. [182]. These authors proposed three phases for classifying biorefineries
depending on the flexibility of input, processing capabilities, and product generation. Phase
I is those having less or no flexibility in any of the three aforementioned categories. Phase II
allows flexibility in product generation while having fixed input and processing capabilities.
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Phase III is biorefineries presenting flexibility in all the three previous categories and can be
defined using the concept of high-value low-volume (HVLV) and low-value high-volume
(LVHV) outputs.

In any processing chain, the production of by-products of low value is always in-
evitable. At this point, other processes can be introduced as a way of improving global
performance, but this should be done without excessively increasing capital investment
costs or the energy demand. Table 3 shows different substrates being processed for obtain-
ing different valued products under the biorefinery concept. The number of publications
evaluating this type of approach is enormous, thus indicating the great interest in the
scientific community for making these approaches a reality. Table 3 also shows a list of
some publications considering the coupling of different treatment processes along with
anaerobic digestion.

Alves et al. [183] performed a techno-economic assessment under the Brazilian sce-
nario to produce renewable jet fuel. These authors studied the use of different biomass
feedstock (sugar crops, oil crops, and lignocellulosic biomass) for producing biojet fuel and
higher value-added products in a biorefinery platform. As a result, they demonstrated that
the main specific factors that should be accounted for to make this approach a real technical
solution were, of course, the cost of feedstock and the selling price of biochemicals. The
investment costs considered by these authors for the biorefinery installation were of the
order of USD 75–800 M for the biojet producing section when analyzing different conver-
sion technologies and of USD 10–278 M for chemical products. Under a high uncertainty
scenario, as is the current one, it is not easy to achieve such type of projects. Still, lessons
are to be learned from the different proposals, given that the extensive literature is now
available regarding the possible processing routes for biomass conversion.

Table 3. Biorefinery: substrates and products obtained from this approach. Anaerobic digestion integrated into this concept.
Data obtained from literature reports.

Substrates Conversion Processes Products Reference

Jerusalem artichoke
(Helianthus tuberosus L.) Extraction Sugars, succinic acid, Rubisco

fraction, proteins [172]

Invasive brown algae
(Sargassum muticum) Drying, extraction, fractionation Fucoxanthin and hydrolysis liqueur [184]

Food waste Black soldier fly (BSF) (Hermetia illucen) High-value insect products: protein,
lipids, chitin and frass [185]

Sugar beet Ethanol fermentation + continuous
fermentation with Bacillus coagulans Ethanol and lactic acid [186]

Grape wine waste Extraction + hydrolysis + fermentation
Lactic acid, tartaric acid,

protein-rich fungal biomass,
tannins, polyphenols

[187]

Sugarcane distillery
(bagasse) and straw

Fermentation + gasification +
Fischer–Tropsch synthesis

Ethanol, diesel, jet fuel, gasoline,
electricity [188]

Citrus wastes Pectin extraction anaerobic digestion Mucic acid production and biogas [189]

Agricultural and
livestock wastes Fermentation + anaerobic digestion Biogas, electricity, ethanol, butanol,

acetate, propionic, lactic acid [4]

Switchgrass
(Panicum virgatum)

Ethanol fermentation + anaerobic digestion +
extraction + thermal process Ethanol, biogas, electricity, phenol [190]

Sugarcane bagasse
(Saccharum officinarum)

Enzymatic hydrolysis, fermentation +
anaerobic digestion + combustion Ethanol, biogas, heat [191]

Meat processing wastes Hydrolysis − esterification + anaerobic
digestion + hydrothermal liquefaction Biodiesel, biogas, biochar, bio-oil [192]

Wheat straw
Animal bedding

Pre-treatment + hydrolysis + fermentation +
anaerobic digestion Ethanol, biogas, energy [193]
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Figure 2 shows a schematic representation of the different products and processes in-
volved in a biorefinery to transform a variety of available biomasses. Key issues considered
in this scheme are biomass selection, transport costs, high and low-value products, conver-
sion yields, energy efficiency and energy recovery. Other relevant factors when evaluating
the feasibility of biorefineries are those considered by Zetterholm et al. [194]. The frame-
work considered by these authors included the competition for biomass across sectors, also
assuming exogenous end-use product demand, incorporating various geographical and
technical constraints. Their study considered a sawmill-integrated biorefinery producing
liquefied biomethane from forestry and forest industry residues. Their study illustrates
the relevance in acknowledging biomass market effects in the supply chain and, therefore,
economic performance. Technologies selected when dealing with the processing of biomass
should be capable of adjusting to changes in feedstock prices. A biorefinery is a high capital
investment facility and, as stated by Zetterholm et al. [194], these types of installations
have many relevant decision variables; ignoring some of their key aspects may result in
misleading conclusions and conflicting policy recommendations.
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6. Conclusions

A review regarding the main advantage of anaerobic digestion is presented in this
manuscript; it considers this process essential for biomass valorization and focuses on the
benefits that this process offers in producing biofuels and energy recovery. Increasing the
efficiency of the global processing chain and decreasing installation costs are primordial
if decarbonization of the economy is to be taken as a goal to achieve in the recent future.
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Bio-energy production and cleaner energy systems need to be developed following the
principles of sustainability and circular economy, but these premises also imply attaining
economic feasibility without depending on subsidies from incomes that in turn are derived
from fossil energy-producing activities.

Digestion is a technology expected to play a major role in producing renewable
energy and climate change mitigation, but economic feasibility needs to be addressed. The
excessive capital investment of these installations is unaffordable for many small livestock
farmers; therefore, solutions need to be found considering local characteristics and possible
additional revenues from the production of chemical products in addition to energy.

The future outlook of this technology is closely linked to its capacity to transform a
wide variety of organics under high loading conditions; therefore, this technology should
be considered as an important player when developing future production systems to attain
higher efficiencies in the use of energy and resources. The integration of anaerobic digestion
with different processes with the aim of further developing the biorefinery concept is an
alternative that deserves a deeper evaluation. Biorefineries can easily connect with the
local population and reactivate many regions suffering from depopulation due to the lack
of working opportunities. Thus, anaerobic digestion, understood as a renewable energy
production process, may open the door to the development of a completely new sustainable
society. The main parameters to be carefully evaluated to achieve economic feasibility
should consider transport costs, substrate treatment flexibility, price and market distortions
and seasonality, energy demand and maintenance costs associated with pre-treatment
units, selling prices of goods and treatment costs of side-streams.
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