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ABSTRACT: Thermodynamic integration (TI) is a commonly
used method to determine free-energy differences. One of its
disadvantages is that many intermediate λ-states need to be
sampled in order to be able to integrate accurately over ⟨∂H/∂λ⟩.
Here, we use the recently introduced extended TI to study
alternative parameterizations of H(λ) and its influence on the
smoothness of the ⟨∂H/∂λ⟩ curves as well as the efficiency of the
simulations. We find that the extended TI approach can be used to
select curves of low curvature. An optimal parameterization is
suggested for the calculation of hydration free energies. For
calculations of relative binding free energies, we show that
optimized parameterizations of the Hamiltonian in the unbound
state also effectively lower the curvature in the bound state of the
ligand.

■ INTRODUCTION
The calculation of free-energy differences is one of the main
reasons to perform molecular dynamics (MD) simulations. A
prominent example is the determination of thermodynamic
properties of small molecules or the (relative) binding affinities
of small molecules binding to a common receptor. Amazing
progress was made over the years because of a massive increase
in available computing power and because of the establishment
of powerful methods and protocols. However, the efficiency of
free-energy calculations is still limited because of the necessity
to capture not only enthalpic but also entropic effects.1−4

In alchemical free-energy methods, the free energy between
two states or Hamiltonians (HA and HB) is computed by
combining these using a coupling parameter λ. Different
parameterizations of the λ-dependent Hamiltonian [H(λ)] are
possible as long as the end states are correctly defined. A
common convention is to ensure that at λ = 0, H(λ) = HA and
at λ = 1, H(λ) = HB. Within this convention, there is a great
deal of flexibility to form H(λ), with various approaches being
proposed.5−8 Optimal, minimum variance pathways can be
derived from theoretical considerations,9,10 but these may still
suffer from kinetic inefficiencies because of large energy
barriers in H(λ). In the context of thermodynamic integration
(TI),11 an optimal pathway shows the longest thermodynamic
length12,13 or the lowest curvature of ⟨∂H/∂λ⟩ as a function of
λ.
The GROMOS simulation package offers quite some

flexibility in the parameterization of H(λ) that has not been
explored extensively.6 Furthermore, we have recently intro-
duced the concept of extended TI, where ⟨∂H/∂λ⟩ at values of

λ that were not simulated may be predicted accurately from
data stored during the MD simulations using an ensemble
reweighting approach.14 In the current work, we will address
three questions:

1. Can we predict the shape of a TI curve for an alternative
parameterization of H(λ)?

2. Can we identify a universally applicable optimal
parameterization for a specific task, such as the
calculation of hydration free energies?

3. Can the optimal curve for one perturbation be
transferred to similar perturbations in different environ-
ments?

GROMOS uses a versatile λ-dependent Hamiltonian for the
nonbonded interaction, in which the alchemical coupling of
states A and B and the strength of the soft-core interactions at
intermediate λ values can be tuned individually for Lennard-
Jones (LJ) and electrostatic (Coulomb with reaction field)
interactions. This is done by defining individual coupling
parameters, μx, that depend on λ through a fourth-order
polynomial15,16
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with user-specified parameters ax, bx, cx, dx, ex.
Using four independent coupling parameters for the

nonbonded interactions, μlj, μslj, μcrf, and μscrf, allows us to
write the nonbonded interactions as

rV V r

V r

( , ) (1 ) ( , )

( , 1 )

i j

n A
ij

n B
ij

LJ
,

lj LJ slj

lj LJ slj

∑λ μ μ

μ μ

= [ −

+ − ] (2)

rV V r

V r

( , ) (1 ) ( , )

( , 1 )

i j

n A
ij

n B
ij

CRF
,

crf CRF scrf

crf CRF scrf

∑λ μ μ

μ μ

= [ −

+ − ] (3)

where n is the power dependency of the perturbation, which
can additionally be set to any positive integer value, and rij is
the distance between atoms i and j.
The parameters μslj and μscrf control the soft-core interaction

as
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with C12, C6, and q being the nonbonded force field
parameters; αlj and αcrf, the relevant soft-core parameters;
C126ij

X = C12ij
X/C6ij

X; and Crf and Rrf, parameters of the
reaction-field contribution for long-range electrostatic inter-
actions. While the individual λ-values have been implemented
in the GROMOS software for some time already,15,16 a very
similar approach was recently discussed for the AMBER
software.8,17

When using extended TI,14 the relevant terms of VLJ, VCRF
and their derivatives with respect to μslj and μscrf are calculated
on the fly during the simulation and stored for a large number
of discrete values of μslj and μscrf. This allows us to compute VLJ
and VCRF and their derivatives with respect to λ a posteriori for
values of λ, other than the simulated λ-points, indicated by λs.
We will indicate λ-values that are not simulated as λp. A simple
reweighting equation can subsequently be used to obtain the
ensemble averages of the derivative of the Hamiltonian with
respect to λ at any λp
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So far, the versatility of the precalculated terms to construct
Hamiltonian derivatives has been used to interpolate the
derivative between a (sparse) set of simulation points.14,18,19

However, we can also use these equations to predict ⟨∂H/∂λ⟩
for different individual μ parameter sets or different power
dependencies of μ (n in eqs 2 and 3). Because these parameter
sets can have a strong influence on the shape of the TI curve,
the extended TI predictions can be used to search for TI
curves with low curvature. The lower the curvature, the fewer
the λ-points required to integrate the curve accurately, which
in turn could enhance the efficiency of the simulations. In
addition, large peaks in the free-energy curves can indicate that
a physical barrier needs to be overcome during the simulation.
A smoother free-energy profile will hence also lead to more
efficient sampling of the physical degrees of freedom.
Here, we study the influence of the individual parameter sets

for the soft LJ interactions (μslj) and the soft Coulomb-reaction
field interactions (μscrf) as well as n. We will first investigate
how well we can predict TI curves for other individual sets of
μx from a short initial simulation. Then, we will try to find a
single optimal parameter set for simulations in which atoms are
perturbed to dummy atoms (to calculate, for example,
hydration free energies). Finally, we show how the optimal
λ-dependencies for a simpler system (e.g., perturbation of
ligands in solution) can be used for the same perturbation in a
more complex system (e.g., perturbation of ligands in the
bound state). We will use several test systems, ranging from a
very simple methanol to dummy perturbation, up to several
post-translational modifications of peptides bound to plant
homeodomain (PHD) fingers.

■ METHODS
Using Extended TI to Predict Flatter Curves. The

GROMOS simulation package currently supports individual
coupling parameters (μx) for 12 interaction types. Here, we
will only modify the coupling parameters μslj and μscrf. All other
interaction types are simulated with the trivial setting of μx = λ.
We have previously shown that extended TI is able to
accurately predict the complete TI curve based on only a few
simulated λ-points.14 In the first part of this study, we will
investigate how accurately extended TI can predict the TI
curve for a different μ parameter set. Subsequently, we will
investigate how transferable an optimal set of μslj and μscrf is
between molecules or between environments of a single
molecule. Initial simulations are performed with the default
setting of μslj = μscrf = λ (set 1). Furthermore, for the initial
tests, we assigned two other parameter sets (sets 2 and 3), as
shown in Table 1. The latter two sets were chosen based on
the following criteria:

1 μx = 0 at λ = 0 and μx = 1 at λ = 1, which ensure the
same end states for all parameter sets, which allow for a
comparison between the final free-energy differences.

Table 1. Selected Individual Parameter Sets, According to
eq 1

set μx ax bx cx dx ex

1 μslj 0.0 0.0 0.0 1.0 0.0
μscrf 0.0 0.0 0.0 1.0 0.0

2 μslj 0.0 0.0 −0.5 1.5 0.0
μscrf 0.0 0.0 0.5 0.5 0.0

3 μslj 0.0 0.0 −1.0 2.0 0.0
μscrf 0.0 0.0 0.7 0.3 0.0

4 μslj 0.7 −1.3 −0.2 1.8 0.0
μscrf −0.6 0.9 0.4 0.3 0.0
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2 μscrf should have a smaller derivative at low λ-values than
set 1 in order to reduce the typical large peak in the TI
curve at low λ-values.

3 similarly, μslj should have a larger derivative at low λ-
values because most of the work is normally done at
larger λ−values.

Figure 1B shows how μslj and μscrf for all sets in Table 1
depend on λ. Furthermore, in the initial tests, we consider both
n = 1 and n = 2. Together with the 3 sets of individual μ
parameter sets, this results in 6 different simulation settings
and 30 predictions that can be made to different parameter
sets. For subsequent analyses, we generated a large set of μslj
and μscrf dependencies. For this, we used the conditions that
each of ax, bx, cx, and dx should have a value between −2 and 2.
Allowing changes in steps of 0.1, we have found a total of

11,177 sets which satisfy criterion 1. Because not all
possibilities will be able to be tested within reasonable time
and keeping in mind that many of these sets will result in
rather similar relation between λ and μ, we have selected a
diverse subset of 1075 sets of μslj and μscrf. Four of them are
given in Table 1, and the rest of them are listed in Table S1 of
the Supporting Information.
Extended TI as described in ref 14 makes use of a linear

weighting scheme to predict the ⟨∂H/∂λ⟩ at λp from the two
neighboring λ-points (λs1 and λs2)
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where ws1 and ws2 are the weighting factors for the simulations
at λs1 and λs2, respectively. The final predicted ⟨∂H/∂λ⟩ value is
then determined with
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In cases where there are no individual μ parameters (i.e., μX
= λ for all interaction types X), this scheme works well because
the smaller the differences between the simulated and
predicted λ-points are, the more likely it is that relevant

configurations for λp are being sampled. However, when there
are individual μ parameters, other simulated points which are
further away in the λ-space might sample more relevant
conformations for the prediction of ⟨∂H/∂λ⟩ at λp (see Figure
1A). An alternative scheme would therefore be to predict
directly from the simulation that shows the largest number of
relevant conformations for the predicted state. For this, we
determine the number of contributing frames to the ensemble
average in eq 6 by counting the number of configurations for
which

H H k T e( ) ( ) ln H H k T
p s B

( ( ) ( ))/p s B
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The simulation which shows the largest number of
contributing frames will then be used to determine ⟨∂H/
∂λ⟩λp. Note that in this case, λs does not have to be one of the
neighboring λ-points of λp (e.g., following the brown arrow in
Figure 1A). Additionally, predictions can be calculated using
weighted average over all simulations, according to the number
of contributing frames.

Simulation Settings. Several test systems are used in this
study. Initial tests were performed for perturbations of
methanol to a noninteracting dummy molecule in water.
Subsequently, we expanded the set to compute the hydration
free energies of p-xylene, cyclopentanol, undecane, and phenol.
Finally, we performed relative free-energy calculations between
different histone tail molecules, binding to PHD fingers,
involving perturbations from glutamine to serine (GLN_SER),
lysine to N6,N6,N6-trimethyl-lysine (LYSH_K3C), and lysine
to N-acetyllysine (LYSH_KAC). All simulations are performed
with the GROMOS11 simulation package (version 1.5.0),20 in
combination with the GROMOS force field 54a8.21 Cubic
simulation boxes are used, which are filled with SPC water
molecules.22 Simulations are performed at a temperature of
300 K (298 K for aspirin) by weakly coupling23 it to an
external bath with a coupling time of 0.1 ps. Solute and solvent
degrees of freedom are coupled to separate baths. The pressure
is kept constant at 1 atm by isotropic weak coupling23 with a
relaxation time of 0.5 ps and a compressibility of 7.624 × 10−4

(kJ mol−1 nm−3)−1 for methanol, phenol, p-xylene, cyclo-
pentane, and undecane and a compressibility of 4.575 × 10−4

(kJ mol−1 nm−3)−1 for aspirin and the perturbations
GLN_SER, LYSH_K3C and LYSH_KAC in each of the
environments. The center of mass movement of the solute is
removed every 1000 steps. Nonbonded interactions up to 0.8

Figure 1. Examples of individual μ parameter sets and selection of λs-points used to predict at λp in different prediction methods. (A) Shown are set
1 (black line) and μslj of set 3 (red line), as described in Table 1. The red dot can be predicted in multiple ways from the black line. For the vertical
prediction, the green and blue arrows are used (thus, λs = 0.4 and 0.6). Maxcont predictions rely on the prediction at the λs-point with the most
contributing frames (brown arrow). (B) All curves for the sets in Table 1. The solid lines show μslj, and the dashed lines show μscrf

..

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01170
J. Chem. Theory Comput. 2021, 17, 56−65

58

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c01170/suppl_file/ct0c01170_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01170?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01170?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01170?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01170?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01170?ref=pdf


nm are calculated at every time step from a pair list that is
updated every 10 fs. Interactions up to 1.4 nm are calculated at
every update of the pair list and kept constant in between. A
reaction-field contribution is added to the electrostatic
interactions and forces to account for a homogeneous medium
with a dielectric permittivity of 61 (78.5 for phenol, p-xylene,
cyclopentanol, and undecane) outside the cutoff sphere.24 The
SHAKE algorithm25 is used to constrain bond lengths to their
optimal value. In the methanol, GLN_SER, LYSH_K3C, and
LYSH_KAC simulations, SETTLE was used to constrain the
solvent bond lengths.26

Softness parameters for atoms that are being perturbed are
set to αLJ = 0.5 and αCRF = 0.5 nm2. The power dependence n
is generally set to 1 unless stated otherwise. For extended TI,
the number of precalculated λ-points is set 101. The
precalculated energy and free-energy terms are written to file
every 0.1 ps.
The perturbations GLN_SER, LYSH_K3C, and LYSH_-

KAC are performed based on a dual-topology approach, within
multiple environments, within a pentapeptide (GGXGG),
within a histone tail peptide, and within a histone tail peptide
which is bound to a PHD finger. Initial coordinates for the
histone tail peptides in the complex with the PHD fingers are
obtained from the PDB database with identifiers 5FB0
(LYSH_K3C),27 5WXH (LYSH_KAC),28 and 5FB1
(GLN_SER).27 The histone tail peptides as present in the
complexes consist of 7−10 amino acids. In the complexes,
there are two Zn2+ ions present which are kept in place by
distance restraints to the coordinating residues.

■ RESULTS AND DISCUSSION

Accuracy of Predictions for Other Individual μ Sets.
The methanol-to-dummy atom transformation is used as the
first test system to determine how well the TI curve can be
predicted for alternative μ parameter sets with extended TI. In
particular, this transformation was performed with individual μ
parameter sets 1, 2, and 3 (see Table 1) for the μ power
dependence (n) equal to 1 and 2. The profiles of ⟨∂H/∂λ⟩λp for
each of these reference simulations are given in Figure 2. It can
be seen that sets 2 and 3 lead to curves with less curvature than
set 1 and can be expected to be integrated more readily. In
order to have a more quantitative measure of the smoothness

of the curve, we determine the average curvature by calculating
the numerical second derivative of ⟨∂H/∂λ⟩λp and averaging
over its absolute value.
From each of the simulations, predictions are made to each

of the other sets and for comparison, also without changes in
the parameter sets. The performance of the predictions is
measured in terms of the mean absolute error (MAE) over the
entire curve (101 λp values), with respect to the reference
simulation. The reference data are in these cases obtained from
5 ns simulations at 21 equidistant λ-points, with extended TI
to predict the curve between the simulated points. Note that
the MAE over the curve is a more stringent criterion than just
using the deviation in the final free energy (see Table S2)
because there, a cancellation of errors may occur. On average,
the deviations in the total free energies are indeed lower than
the averages of the MAE, especially when only a few λ-points
are used. In many cases, they are quite similar, but in some
cases, the predictions can appear to be very good with, for
example, a final free-energy deviation of 1.1 kJ/mol, but an
MAE of 12.0 kJ/mol (simulated with n = 2, set 3, prediction
for n = 1, set 3 based on only 2 λ-points). For this reason, we
continue our analysis based on the MAE.
Table 2 shows the results when using 2 up to 21 equidistant

λ-points to predict the whole curve using the linear weighting
scheme. Note that the predictions are based on 1 ns
simulations, whereas the reference data are based on 5 ns
simulations. Therefore, even for predictions made for the same
set and n value, an MAE larger than 0 is obtained for the 21-
point column. The 21-point column is an indication if we can
achieve a good prediction of the results from one parameter set
to another at all, without optimizing the efficiency. This shows,
for example, that it is very difficult to predict directly from set 1
to set 3 without changing the power dependence. Even with 21
λ-points, the MAEs are 5.6 and 5.2 kJ/mol for n = 1 and n = 2,
respectively. On the other hand, predicting set 1 from set 3
with 21 λ-points appears to work better, with MAEs of 2.2 and
1.4 kJ/mol for n = 1 and n = 2, respectively. Although the
difference is less pronounced, a similar trend is observed for
the predictions of set 2 from set 1 and vice versa as well as for
set 3 from set 2. It appears that the prediction of a curve with
lower average curvature is more difficult than predicting a
higher-average-curvature curve.
Also, for changing just the power dependence, it depends in

which direction the change is predicted. Predicting n = 2 from
n = 1 results in MAEs between 3.0 and 3.6 kJ/mol for the three
sets, whereas the other way around, very low MAEs of 0.8−1.3
kJ/mol are reached.
Table 2 also gives an indication of how many λ-points are

necessary to give a reasonably accurate prediction. It is
especially useful to compare the MAE obtained with a certain
number of λ-points to the result using all 21 λ-points. We see
that using six λ-points, the MAEs are only slightly larger than
the results with 21 λ-points. Upon reducing to five λ-points,
most results stay rather similar, but there are a few exceptions.
The largest difference in MAE between predictions from six
and five λ-points is 2.5 kJ/mol for the prediction from n = 2,
set 1 to n = 2, set 3. For this reason, from now on, six λ-points
will be simulated to predict the results for other parameter sets.

Predictions Based on the Maximum Number of
Contributing Configurations. Because it appears more
difficult to predict curves with lower curvatures from higher-
curvature ones, we need to find a way to optimize our
predictions. So far, we have used a linear weighting scheme to

Figure 2. Six ⟨∂H/∂λ⟩ curves for three sets and two values of n for
perturbations of methanol in water to noninteracting dummy atoms.
Simulations are performed for 5 ns at 21 λ-points.
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predict the TI curves for other λ parameter sets, which we will
call vertical predictions. Figure 1A shows two examples of λ
parameter sets. The black and red lines show the behavior of
μslj with respect to λ for sets 1 and 3, respectively. In this
example, we assume that we have simulated six equidistant λ-
points with set 1 and want to predict set 3 from this. For
example, when predicting λp = 0.52 (red dot), we would in
principle predict this from λs = 0.52, as indicated by the vertical
dotted line and its star on the black line. However, because
simulations are only performed at six equidistant λ-points, a
linear combination of the predictions at the surrounding λs-
points is used as indicated by the green and blue arrows in
Figure 1A. Note that these λs-points only depend on λp and are
independent of the individual parameter set.
Another possibility to predict TI curves is by taking the

prediction from the simulated λ-point that shows the largest

number of configurations that contribute to the ensemble
averages on the right-hand side of eq 6. The number of
contributing configurations is determined using eq 9.
Assuming that the λs-point which has the most contributing
configurations for λp is also the one which gives the most
accurate prediction at λp, this prediction is directly used,
without any linear scaling. We refer to this approach as the
Maxcont method. In order to test if a higher number of
contributing frames also correspond to a more accurate
prediction, we plot the number of contributing frames versus
the absolute error at each of the predicted λ-points with
respect to the reference data. Figure 3 shows this analysis for

the simulation of the methanol-to-dummy transformation with
n = 2 and set 1. Predictions are made based on six equidistant
points for the same set (black dots), set 2 (red dots), and set 3
(green dots). Although there is no direct linear dependence,
there is a clear trend that with a large enough number of
contributing frames, the absolute errors at each λ-point are
small.
The predictions from the simulated λ-points which had the

largest number of contributing snapshots (red squares in
Figure 4) are overall very good. Not only changes between
parameter sets but also changes in the power dependence or a
combination of both are very well predicted with this method.
The largest MAE obtained in any of the combinations is only
2.0 kJ/mol and the average is 1.3 kJ/mol. Similar trends are
observed when the deviations in the final free energies are
evaluated (see Figure S1). Furthermore, we have tested a
hybrid scheme in which predictions from different λs-points are
used in a weighted average, according to the number of
contributed frames, where all simulations were taken into
account. Figure S2 shows that such an approach does not
improve the predictions because really bad predictions still get
included in the weighted average. These results show that at
least for this test system, the Maxcont prediction method is the
most reliable one. A disadvantage of the Maxcont predictions is
that sudden “jumps” can occur in the predicted curves, when
for two neighboring λp-points, different λs-points are used. We

Table 2. MAE for Prediction between Different Parameter
Sets and Power Dependencies Using a Range of Number of
λ-Points (21 to 2 Points)a

aVertical predictions based on 1 ns and reference simulated for 5 ns
and 21 points.

Figure 3. Absolute error at each λ-point from predictions based on
the maximum number of contributing frames for the methanol-to-
dummy transformations. Predictions are made for n = 2, set 1 (black
dots), set 2 (red dots), and set 3 (green dots) based on a 1 ns
simulation at six equidistant points of n = 2, set 1. These predictions
are compared to the simulations of each of the sets at 21 equidistant
λ-points and 5 ns simulations.
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will apply two measures in order to smoothen these jumps.
The first case that we address is when only a single λp-point
(e.g., 0.73) uses a different λs-point [e.g., λs (0.73) = 0.80]
from the surrounding λp-points [e.g., λs (0.72) = λs (0.74) =
0.60]. Even though the number of contributing frames was
higher for the alternative λs-point, we then use the prediction
based on λs (0.73) = 0.60. This leads to a much smoother
prediction and mostly likely a more accurate one. The second
measure that we take is to use a running average over five
points before calculating the average curvature of the predicted
curves.
Optimal Set for Hydration Free Energies. During our

investigations, we have found that for systems in which atoms
are turned into dummy atoms, a single set of λ-dependencies
for μslj and μscrf can be used, which improves the smoothness of
the free-energy curve significantly. The test systems included
here are phenol, methanol (n = 1), methanol (n = 2), p-xylene,
cyclopentanol, and undecane. In Figure 5, the original free-

energy curves (black lines) have two kinds of shapes in these
test systems. First, we have the undecane and p-xylene curves
where there is only a deep well at around λ = 0.85. These two
systems have no (undecane) or only very small (p-xylene)
partial charges. The minimum in the free-energy curve thus
comes from the vdW contributions. The other test systems
contain larger partial charges and show an additional peak
around λ = 0.05. Most test systems were simulated with n = 1,
and only methanol was additionally simulated with n = 2. The
most obvious difference between these two free-energy curves
is that with n = 2, the minimum is shifted toward a smaller λ-
value (around 0.7).
The shapes of the curves as shown in Figure 5 are very

typical for GROMOS free-energy calculations where real
atoms are perturbed into dummy atoms. It is possible to get
different shapes though, for example, with different softness
settings and even higher values of n.5,6

Because of the similar shape in each of these cases, we
investigated if there is a single set of λ-dependencies for μslj and
μscrf which can help smoothen the curves for all these test
systems. For this, we tested 1075 combinations of μslj and μscrf
for each of the test systems. The predictions are based on 1 ns
of simulation at six equidistantly spaced λ-points, and the
average curvature is computed as described above. After
sorting all the predictions based on their average curvature, we
found one set (set 4 in Table 1) which was among the top
ranked ones for each of the six test systems. We then continued
to simulate the test systems with this new set of λ-
dependencies for μslj and μscrf in order to find out if the
predictions were accurate. Figure 5 shows the TI curves
obtained from simulations with the original set from the
predictions for set 4 and from explicit simulations with set 4.
The MAE between the predicted and simulated curves ranges
between 0.9 (methanol, n = 2) and 3.0 kJ/mol (phenol).
Mostly, the difference between the predicted and simulated
curves comes from the usage of the Maxcont approach to
combine the predictions from each λs-point, with sudden
irregularities in the curves. The final free-energy differences
(Table S3) show very similar values for the each of the sets.

Figure 4. MAEs for predictions between sets as indicated on the x-
axis. Predictions are based on simulations at 21 or 6 λ-points using the
vertical or Maxcont approaches (see the text).

Figure 5. Free-energy profiles for perturbations of various molecules into dummy atoms. Black lines: original set, 21 points, 5 ns. Solid red line:
simulated with set 4; 21 λ-points, 5 ns. Dashed red line: prediction of optimized from original using Maxcont (based on simulations using set 1 at
six λ-points, 1 ns). Unless stated otherwise, all simulations are simulated with n = 1.
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Mostly, the deviations between set 1 and set 4 (both the
predictions and simulations) do not exceed 0.8 kJ/mol. The
only exception is for cyclopentanol, where the difference
between the simulated data using set 1 and predictions for set
4 (based on simulations of set 1) is 2.3 kJ/mol.
Now that we have identified a set of μslj and μscrf which

results in curves with lower curvature, we should confirm if the
convergence between the original and optimized sets
improved. For this, we will mimic an adaptive simulation
scheme, adding more data sequentially until a convergence
criterion has been met. We will start from 6 λs-points, each
simulated using set 1 or 4 for 0.5 ns, from which the entire
curve over 101 λp-points is predicted. If for any value of λp, a
preset minimum of contributing frames (eq 9) is not reached,
the simulations at the corresponding λs-points will be
prolonged for another 0.5 ns, with a maximum of 5 ns overall
simulation time per λs-point. As a minimum number of
contributing frames, we used 10,000 and 15,000 config-
urations. Once internal consistency is reached in this way, the
curve is compared to the reference curve, computed from 21
λs-points of 5 ns each, and the MAE is calculated.
The results can be found in Figure 6. In general,

convergence is reached faster with set 4 as opposed to set 1.
The actual efficiency gain is system-dependent and also
threshold-dependent. Note that for undecane, convergence

was not reached using set 1 within the maximum of 5 ns per λs-
point. Alternative convergence criteria can be devised, for
instance, based on an average bootstrap error in the free-
energy differences (Figure S3) or based on other predictors
(Petrov et al., in preparation). While the convergence behavior
is different using different criteria, both approaches tested here
agree that set 4 is more efficient than set 1.
It is important to establish in which cases, set 4 will give the

smoothest curves. For example, the simulations will need to be
performed with αlj = 0.5 and αcrf = 0.5 nm2 and n should be
equal to 1 or 2. We also have to keep in mind that with set 4,
the LJ interactions are removed faster than the electrostatic
interactions (Figure 1B). This can become problematic if there
are, for example, counterions present in the simulation box.
The counterion might be attracted to some (still) partially
charged atoms which do not have much LJ interactions left. In
this case, the counterion can collapse on top of these atoms,
causing very large fluctuations in the free energies. This can be
shown on the more challenging system of the negatively
charged aspirin. Because of the negative charge, a positively
charged Na+ ion is added to simulation as a counterion. The
perturbation to dummy atoms is performed, similar to the
other systems of this section. After performing the predictions
of the 1075 sets, we find that set 4 is not the most optimal set
but still relatively highly ranked. However, performing the
simulations with set 4, we see that the problem as described
above occurs. In the range of λ = 0.2 up to λ = 0.4, very large
jumps occur in the TI curve (Figure S4A). Further analysis
showed that at λ = 0.3, the Na+ ion moves directly on top of
the oxygen atom of the carboxyl group (see Figure S4B).
Performing the simulation again with set 4 but now without
the counterion, we obtain a TI curve which is very similar to
the originally predicted curve for set 4 (Figure S4A). Similar
behavior can occur for ligands bound to a protein, so set 4 is
predominantly recommended for the calculation of hydration
free energies.

Optimal Set for Simulations in Water Can be
Transferred to the System in Protein. In the section
above, one particular type of perturbation was analyzed (real
atoms to dummy atoms), for which the contribution of VLJ and
VCRF can be readily assigned to the regions of high curvature in
the original TI profile and a more optimal set of interactions
can be selected. In other types of perturbations, these LJ and
CRF contributions may look very differently. A prominent
example in the field is the calculation of the relative binding
free energy between two rather similar molecules to a protein.
Perturbing one molecule into the other can include change of
atom types, change of partial charges (even sign changes),
growing in atoms, and removing atoms. In addition, there
might be changes in the bond lengths, angles, etc., but in the
current examples, we will focus on a dual-topology approach,
in which only nonbonded interactions contribute.
Because of the large amount of possibilities, we will not be

able to find a general optimized set of μx-values for any type of
perturbation. However, we take advantage of the fact that
usually the same perturbations are performed once in solution
and once in a bound state. Both perturbations are typically very
similar but influenced by their surroundings. We might be able
to optimize the perturbation in solution and use this for the
simulations in the bound state. This implies that we can avoid
performing an initial simulation of the computationally more
intense bound state before finding an optimized set.

Figure 6. Result from convergence analysis; total simulation time
required to reach convergence based on the minimum number of
contributing frames of 10,000 or 15,000 for simulations for set 1
(orange) and set 4 (blue). When no bar is shown, convergence was
not yet reached (with a maximum simulation time of 5 ns per λ-
point). The value on the right side of the bars gives the MAE (in kJ/
mol) of the converged simulation with respect to the reference data
(21 λ-points for 5 ns).
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We will test this hypothesis with some post-translational
modifications (PTMs) of histone tail peptides in water and
bound to PHD fingers. As a possible further optimization, we
will perform the PTMs in a pentapeptide (GGXGG). This
would allow us to generate an optimal individual λ-dependency
for μslj and μscrf for a certain PTM, which can then be applied
to any peptide or protein.
The side-chain modifications that will be investigated

include GLN - > SER, LYSH - > K3C (N6,N6,N6-
trimethyllysine), and LYSH - > KAC (N-acetyllysine). The
perturbations of the histone tail peptides in water are
performed for 5 ns at 21 λ-points. We subsequently used 1
ns of simulation at 6 λ-points to predict the TI curves for the
same 1075 individual μslj and μscrf sets as used in the previous
section (Table S1). Figure 7 shows the resulting TI curves. In
black, the original curves with set 1 (Table 1) are given. The
red curves are predicted from the original simulations using the
set of μslj and μscrf that leads to lowest curvature in the
GGXGG system. The green curves show the resulting curves
when this set was simulated. The cyan and blue curves show
predictions from the original simulation using sets of μslj and
μscrf that lead to lowest average curvature in the peptide or in
the complex simulations, respectively. All the optimal λ-
dependencies for μslj and μscrf are shown in Figure S5 in the
Supporting Information.
GLN_SER. GLN_SER is a challenging test case because

quite large partial charges appear and disappear during the
perturbation. This implies that peaks due to the electrostatic
contributions will occur at both small and large λ-values.
Searching for an optimal λ-dependency for μscrf would thus
require an s-like shape such that the work is shifted toward the
middle of the curve. Starting with the peptide in solution, we
found that set 909 has the lowest average curvature of all the
tested possibilities. In the case of the pentapeptide, we found a
different optimal set 175, but the predicted curves for these
two sets are very similar. Predicting the optimal set from the

complex resulted in set 699. The complex was then simulated
with the optimal set as predicted by the GGXGG system. Note
that the peak at low λ-values is not completely flattened out,
but overall, this curve has a similar curvature as the optimal set
for the complex (699; in blue).

LYSH_K3C. The challenge of this test system is that three
methyl groups are grown during the perturbation. The optimal
predicted set based on the GGXGG simulations is set 973. The
peak at low λ-values is almost completely flattened out with
this set. For the peptide simulation, the predicted optimal set
was set 247. In this case, the first peak is a bit lower and slightly
shifted toward λ = 0.3. Looking into set 973, which was
performing so well for the GGXGG system, we find that in the
peptide simulation, this set was ranked #284. The average
curvature is so much higher in this case because of two sudden
jumps close to λ = 0.5 and 0.6. These jumps are a result of the
Maxcont scheme which is used here, where two neighboring λ-
points are predicted from two different λs-points. Although this
is an indication that the prediction might be more uncertain,
this kind of jump would not be expected when simulations are
performed with this set. Predicting the optimal set from the
simulation of the complex resulted in set 973. This is actually
the same optimal set as that obtained from the GGXGG
simulations. A simulation using this set indeed leads to a very
comparable profile.

LYSH_KAC. In this perturbation, an acetyl group replaces
one of the hydrogens of the amino group of lysine, which
includes a charge change from +1 to 0. From the GGXGG
simulations, set 371 was predicted to have the lowest average
curvature. Predictions from the simulations of the peptide and
the complex resulted in the optimal sets of 633 and 403,
respectively. As shown in Figure 7, all three sets result in very
similar predictions. This is also represented in the ranks of the
predicted sets based on their average curvatures. All 3 sets are
within the top 10 for each of the system sizes. The simulated
curve using the optimal parameters for the GGXGG system is

Figure 7. Free-energy profiles for three different perturbations in three different contexts using different parameterizations of the Hamiltonian.
Black lines: simulations with set 1 with 21 λ-points for 5 ns. Red lines: predicted curves with the optimal set based on the GGXGG simulation.
Green lines: simulations with the optimal set based on the GGXGG simulation performed at 11 equidistance λ-points for 1 ns. Cyan lines:
predicted curves with the optimal set based on the peptide simulation. Blue lines: predicted curves with the optimal set based on the complex
simulation. All predictions are based on 1 ns simulations at equidistant six λ-points.
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very similar to the predicted curves using individually
optimized sets for μslj and μscrf.
Table S4 shows the final free-energy differences for each of

the free-energy profiles shown in Figure 7. For the GLN_SER
system, the free-energy differences are very close to each other
for each of the respective system sizes. The largest deviation
occurs in the pentapeptide, where the original set results in
205.6 kJ/mol, whereas the prediction with the optimal set
results in 208.3 kJ/mol. The results for the LYSH_K3C system
show relatively consistent free-energy differences for the
pentapeptide and the peptide system (with a maximum
deviation of 3.2 kJ/mol). However, for the complex system,
there is a large discrepancy between the simulation of set 1
(87.3 kJ/mol) and the simulation with the optimal set as
obtained from the pentapeptide system (106.2 kJ/mol). This
could be due to the short simulation time of 1 ns with the
optimal set from the pentapeptide system, but it could also be
an indication that the sampling of the physical degrees of
freedom is more efficient for the curve with lower curvature
and the final free energy with this smoother curve is more
appropriate. The final free-energy differences for the
LYSH_KAC systems again show lower deviations between
the different sets. The largest deviation is found in the complex
between set 1 (190.6 kJ/mol) and the prediction with the
optimal set obtained from the pentapeptide (187.1 kJ/mol).
As was shown above, there is no single optimal set of λ-

dependencies for μslj and μscrf which can be applied to all types
of perturbation. However, it is possible to optimize it for a
particular perturbation in a small system (single ligand or, for
example, pentapeptide in the case of amino acids) and
subsequently use this optimized set for the same perturbation
in a large system (e.g., the complex of ligand/peptide and
protein). This provides a significant improvement of efficiency
because the complex only has to be simulated with the
optimized set of parameters. Even more efficiency is gained in
the case of the perturbation of amino acids because it appears
that they can be optimized independent of their surroundings.
Thus, one can derive one optimal set for each of the 20 × 19 =
380 potential mutations in a pentapeptide of the form
GGXGG which can subsequently be used for any other
protein or peptide system.

■ CONCLUSIONS
During this study, we have looked at alternative μ parameter
sets for the calculation of free-energy differences with extended
TI. Initial tests on the simple methanol system showed that
only short (e.g., 1 ns long) initial simulations at six equidistant
λ-points are enough to reliably predict the ⟨∂H/∂λ⟩ curves for
other parameter sets by applying the Maxcont scheme. All
possible combinations of three μ parameter sets and two values
of n resulted in a maximum MAE of 2 kJ/mol between the
reference simulations and its predictions. Knowing that we can
predict the shape of the ⟨∂H/∂λ⟩ curves for other parameter
sets rather well, we turned to testing many possible parameter
sets on a few selected systems in which all atoms are turned
into dummy atoms. From this large pool of 1075 sets, we have
found set 4, which resulted in a predicted curve with low
average curvature for each of the systems. This set can be
expected to work well for other systems where atoms are
turned into dummy atoms, which should then require less λ-
points to integrate accurately. Note that there would be a
much larger gain in efficiency if regular TI would be used
because extended TI already provides a more accurate

integration because of its predictions between the simulated
λ-points.
The last part of this study involved relative binding free

energies which are typically more challenging because of the
more diverse shapes of ⟨∂H/∂λ⟩ curves. Analysis of these more
complex perturbations showed that in contrast to the
hydration free energy example, there is no general optimal
set for any perturbation. We did, however, find that for each
perturbation, we can optimize the parameter set based on the
simulations in a simple system with a small simulation box
(such as a pentapeptide in water) which can then also be
applied to larger and more complex systems (such as a
peptide−protein complex). This removes the necessity for
initial simulations of the large system. Overall, we find that the
use of extended TI does not only lead to smoother curves to
integrate but also allow for an efficient means to test for
different parameterizations of the λ-dependent Hamiltonian
and to obtain low-curvature free-energy profiles.
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