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Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) with pandemic potential is a

major worldwide threat to public health. However, vaccine development for this pathogen

lags behind as immunity associated with protection is currently largely unknown. In this

study, an immunoinformatics-driven genome-wide screening strategy of vaccine targets

was performed to thoroughly screen the vital and effective dominant immunogens against

MERS-CoV. Conservancy and population coverage analysis of the epitopes were done by

the Immune Epitope Database. The results showed that the nucleocapsid (N) protein of

MERS-CoV might be a better protective immunogen with high conservancy and potential

eliciting both neutralizing antibodies and T-cell responses compared with spike (S) protein.

Further, the B-cell, helper T-cell and cytotoxic T lymphocyte (CTL) epitopes were screened

and mapped to the N protein. A total of 15 linear and 10 conformal B-cell epitopes that may

induce protective neutralizing antibodies were obtained. Additionally, a total of 71 peptides

with 9-mer core sequence were identified as helper T-cell epitopes, and 34 peptides were

identified as CTL epitopes. Based on the maximum HLA binding alleles, top 10 helper T-cell

epitopes and CTL epitopes that may elicit protective cellular immune responses against

MERS-CoV were selected as MERS vaccine candidates. Population coverage analysis

showed that the putative helper T-cell epitopes and CTL epitopes could cover the vast

majority of the population in 15 geographic regions considered where vaccine would be

employed. The B- and T-cell stimulation potentials of the screened epitopes is to be further

validated for their efficient use as vaccines against MERS-CoV. Collectively, this study pro-

vides novel vaccine target candidates and may prompt further development of vaccines

against MERS-CoV and other emerging infectious diseases.
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Introduction
Middle East respiratory syndrome (MERS) is a newly emerging acute respiratory system infec-
tious disease, which is characterised by acute pneumonia, respiratory failure, and renal failure
and caused by MERS-coronavirus (MERS-CoV) [1,2]. MERS-CoV was first isolated and iden-
tified in Saudi Arabia in 2012 as a new member in the lineage C of the genus Betacoronavirus,
and is a zoonotic virus that is transmitted from bats to camels, and then to humans [3,4,5]. The
genome of MERS-CoV is a non-segmented positive-sense, single-stranded RNA (ssRNA) of
approximately 30 kb encoding 11 proteins. They include two replicase polyproteins (open
reading frames 1ab and 1a); four structural proteins including spike (S), envelope (E), mem-
brane (M), and nucleocapsid (N) proteins; and five nonstructural proteins (open reading
frames 3, 4a, 4b, 5, and 8b) [6]. MERS-CoV can be transmitted from person-to-person and has
as high as 40% mortality [7]. As of June 26 2015, a total of 1356 cases including 484 related
deaths have been reported to the World Health Organization [8]. No licensed vaccine or spe-
cific treatment is currently available.

As one of the most effective strategies to prevent virus infection, vaccination is considered
to be indispensable especially in the absence of effective treatment drugs. The continuous
increase of patients and a high mortality rate of MERS-CoV infection highlight the urgent need
for safe and effective vaccines development. The majority of recent progresses focused on the
viral S glycoprotein and receptor-binding domain (RBD) of S protein [9–19], and showed that
S protein-based or RBD-based subunit or vector vaccine that contain multiple neutralizing epi-
topes with high potentials to induce strong neutralizing antibodies against MERS-CoV infec-
tion; thus, it is considered to be a promising target for effective MERS vaccine design [9–19].
Additionally, Almazan et al. constructed a full-length infectious cDNA clone of the MERS--
CoV genome that lacked of E gene by reverse genetics approach to develop attenuated viruses
as vaccine candidates [20]. Theoretically, nearly all viral proteins are potential immunogens
and vaccine targets. Thus, in addition to the S protein, other viral proteins of the MERS-CoV
might be effective immunogen targets of MERS vaccine. However, few studies have analyzed or
tested the possibility of other viral proteins of MERS-CoV as vaccine targets. More impor-
tantly, T-cell-based cellular immunity is essential for cleaning MERS-CoV infection, yet the
vaccine against the S protein mainly elicits neutralizing antibody response. Further, the high
mutation rate of the S protein may result in the escape of neutralizing antibodies against
MERS-CoV. Therefore, a highly conserved target that elicit both neutralizing antibody and cel-
lular immunity against MERS-CoV is essential for an effective vaccine development.

Epitopes are also known as the antigenic determinant, which represents the minimal immu-
nogenic region of a protein antigen and precisely elicit a specific immune responses [21].
Numerous studies show that epitope-based vaccines could effectively elicit protective immune
responses against diverse pathogens, such as human immunodeficiency virus, influenza virus,
hepatitis B virus, and hepatitis C virus [22–25]. Nevertheless, for emerging highly pathogenic
pathogens, like MERS-CoV, H5N1, and H7N9, although their genome sequences are available
in GenBank database, their immunity associated with protection is currently largely unknown.
These gaps in understanding immune protection make developing vaccines against these
highly pathogenic viruses more difficult and challenging [26]. Therefore, an immunoinfor-
matics-driven approach to thoroughly screen the dominant immunogens based on available
genome sequences data of pathogens is essential and promising for effective vaccine design of
emerging infectious diseases [26].

In this study, based on newly available genome sequence data of MERS-CoV, numerous epi-
tope vaccine candidates that could elicit protective humoral and cellular immune responses
were obtained by immunoinformatics-driven vaccine target screening strategy. These results
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provided new vaccine epitope candidates for MERS vaccine development, and indicated that
immunoinformatic-driven immunogen screening is a promising strategy to accelerate vaccine
development of the emerging highly pathogenic pathogens.

Materials and Methods

Protein sequence retrieval
The entire viral proteome sequences of all MERS-CoV isolates that include structural proteins
spike protein (S), envelope protein (E), membrane protein (M), nucleocapsid protein (N), and
non-structural proteins ORF3, ORF4a, ORF4b, ORF5 and ORF8b, and two replicase polypro-
teins ORF1ab and ORF1a, were retrieved from the National Center for Biotechnology Informa-
tion database (http://www.ncbi.nlm.nih.gov/) and used as an input for various bioinformatics
tools for antigenicity assessment, secondary structure and 3D model prediction, and epitope
prediction. These sequences come from different geographic regions such as Saudi Arabia,
England, Qatar, Spain, Germany, Jordan, and Korea with time ranges from 2012 to 2015.

Antigenic protein screening and structure analysis
Antigenicity refers to the ability of antigen that can be recognized by the immune system.
Hence, to find the best potential candidate antigen, the VaxiJen v2.0 server [27] (http://www.
ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) was used for analyzing whole protein antige-
nicity and determined the most potent antigenic protein. The VaxiJen is a web server, that was
developed by Dr. Doytchinova IA and Dr. Flower DR, from Faculty of Pharmacy, Medical Uni-
versity of Sofia, for prediction of protective antigens, tumor antigens and subunit vaccines,
with prediction accuracy of 70% to 89% for the discrimination between antigens and non-anti-
gens [27]. In this study, virus was chosen as the target organism with default parameter. A sin-
gle antigenic protein with the highest antigenicity score was selected as vaccine candidate for
further analysis. Antigenicity is closely related to the secondary and tertiary structure of the
protein; hence, to determine the antigenicity and function of the target protein, the secondary
structure of target protein that included solvent accessibility, transmembrane helices, globular
regions, and coiled coil regions were predicted using the ExPASy’s secondary structure predic-
tion server ProtParam [28] (http://web.expasy.org/protparam/) and a self-optimized prediction
method for alignment (SOPMA) [29] (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?
page=/NPSA/npsa_sopma.html) with default parameter. ProtParam is a tool which allows the
computation of various parameters including the molecular weight, theoretical pI, amino acid
composition, atomic composition, extinction coefficient, estimated half-life, instability index,
aliphatic index and grand average of hydropathicity (GRAVY) for a given protein. The
SOPMAmethod correctly predicts 69.5% of the secondary structure α-helix, β-sheet and coil
[29]. The RaptorX web server [30] (http://raptorx.uchicago.edu/) was used to predict the three-
dimensional (3D) structure and binding residues of the chosen protein.

B-cell epitope prediction
The method of Kolaskar and Tongaonkar [31] at the Immune Epitope Database (IEDB)
(http://tools.immuneepitope.org/bcell/) was applied to predict linear B-cell epitopes. The
Kolaskar and Tongaonkar method has been applied to a large number of proteins to predict B-
cell epitopes by the developers. Their results showed that the method can predict epitopes with
about 75% accuracy; hence, it is better than most of the known methods [31]. Further, the
properties of the B-cell epitopes also include the flexibility, surface accessibility and hydrophi-
licity; hence, they were predicted by the Karplus and Schulz flexibility prediction [32] and
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Emini surface accessibility prediction [33] with a threshold of 1.0 respectively, of the IEDB.
Conformational B-cell epitopes were predicted by ElliPro (http://tools.immuneepitope.org/
ellipro/) [34] with the minimum score value set at 0.7 while the maximum distance selected as
6 Å. The ElliPro allows the prediction and visualization of B-cell epitopes in a given protein
sequence or structure. The test for ElliPro on a benchmark dataset of discontinuous epitopes
inferred from 3D structures of antibody-antigen complexes has shown the best performance
compared with six other structure-based epitope prediction methods [34].

Helper T-cell epitope prediction
The NetMHCIIpan 3.0 server [35] (http://www.cbs.dtu.dk/services/NetMHCIIpan/) was used
to predict helper T-cell epitopes. Threshold for strong binding peptides (IC50) was set at 50 nM
to determine the binding and interaction potentials of helper T-cell epitope peptide and major
histocompatibility complex (MHC) class II allele. The NetMHCIIpan-3.0 is the first pan-spe-
cific helper T-cell epitope prediction method that covers all human leucocyte antigen (HLA)
class II molecules including HLA-DR, HLA-DP, and HLA-DQ. It can predict peptide binding
to any HLA class II molecule in a specified protein sequence [34]. The method was evaluated
by the developers and shown a significant improvement over molecule-specific methods;
hence, it is considered the most accurate MHC class II predictor [36]. Here, the top 10 epitopes
with the maximum of binding HLA-DR alleles were selected as putative epitope candidates.

CTL epitopes prediction
The cytotoxic T lymphocyte (CTL) epitope prediction was made using the IEDB analysis
resource NetMHCpan (version 2.8) tool [37,38] and the Consensus tool [39] which combines
predictions from ANN aka NetMHC (3.4) [40][41], SMM [42], and Comblib [43]. The
NetMHCpan is a high-throughput computational method for genome- and HLA-wide predic-
tion of peptide binding to HLA class I molecules, because it contains all HLA class I alleles.
Hence, it can offer a truly global analysis for binding of the antigenetic peptide and HLA mole-
cule and promote rational vaccine design [37]. The NetMHC is a prediction method with an
average of 75–80% accuracy for peptides binding to HLA class I molecules. It has been
employed widely to predict HLA-binding peptides in proteomes of various pathogens includ-
ing SARS, Influenza and HIV [41]. The percentile rank threshold was set at 0.5. In this study,
the top 10 epitopes with the maximum of binding HLA-A alleles were selected as putative epi-
tope vaccine candidates. Further, except for a strong binding affinity, the peptides with strong
immunogenicity are more likely to be CTL epitopes than those with weak immunogenicity.
Hence, the IEDB immunogenicity prediction tool (http://tools.immuneepitope.org/
immunogenicity/) was used to predict the immunogenicity of the candidate epitopes [44]. This
tool predicts immunogenicity of a peptide-HLA (pHLA) complex based on the amino acid
properties and their positions in the defined peptide.

Conservancy analysis
The epitope conservancy analysis tool (http://tools.immuneepitope.org/tools/conservancy/
iedb_input) at the IEDB was applied for the epitope conservancy analysis [45]. The conser-
vancy levels were obtained by searching for identities in the given protein sequence. This tool
calculates the degree of conservancy of an epitope within a given protein sequence set at differ-
ent degrees of sequence identity. The degree of conservancy is defined as the fraction of protein
sequences containing the epitope at a given identity level.
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Allergenicity assessment
The allergenicity of the epitopes was analyzed by the AllerHunter server [46] (http://tiger.dbs.
nus.edu.sg/AllerHunter). AllerHunter is a SVM-pairwise system for assessment of allergenicity
and allergic cross-reactivity in proteins. It aims to predict allergens and non-allergens with
high sensitivity and specificity, without compromising efficiency at classification of proteins
with similar sequences to known allergens [46].

Population coverage prediction
Due to the MHC restriction of T cell response, the peptides with more different HLA binding
specificities mean more population coverage in defined geographical regions where the pep-
tide-based vaccine might be employed. The population coverage rate of individual epitope was
calculated using the IEDB population coverage tool (http://tools.immuneepitope.org/tools/
population/iedb_input) [47].

Every epitope and its binding HLA alleles were added, and different geographic areas were
also selected.

Results

Antigenic protein identification and structure analysis
The selection of immunogen is the first step for vaccine design; hence, to obtain the most prob-
able antigenic protein, the whole viral proteomes of all MERS-CoV isolates were retrieved and
screened. A total of 99 MERS-CoV variants from different geographical regions with their
entire proteomes were obtained (S1 Table). The antigenicity of each protein is indicated by the
overall score produced by the specific protein sequence using the VaxiJen server. On the whole,
the scores of the N protein and ORF8b protein of MERS-CoV were higher than the S, E, M,
ORF3, ORF4a, ORF4b, ORF5, ORF1ab and ORF1a proteins. Moreover, the ORF8b protein
with its Genbank ID: AIL23997.1 and the N protein with its Genbank ID: AGV08499.1 pos-
sessed the significantly highest antigenic scores of 0.8218 and 0.7749, respectively, among all
the query proteins (S1 Table). However, the ORF8b protein would be rapidly degraded by pro-
teasomes in the absence of the ORF8a protein, an accessory protein of ORF8b [48]. Thus, it
was not an ideal antigen candidate although its high antigenic score. In this study, the N pro-
tein was chosen as a candidate immunogen and model protein to carry out epitope-based vac-
cine design. Further, the most probable antigenic protein was analyzed for its secondary
structural characteristics, and the properties that included total length of 413 aa, molecular
weight of 45048.2 Da, theoretical pI of 10.05, formula of C1965H3102N594O611S7, 70 alpha
helixes, 66 extended strands, 32 beta turns, and 245 random coils are obtained and shown in
Table 1 and Fig 1. The grand average of the hydrophobicity rule (GRAVY) of the N protein lin-
ear sequence was predicted to be negative (-0.865). This indicated the property of the protein
as hydrophilic in nature and most of the residues to be present on the surface. This means that
more amino acids tend to be binding residues when interacted with other proteins. The 3D
structure showed a maximum of 64% identity of the N protein of MERS-CoV with the best
template protein PDB: 2ofzA (RNA Binding Domain of Sars Nucleocapsid Protein), and it is
composed of two separate domains or pockets (Fig 2). Protein binding site prediction showed
that a total of 12 binding residues including T40, V41, S42, Y44, T45, G46, R97, Y99, Y101,
R138, A145 and S173 were mapped on the domain-1. And only 2 binding residues including
G267 and L268 were mapped on the domain-2. Obviously, the domain-1 possessed the greater
ability to interact with other proteins than the domain-2. This might be associated with distri-
bution of the conformational epitopes on the N protein of MERS-CoV.
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Identification of B-cell epitopes
One of the key steps in epitope-driven vaccine design is the prediction and identification of the
B-cell epitopes in target antigens. Thus, to obtain B-cell epitope candidates in the N protein of
MERS-CoV, in silico identification of B-cell epitopes based on the IEDB database was per-
formed. Based on the Kolaskar and Tongaonkar’s method of the IEDB, a total of 15 linear B-
cell epitopes of the N protein of MERS-CoV were identified. The length of the epitopes ranged
from 6 to 20 amino acids. These epitopes had 78–91% conservancy level among the specified N
protein sequences. Notably, the epitopes 4PAAPRAVSF12 and 324NPVYFLRYSGAIKL337 were
allergic to human; hence, they could not be vaccine candidates. Epitopes’ length, sequences,
location, conservancy, and allergenicity are shown in Table 2. Further, the results showed that
the average antigenic prospensity value of the predicted epitopes was 0.993 with a minimum of
0.863 and a maximum of 1.182 (S1 Fig). Since surface accessibility and fragment flexibility are
also key features for predicting B-cell epitopes. Thus, the surface accessibility and flexibility
were analyzed based on methods of the IEDB. Results of the analysis of the surface accessibility
of the predicted peptides showed that the maximum surface probability value was 6.971 at
amino acid position from 363 to 368. The sequence of the hexapeptide is 363KKEKKQ368,
where 365E is the surface residue. The minimum value of surface probability is 0.074 for pep-
tides 205GIGAVG210, where 207G is the surface residue (S2 Fig). Likewise, results of the analy-
sis of the flexibility of the predicted peptides showed that the maximum flexibility value was
1.160 at amino acid position from 170 to 176, and its sequence is 167GNSQSSS173, where 170Q
is the flexible residue. The minimum value of flexibility probability is 0.903 for peptides
97RWYFYYT103, where 100F is the flexibility residue (S3 Fig). In addition, a total of 10

Fig 1. Secondary structure plot of the highest antigenic nucleocapsid (N) protein of MERS-CoV. Here,
helix is indicated by blue, while extended strands, beta turns and random coils are indicated by red, green
and yellow, respectively.

doi:10.1371/journal.pone.0144475.g001

Table 1. Secondary structural characteristics of the highest antigenic N protein (Genbank ID:
AGV08499.1) of MERS-CoV.

Criteria Assessment

Number of Amino Acids 413

Molecular Weight 45048.2 Da

Theoretical pI 10.05

Total number of negatively charged residues (Asp + Glu) 33

Total number of positively charged residues (Arg + Lys) 55

Formula C1965H3102N594O611S7

Extinction coefficients 47900

Estimated half-life 30 hours (mammalian reticulocytes, in vitro)

Instability index 48.62

Aliphatic index 56.76

Grand average of hydropathicity (GRAVY) -0.865

doi:10.1371/journal.pone.0144475.t001
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conformational B-cell epitopes having a Protrusion Index (PI) score value above 0.7 were
obtained by the ElliPro. The highest probability of a conformational epitope was calculated at
97.9% (PI score: 0.979) and shown in Fig 3A. Residues involved in conformational epitopes,
their location, number of residues, and scores are shown in Table 3, whereas, their positions on
3D structures are shown in Fig 3A to 3J.

Identification of helper T-cell epitopes
Since MHC-II restricted CD4+ T-cells activation is important for inducing and maintaining an
efficient antibody response or CTL response, hence, the helper T-cell epitopes in the N protein

Fig 2. A 3Dmodel of the highest antigenic nucleocapsid (N) protein of MERS-CoV that were modeled
by using RaptorX web server.

doi:10.1371/journal.pone.0144475.g002

Table 2. Predicted linear B-cell epitopes of the N protein of MERS-CoV with their conservancy and allergenicity.

Epitope No. Start End Sequence Length Conservancy (%) Allergenicity

1 4 12 PAAPRAVSF 9 87 Yes

2 42 47 SWYTGL 6 91 No

3 50 58 HGKVPLTFP 9 88 No

4 60 66 GQGVPLN 7 91 No

5 92 102 KQLAPRWYFYY 11 90 No

6 108 126 EAALPFRAVKDGIVWVHED 19 78 No

7 144 150 SAIVTQF 7 88 No

8 172 180 SSRASSVSR 9 87 No

9 206 225 IGAVGGDLLYLDLLNRLQAL 20 89 No

10 230 240 VKQSQPKVITK 11 89 No

11 261 268 NMVQAFGL 8 90 No

12 296 304 IAELAPTAS 9 89 No

13 324 337 NPVYFLRYSGAIKL 14 90 Yes

14 347 353 WLELLEQ 7 90 No

15 399 405 RPSVQPG 7 89 No

doi:10.1371/journal.pone.0144475.t002
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of MERS-CoV were in silico identified. As a result, a total of 71 antigenic peptides with 9-mer
core sequences in the N protein of MERS-CoV were identified to be helper T-cell epitopes
using the NetMHCIIpan 3.0 server (S2 Table). They can bind a different large number of
HLA-DR alleles with an IC50 value less than 50nM, which indicated a very high binding affinity
to HLA-DR molecules. Based on the fact that a good T-cell epitope should interact with as
many HLA alleles as possible, the top 10 epitopes with the highest number of binding HLA-DR
alleles were selected as putative helper T-cell epitope candidates (Table 4). All of the 10 putative
helper T-cell epitopes with numerous binding HLA-DR alleles tend to be good epitope candi-
dates. Among them, the epitope 329LRYSGAIKL337 interacting with 357 HLA-DR alleles was
the epitope possessing the maximum number of binding HLA-DR alleles. On the contrary,
230VKQSQPKVI238 interacting with 94 HLA-DR alleles is the epitope possessing the minimum
number of binding HLA-DR alleles. Further, all selected putative epitopes were highly con-
served with 89–91% conversancy level, and no epitope was found allergic to humans. Details of
predicted putative helper T-cell epitopes along with their respective binding HLA-DR alleles
are shown in S2 Table.

Fig 3. 3D representation of conformational epitopes (A to J) of the highest antigenic nucleocapsid (N)
protein of MERS-CoV. The epitopes are represented by yellow surface, and the bulk of the N protein is
represented in grey sticks.

doi:10.1371/journal.pone.0144475.g003

Table 3. Predicted conformational B-cell epitopes of the N protein of MERS-CoV.

Epitope
No.

Residues and their positions No. of
Residues

Score 3D
Structure

1 K346, W347, L348, E349 4 0.979 Fig 3A

2 Y327, F328, L329, R330 16 0.893 Fig 3B

3 L350, L351, E352, Q353, N354, I355, D356, A357, Y358, K359, T360, F361, P362, K363, K364,
E365

15 0.887 Fig 3C

4 Y331, S332, G333, A334, I335, K336, L337, D338, P339, K340, N341, P342, N343, Y344, N345 7 0.881 Fig 3D

5 D320, D321, H322, G323,N324, P325, V326 41 0.867 Fig 3E

6 H252, K253, R254, T255, S256, T257, K258, S259, F260, N261, M262, V263, Q264, A265, F266,
G267, L268, R269, G270, P271, G272, D273, L274, Q275,G276, N277, F278, G279, D280, L281,
Q282, L283, N284, K285, L286, G287, T288, E289, D290, P291, R292

15 0.861 Fig 3F

7 R399, P400, S401, V402, Q403, P404, G405, P406, M407, I408, D409, V410, N411, T412, D413 6 0.794 Fig 3G

8 W293, P294, Q295, I296, A297, E298 8 0.778 Fig 3H

9 F312, K313, L314, T315, H316, Q317, N318, N319 13 0.772 Fig 3I

10 L299, A300, P301, T302, A303, S304, A305, F306, M307, G308, M309, S310, Q311 16 0.709 Fig 3J

doi:10.1371/journal.pone.0144475.t003
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Identification of CTL epitopes
As we all know, MHC-I restricted CD8+ cytotoxic T lymphocytes (CTLs) plays a crucial role in
controlling virus infection. Hence, identification of CTL epitopes is vital for understanding the
principles of T cell activation and epitope-driven vaccine design. Herein, a total of 34 immuno-
genic peptides with 9-mer sequences in the N protein of MERS-CoV were identified to be CTL
epitopes using the MHC-I binding predictions of the IEDB with recommended methods (S3
Table). They can bind a different large number of HLA-A alleles with a very high binding affin-
ity. Top 10 epitopes binding the most HLA-A alleles were selected as putative CTL epitope can-
didates based on their more broad HLA coverage (Table 5). Among them, the epitope
92KQLAPRWYF100 had the highest number of binding HLA-A alleles (138 alleles), followed by
343NYNKWLELL351 (128 alleles). Yet, the epitopes 72AQNAGYWRR80 (37 alleles) and
387RVQGSITQR395 (31 alleles) had the minimum number of binding HLA-A alleles. Most
CTL epitope candidates with a positive score of immunogenicity showed a high potential to
elicit strong CTL response. Further, these CTL epitope candidates were highly conserved with
85–91% conservancy level among available N protein sequences of MERS-CoV isolates, and no
epitope was found allergic to humans. Details of predicted putative CTL epitopes along with
their respective binding HLA-A alleles are shown in S3 Table.

Table 4. Helper T-cell epitopes of the N protein of MERS-CoV selected on the basis of maximumHLA binding alleles.

Epitope core sequence (9 -mer) Position No. of binding HLA-DR alleles Conservancy (%) Allergenicity

FNMVQAFGL 260–268 173 90 No

LRYSGAIKL 329–337 356 91 No

LQALESGKV 222–230 139 89 No

LNRLQALES 219–227 144 90 No

FMGMSQFKL 306–314 100 91 No

LYLDLLNRL 214–222 160 90 No

IKQLAPRWY 91–99 154 89 No

FLRYSGAIK 328–336 142 91 No

LLYLDLLNR 213–221 110 90 No

VKQSQPKVI 230–238 94 89 No

doi:10.1371/journal.pone.0144475.t004

Table 5. CTL epitopes of the N protein of MERS-CoV selected on the basis of maximumHLA binding alleles.

Epitope sequence (9 -mer) Position No. of binding HLA-A alleles Immunogenicity Conservancy (%) Allergenicity

AQNAGYWRR 72–80 37 0.28397 91 No

LAPRWYFYY 94–102 34 0.35734 90 No

NYNKWLELL 343–351 128 0.06418 90 No

KQLAPRWYF 92–100 138 0.25847 90 No

ELAPTASAF 298–306 53 -0.04059 89 No

NTVSWYTGL 39–47 45 0.11171 90 No

STPAQNAGY 69–77 60 -0.0303 91 No

QLAPRWYFY 93–101 49 0.32573 90 No

HGNPVYFLR 322–330 76 0.11578 89 No

RVQGSITQR 387–395 31 -0.07424 85 No

doi:10.1371/journal.pone.0144475.t005
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Population coverage of the epitopes
HLA distribution varies among different ethnic groups and geographic regions around the
world. Thus, population coverage must be taken into account when designing an effective vac-
cine to cover as much as possible populations. In this study, all indicated alleles in supplemen-
tary data were identified as optimum binders with the predicted epitopes and were used to
determine the population coverage for these epitopes. The high population coverage was found
for all putative helper T-cell epitopes and CTL epitopes in 15 specified geographic regions of
the world (Table 6). For helper T-cell epitopes, an excellent percentage of cumulative popula-
tion coverage of the 10 epitopes was obtained in South Asia (98.68%), closely followed by Cen-
tral Africa (98.51%), Southeast Asia (98.17%), West Africa (98.10%), East Africa (97.75%),
Southwest Asia (97.45%), Oceania (96.78%), West Indies (96.57%), Northeast Asia (96.20%),
Europe (95.77%), North Africa (95.05%), North America (94.81%), East Asia (93.89%), and
South America (87.18%). And the lowest was in South Africa (62.18%). These results indicated
most geographic regions of the world, where more than 90% of their population can be covered
by all putative helper T-cell epitopes. For CTL epitopes, a moderate and acceptable percentage
of cumulative population coverage of the 10 epitopes was obtained in Central Africa (59.49%),
followed by East Asia (50.14%), Oceania (48.85%), Southwest Asia (48.21%), South Asia
(47.21%), East Africa (42.51%), Southeast Asia (42.01%), West Africa (41.86%), South Africa
(38.95%), North America (35.03%), North Africa (33.02%), South America (32.71%), North-
east Asia (32.47%), and West Indies (30.08%). And the lowest was in Europe (20.62%). These
results indicated only partial regions of the world, such as Central Africa and East Asia, where
approximately half of the population can be covered by all putative CTL epitopes. Overall,
these results suggested that putative helper T-cell epitopes and CTL epitopes can specifically
bind with the prevalent HLA molecules in the target population where the vaccine will be
employed.

Table 6. Population coverage rate (%) for all putative helper T-cell epitopes and CTL epitopes of the N
protein of MERS-CoV.

Population/Area Population coverage (%)

All putative helper T-cell epitopes All putative CTL epitopes

East Asia 93.89 50.14

Northeast Asia 96.20 32.47

Sourth Asia 98.68 47.21

Southeast Asia 98.17 42.01

Southwest Asia 97.45 48.21

Europe 95.77 20.62

East Africa 97.75 42.51

West Africa 98.10 41.86

Central Africa 98.51 59.49

North Africa 95.05 33.02

South Africa 62.18 38.95

West Indies 96.57 30.08

North America 94.81 35.03

South America 87.18 32.71

Oceania 96.78 48.85

doi:10.1371/journal.pone.0144475.t006
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Discussion
Emerging infectious pathogens such as MERS-CoV, H5N1, and H7N9 are highly pathogenic
for humans. For these pathogens, immunity associated with protection remain largely
unknown. Gaps in understanding the protective immunity against these pathogens make
developing vaccines for newly emerging infectious diseases more difficult and challenging [26].
Thus, the genome-wide screening of vaccine targets based on newly available genome
sequences data of pathogens is essential and urgent for developing efficiently vaccines against
these newly emerging highly pathogenic pathogens.

This study aim to screen and investigate the most antigenic protein of the MERS-CoV and
to find out the B- and T-cell epitopes that were mapped on the most antigenic protein by using
a strategy namely genome-wide screening of vaccine epitopes. Based on advances in bioinfor-
matics, the immunoinformatics approach could be an effective and essential strategy for vac-
cine development of emerging highly pathogenic pathogens. In this study, an
immunoinformatics-driven approach was used to screen vital dominant immunogens against
MERS-CoV. The results showed that the N protein was a better antigenic protein with the
highest antigenic scores compared with other viral proteins in entire viral proteome. However,
nearly all current studies of MERS vaccine focused on the S protein of MERS-CoV [9–19],
because the S protein mediated recognition of host cell DPP4 receptor for MRES-CoV and
induced significant immune response [49]. In fact, not just the S protein, other MERS-CoV
viral proteins might be effective MERS vaccine candidates. However, few studies have empha-
sized this possibility. Further, T-cell-based cellular immunity is essential for cleaning MERS--
CoV infection, yet the vaccine against the S protein mainly elicit neutralizing antibody
response. More importantly, high mutation rate of the S protein of MERS-CoV may cause
escape of neutralizing antibodies against S protein. Therefore, an ideal target should be highly
conserved that elicit both neutralizing antibody and cellular immunity against MERS-CoV,
which is more essential for an effective MERS vaccine development. The N protein of human
CoV is abundantly produced during infection and exhibits strong immunogenicity and conser-
vancy, which can act as an ideal immunogen to elicit both cellular and humoral immune
responses [50]. It is noteworthy that a large number of previous studies have shown the feasi-
bility of the N protein as an immune target antigen or vaccine product [51–60]. Ma et al. dem-
onstrated that a SARS-CoV vaccine based on the N gene that was expressed by DNA plasmid
and adenovirus vector could induce detectable antibody and IFN-γ [51]. Similar studies of the
DNA vaccine based on the SARS-CoV N gene have shown potential inducing specific humoral
and cellular immunity in BALB/c mice [52,53]. Moreover, multiple immunodominant B-cell
epitopes, helper T-cell epitopes and CTL epitopes were mapped on the N protein of SARS-CoV
[54–58]. Additionally, the antigenicity of the N protein from other viruses has been demon-
strated [59,60]. And the antibodies against the N proteins of diverse human CoVs have been
revealed by Gao et al. [61]. Based on these findings, it concludes that the N protein of MERS--
CoV might be a putative and valuable immunogen for vaccine development. Further, the
screened epitopes from the N protein in this study also may be some valuable epitope-based
vaccine candidates for further in vitro and in vivo tests for their antigenic and immunogenetic
potentials.

The purpose of vaccination is to induce immunity against specific pathogens by selectively
stimulating antigen-specific B-cells or CTLs, and helper T-cells. Theoretically, a vaccine should
contain two classes of antigenic epitopes: a helper T-cell epitope and a B-cell epitope or a CTL
epitope. Based on a combination of these epitopes, the vaccine is able to either induce specific
humoral or cellular immune against specific pathogens [21]. Therefore, the B-cell, CTL, and
helper T-cell epitopes were screened systemically in the N protein of MERS-CoV to obtain
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putative epitope vaccine candidates. In this study, one B-cell epitope, 108EAALPFRAVKD-
GIVWVHED126, showed a lower conservancy of 78% among different MERS-CoV isolates
compared with other 14 epitopes, suggesting that it might be not an idea epitope candidate
based on the fact that an epitope should be as conservative as possible to provide broader pro-
tection among different virus strains. In addition, various continuous and discontinuous B-cell
epitopes were mapped on the N protein (Table 2 and Fig 3). All discontinuous B-cell epitopes
were located on the surface of the domain-2 of the N protein, showing the accessibility for the
entered virus. Moreover, the diverse T-cell epitopes including helper T-cell epitopes and CTL
epitopes were delineated by dissecting the N proteins (Tables 4 and 5). Notably, neutralizing
antibodies are not far enough to completely clean infectious pathogens. CTLs are needed
because they play a central role in the generation of a protective immune response against
diverse pathogen infection [62]. In this study, although the CTL epitope 93QLAPRWYFY101

showed the highest immunogenic score of 0.32573, it possessed the minimal HLA binding
alleles among all predicted CTL epitopes. On the contrary, the epitope 92KQLAPRWYF100 had
the maximum HLA binding alleles, but less immunogenic score of 0.25847. This inconsistency
of immunological characteristics among different epitopes suggested that various parameters
needed to be considered when screened epitopes. Helper T-cell epitopes are critical to the gen-
eration of vigorous humoral and CTL responses. However, the response to T-cell epitopes is
restricted by HLA proteins. Moreover, HLA is highly polymorphic in diverse ethnic popula-
tions. Therefore, to induce broad immune responses in diverse ethnic genetically diverse
human populations, the HLA specificity of T-cell epitopes must be considered first as a major
criteria for screening of the epitopes [63,64]. Based on the above analysis, to get more popula-
tion coverage, the epitope candidates should bind more HLA alleles. In this study, the 10 ten
helper T-cell epitopes and CTL epitopes that bind the maximum number of HLA alleles were
selected as putative vaccine candidates. Further analysis revealed that all putative helper T-cell
and CTL epitopes have an ideal population coverage and may provide broad immune protec-
tion for different geographic regions around the world. Additionally, as an ideal epitope, it
should be highly conserved among different MERS-CoV isolates. Thus, conservancy level
should be determined for all putative epitope candidates. The epitopes from this study were
highly conserved in designated MERS-CoV isolates, suggesting that they could be ideal epitope
vaccine candidates to elicit protective neutralizing antibodies and cellular immune responses
against MERS-CoV.

Conclusions
In conclusion, this study indicated that immunoinformatics-driven genome-wide screening of
vaccine targets of emerging highly pathogenic pathogens is a promising strategy to accelerate
their vaccine development. Based on this strategy, the B-cell epitopes, helper T-cell epitopes
and CTL epitopes in the N protein of MERS-CoV were mapped and selected as putative MERS
vaccine candidates. However, the B-and T-cell stimulation potentials of the screened epitopes
are needed to be tested by in vitro and in vivo experiments along with this in silico study for
their efficient use as vaccines against MERS-CoV. The present study provides new and valuable
epitope candidates and prompts the future vaccine development of MERS and other emerging
infectious diseases.
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