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Over the last months, cases of SARS-CoV-2 surged repeatedly in
many countries but could often be controlled with nonpharma-
ceutical interventions including social distancing. We analyzed
deidentified Global Positioning System (GPS) tracking data from
1.15 to 1.4 million cell phones in Germany per day between March
and November 2020 to identify encounters between individuals
and statistically evaluate contact behavior. Using graph sampling
theory, we estimated the contact index (CX), a metric for num-
ber and heterogeneity of contacts. We found that CX, and not the
total number of contacts, is an accurate predictor for the effective
reproduction number R derived from case numbers. A high corre-
lation between CX and R recorded more than 2 wk later allows
assessment of social behavior well before changes in case num-
bers become detectable. By construction, the CX quantifies the
role of superspreading and permits assigning risks to specific con-
tact behavior. We provide a critical CX value beyond which R is
expected to rise above 1 and propose to use that value to leverage
the social-distancing interventions for the coming months.

COVID-19 | network science | epidemiology

In December 2019, the novel coronavirus, SARS-CoV-2,
caused a sustained pandemic with more than 140 million con-

firmed cases and more than 3 million deaths as of April 2021.
SARS-CoV-2 is highly contagious with an estimated basic repro-
ductive number R0 between 1.5 and 4 (1–4). It may spread invis-
ibly in the community until a local outbreak becomes noticeable
by a larger number of severe clinical cases. Nonpharmaceutical
interventions (NPIs) have been considered an important tool to
contain the spread of the virus. In Germany, before the imple-
mentation of strict interventions, an exponential growth of case
numbers was recorded with an effective reproduction number
R of about 3. The R value characterizes the epidemic risk of a
population and is defined as the average number of new infec-
tions caused by a single infected individual in the susceptible
population. Changes in the temporal or effective R can occur
for instance in dependence on immunization of individuals and
on social-distancing measures. Thus, estimates of R provide an
important measure of public health policy. One problem with the
R value and its properties is the underlying mathematical model
used to estimate it. In Germany, as in many other countries,
the official R calculation is based on evolution of the number
of newly infected individuals recorded by health authorities in
Germany.

The problem with the model is this: Due to asymptomatic
carriage of SARS-CoV-2 (5, 6), a large portion of infected
individuals remain undetected. It was determined that 44% of
secondary cases are infected through presymptomatic transmis-
sion events (7). With an estimated incubation time of 5 d (3),
a reported time delay of 6 d between symptoms and diagno-
sis based on laboratory tests (8), and additional time delay for
reporting to authorities (9), laboratory testing does not appear

to be sufficient for early outbreak detection and outbreak con-
trol given the short infection doubling time of SARS-Cov-2 of
1.4 to 2.5 d (10).

In response to this problematic model, other methods must
be considered that allow for the early detection and control of
outbreaks. Soon after the beginning of the pandemic, various
mathematical and epidemiological models have been used in
attempts to explain or predict case number evolution (11–13).
Additionally, multiple cell phone apps have been developed to
monitor the health of the population or record contacts between
users. Several solutions focused on determining contacts based
on Bluetooth low energy (BLE) to inform users about contacts
to infected individuals. It was often found that researchers need
to gather a significant number of users to enable identification
and interruption of infection chains (14) and in many countries
the success of the apps has been disappointing (15). Also, privacy
concerns have frequently been raised and many countries chose
to limit the capabilities of the method so that the individuals’
privacy rights are not compromised (16).

A related approach, employed soon after the beginning of the
pandemic, is that of analyzing bulk mobile phone data with loca-
tion or proximity information but anonymized user identity (17).
In contrast to contact-tracing apps, a blending of the mobility
data with case data, which increases the risks of privacy breaches,
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is precluded. Yet, one hopes to explain and control the infection
behavior of the population using a statistical description of the
conditions in which the transmissions occur.

Most studies in this realm used aggregated and anonymized
records from phone companies that quantified movements
between regions. Publications therefore emphasized the advan-
tage to assess efficacy of NPIs, for instance by measuring
travel metrics, and to improve epidemiological models (18–20)
(reviewed in ref. 17). Early studies indeed showed the rele-
vance of mobility in the case of the spread of SARS-CoV-2 from
Wuhan to other cities (21). However, the strong associations
between mobility and case growth rates are absent during later
phases of the epidemic, suggesting that mobility alone cannot
characterize the effect of many NPIs (22, 23).

Another method is to use location history data enabled by
the Global Positioning System (GPS) information of anonymized
mobile phones, which provides accurate location on the meter
scale. If provided frequently enough, one can capture coloca-
tions of pairs of devices, depending on their actual distance.
An advantage compared to BLE contact tracing is that BLE
relies on a person’s proximity, while the virus may also be
transmitted minutes after the infected person has left (24). As
a drawback of GPS-based contact analysis it should be noted
that with BLE, signal strength is reduced by obstructions such
as walls and can detect whether proximity is not a personal
contact.

In this study, we analyze encounters or “contacts” derived
from GPS information from cell phones. We employ data col-
lected from a panel of around 1.2 million users in Germany that
have opted in to provide the data for research purposes. The data
records are deidentified. After estimating the aggregate daily
contact distribution in a geographical region (at the level of coun-
ties), we drop all information of geolocation of all contact events.
Thus, individuals cannot be identified for instance by places of
frequent contacts.

With this method we are able to study the social-distancing
behavior of the German population statistically. Employing the
data from the panel, we can find many of the contacts between
members of the panels. We are missing the majority of contacts
in the entire population (those contacts where at least one person
is not having a cell phone or a participating app is not installed or
active). However, we argue that by using graph sampling theory
we can calculate statistics of the contact number distribution for
the population. We can then show that within the data there is

a strong association of cell phone-derived contact data with case
numbers over all phases of the epidemic.

Method
For our analysis we assume that each cell phone is used always by the same
individual. For each cell phone in our representative and anonymous panel
of more than 1 million devices we obtain records that contain up to several
hundred messages per day and per device. We then project the positions
for each message to a predefined tile of about 8 × 8 m. Using an identi-
fication number of the tile, we then scan for coincident presence of two
different individuals on the same tile with the same time stamp rounded
to 2 min (Fig. 1A and SI Appendix) (see ref. 26 for a similar method). We
define as a unique contact each pair of individuals that encountered one
another one or more times during 1 d (27). This choice was motivated by
reasoning that colocation with the same persons at home or work for long
times during a day does presumably not increase the chance of infection
beyond a significant limit. The collected data cover about 1% of the German
population over the entire period of the pandemic, including weeks before
its beginning.

For a detailed analysis of the data we use methods from complex net-
work science. We consider a graph of contacts for each day by assigning
each device to a node of the network, while each contact defines an edge
between the respective nodes (Fig. 1B). We then focus on the graph parame-
ters that determine the simplest measures for epidemic modeling: the mean
degree and the heterogeneity of the degree distribution. For a statistical
estimation of the moments of the degree distribution for the underlying
“real” Germany-wide network we use graph sampling theory described in
SI Appendix.

Results
In Fig. 2 we compare the evolution of the effective reproduction
number (Fig. 2A) estimated from the Nowcasting case numbers
for Germany [(7-d average, 4-d generation time)-R, value from
ref. 28, technical details in ref. 29] with the evolution of the two
considered graph parameters. Fig. 2B shows that the mean num-
ber of contacts of individuals per day was visibly reduced in the
middle of March. This holds particularly in the initial phase of
the outbreak after which the weekly averaged number of con-
tacts per person fell from around 20 to around 9 (27 March).
However, beginning in the middle of April the number of con-
tacts increases again and reaches a relatively stable plateau of
about 75% of the preoutbreak level for the rest of the time.
Interestingly, the contact number increases with the beginning
of mask use, prompting us to wonder whether the perceived
additional safety of the masks leads to a relaxation of personal
distance.

Fig. 1. (A) Our method of identifying encounters by GPS coordinates rests on the colocation of two devices on a geolocation tile within a time interval of
2 min. In the contact graph, pairs of devices are linked if a cospace–time location was found at least once per day. The exemplary network shown in B is
only the part of our total network of phones that is located in Leipzig on 29 February 2020. The size of the dots corresponds to the degree, or number of
contacts, of the node. The layout of nodes is obtained from a spring-force algorithm (25).
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Fig. 2. (A) The effective reproduction number R for Germany based on a
summation of case numbers for 7 d. (B) Mean number of contacts per day
from cell phone records (blue) and 7-d moving average (red). (C) Contact
index per day (blue) and 7-d moving average (red).

The number of contacts does not sufficiently reflect and antic-
ipate the subsequent evolution of the incidence-based R. Our
reasoning is this: While the two curves, for R and the mean
contact number, roughly correspond, we note that the R value
decreases synchronously with the mean degree until both hit
minimal levels, which is not intuitive since the contacts should
precede the infection for a few days (SI Appendix, Fig. S1). As
well, the substantial increase of the number of contacts after
April is not accompanied by an equally strong increase in R.
While the number of contacts goes back up to 75% of its max-
imal value, R stays at values around 1.0 throughout most of the
summer months. We thus conclude that the number of contacts
does not sufficiently reflect and anticipate the subsequent evolu-
tion of the incidence-based R. To achieve this, a more complex
metric is needed.

Friendship Paradox and Contact Index. It is known that for strongly
heterogeneous networks, i.e., if the number of contacts is vari-
able, the reproduction number R as defined from the links on
graphs generally follows the ratio of second to first moment
of the degree distribution but not the first moment (or mean
contact number) (30, 31). This is a consequence of what is some-
times called the friendship paradox and can be understood as
follows (Fig. 3A): The reproduction number includes as a fac-
tor the average number of contacts. The mean number is the
first moment or

∑
k kP(k), where P(k) is the probability dis-

tribution of the number of contacts. The mean k of the nodes
that are connected to a random infected node, however, must
be weighted with a further factor k since nodes with higher
k are connected to the given nodes with higher probability.
The mean is therefore

∑
k k

2P(k) divided by a normalization∑
k kP(k). This ratio of second to first moment defines the

(contact-based) reproduction number for networks based on the
so-called configuration models. In the following, to distinguish
the incidence-based R from the contact-based number, we call
this number the “contact index” (CX) and compare it to R
derived from the incidence numbers. For illustration we show
in Fig. 3B an exemplary simulation of a susceptible-exposed-
infectious-recovered (SEIR) model on a graph. If the graph
is heterogeneous, R (blue) grows superlinear with the contact
number so that the contact number underestimates R. In con-
trast, CX exhibits a linear association in the configuration model
(Fig. 3C) (see SI Appendix for more details on the numerical
simulations).

The degree distribution can indeed be very broad in the case
of social networks and the moments ratio gives a very dif-
ferent number than the mean (the numbers are equal if the
contacts are homogeneous). Particularly we find this to be the
case in our contact graph indicating a strong role of hetero-
geneity in the contact behavior (see below and SI Appendix,
Fig. S2).

In Fig. 2C the curves show the evolution of the contact index
(blue) and its 7-d moving average (red). After the first lock-
down, the contact index stays relatively constant and remains low
even after relaxation of lockdown and during the summer. This
suggests that it reflects and anticipates better the evolution of
R than the mean number of contacts. Fig. 2 C, Inset shows the

A

B C

homogeneous network

Fig. 3. Illustration of the friendship paradox in heterogeneous contact net-
works. (A) An infected individual (red) has the same probability of giving
the infection to each of the susceptible contacts. However, individuals with
large number of contacts, such as the purple one, have a higher chance
to be connected to the infected person. Therefore, the infection is given
with a higher chance to those that have high contact number. As a result,
the mean number of contacts (B) does not represent the effective R (blue
curves) value linearly. Instead, the contact index CX (C) is needed to cor-
rect for the broadness of contact number distribution so that the expected
linear relation is obtained. Blue curves in B and C are obtained by sim-
ulations of the SEIR model on graphs with variable degree distribution
(SI Appendix).
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detailed evolution of the CX before the first lockdown and gives
an idea of how the “normal” social behavior of the population is
reflected in the CX. First, a strongly increased CX, up to 1,000
and more, is seen during weekends, particularly on Fridays and
Saturdays. On other days of the week the CX is at a few hundred.
There are notable exceptions during the working days such as 3
March, a Tuesday. On this day we identified a soccer game of
the German cup to be largely responsible for the increase. The
largest values on 22 and 23 February coincide with the carnival
festivities during that weekend.

The evolution of the contact index during the first wave and
its relation to the reproduction number can be further inspected
in Fig. 4A. Indeed, we can see that strong decreases followed
a number of political interventions: 1) cancellation of soccer
games (three games in the first division on 8 March and one
final game on 9 March) and other large public gatherings; 2)
limiting of public concerts, etc., to a maximum of 50 persons
(13 March); 3) closing of school (16 March); and 4) social-
distancing measures (“lockdown,” 23 March). It should, how-
ever, be kept in mind that companies shifted to home office
during this time. The specific effect of the various measures
is thus hard to distinguish from self-imposed social distancing.
Finally, we note that the CX reflects the return of R toward
1 more accurately than the total number of contacts. The CX
anticipates the R decrease by about 1 wk during the first wave,
while, as described above, the contact number falls concurrently
with R.

The contact index also shows a strong association with the
outbreak’s evolution in the phase after the first wave and dur-
ing the second wave. Fig. 4B zooms in on the time after the
first wave, exhibiting an associated of R and CX. Generally,
the CX anticipates the infection numbers. This holds particu-
larly for the onset and decay of the second surge in October,
which is anticipated by a strong increase and decay of the CX.
A notable omission from this coevolution is the large but short
effect of a local outbreak in June (with 1,413 infections) (32) as
well as an increase of R for a few weeks in July and August. We
assume that a part of these infections was due to travelers who
returned from vacation in other countries with higher incidence
rates. Besides, base levels in Germany were low during the sum-
mer so that even a modest local outbreak can strongly affect the
reproduction number. We can therefore not expect that a similar
behavior is seen in the CX that reflects only connectivity within
the country.

Linear Regression of CX with R. The correlation of CX and R can
be assessed from Fig. 4C, which plots the R values versus the con-
tact index at 17 d earlier showing the predictive power of the CX.
We calculated the Pearson coefficient using weights from the
uncertainty of R (SI Appendix). The Pearson correlation coef-
ficient is maximized for a delay of 17 d between the CX and R
with a coefficient of 0.83 (Fig. 4C, Inset, 95% confidence inter-
val 0.79 to 0.86). A much smaller coefficient is obtained for the
correlation of R and the mean contact number (red curve in Fig.
4C, Inset).

To address the possibility of spurious correlations between
time series (33) we used an autoregressive–moving-average
(ARMA) model to filter out autocorrelations. We found signifi-
cant cross-correlations between CX and R for time lags of 14 to
16 d (see SI Appendix for more information). Since it is known
that the optimal time lag is shifted to higher values if autocorre-
lations are included, a lag of 17 d is fully compatible to this result
for the unfiltered time series (34).

A linear regression of R on CX for a delay of 17 d was applied
for two phases: one before the mandatory use of masks (blue
diagonal line in Fig. 4C) and one after masks were in widespread
use (red diagonal line). We did not find a substantial difference
in the linear approximation. Thus, in contrast to studies that find

B

C

A

Delay

Fig. 4. (A) The evolution of CX and R during and after the first surge in Ger-
many in 2020. We have added time points of notable political interventions
(vertical lines). (B) Evolution after the first wave shows a substantial and
related increase of R and contact index. (C) R and the contact index exhibit
an almost linear relation if plotted with a shift of 17 d. Colors denote dif-
ferent weeks as indicated. Inset shows the Pearson correlation coefficient
against the number of days in delay: R versus CX in green, R versus mean k
in red.

a large protective effect of mask wearing (35) (but also see refs.
36 and 37), our data do not provide significant evidence for an
effect of masks in limiting of infection behavior. Other changes
in health policy measures and restrictions during the same time
may have confounded the effect of masks in our data. It should
also be noted that a recent study found the effect of masks to
be relatively small initially and to become gradually larger over
several weeks (37), which would make it difficult to detect the
change in our data.
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The linear regression fit crosses the R = 1 threshold at a con-
tact index of CXcrit ≈ 38 (95% confidence interval 19 to 57). A
larger CX value would drive the infection behavior into a sus-
tained supercritical regime with R> 1. This observation may be
useful for the tuning of social-distancing measures and the timely
assessment of the measures.

It is instructive to inspect the origin of the large CXs before
the lockdown and of the CX reduction after a lockdown. We
found that indeed a very broad distribution of contact numbers
for individuals is responsible for the large CX values before the
lockdown. After each of the two described surges (March and
November), this distribution becomes much narrower, leading
to a smaller CX. The contact index approach thus covers super-
spreader events, however, from a different point of view. In fact,
a superspreader event connects many people in one place at one
time. These persons might, as to the level that they are included
in our mobile phone panel, pick up several additional contacts
during this event and become what one could call “supercon-
tacters.” As such, they enter the CX with a higher weight and
the superspreader event is, in this sense, represented in our
metric. In our opinion the notion of a superspreader event is
somewhat misleading since it does not matter whether a per-
son has many contacts and spreads the virus in one place or
visits many different places during a day and spreads the virus
several times.

The dependence on “supercontacting” of CX and its higher
R association compared to the mean contact number is further
evidence for the central role of superspreading for the infec-
tion behavior and for effective interventions (see SI Appendix
for more details). Clearly, by far the highest effect on CX was
the closing of event venues and cancellation of sport and other
events in early March 2020. We expect that further research into
CX and other (local and global) contact graph metrics can help
to rank NPIs according to their reduction of the CX. All met-
rics that are used for NPI assessment have their error sources
and it seems to us that, because of the early time point and
technical methodology of the GPS-based contact estimation,
CX can be regarded as one that is less confounded by often-
times variable human behavior (e.g., variations in the number
of tests).

Discussion
In this paper we have devised a graph-theory–based method that
can take full advantage of the information contained in bulk cell
phone data. We showed a strong association between the effec-
tive R and the GPS-assessed contact behavior of the German
population. We found a high correlation of R with the contact
index CX, which accounts for a heterogeneous contact behav-
ior of the population and superspreading behavior. The CX
allows us to quantitatively evaluate risks for certain behavior, for
instance by regional analysis (SI Appendix, Fig. S4), and to assess
the efficacy of vaccination in reducing the CX (SI Appendix,
Fig. S5).

It should be clear from our discussion that aggregated mobility
data alone do not suffice to derive strong and reliable asser-
tions to predict infection behavior. Aggregated mobility does
not necessarily correlate with contact/transmission behavior. For
instance, correlation was shown to be large directly after the first
wave in the United States but much less so in the period there-
after (23). The contact data we analyze, however, do causally
precede, on the population level, the infection numbers. Con-
tact data, however, carry a higher need for ethical consideration
since the geographical resolution must be high and the data can

be aggregated only after the initial contact analysis. On the other
hand, the high predictive power shown here and the need for
data-enabled decision making may shift the political debate in
the future so that more countries decide to opt for an efficient
contact tracking, particularly in the statistical usage proposed by
us, that can be done with deidentified data. Regardless, to make
the method even safer we propose to increase data security by
additional measures, such as secured storage and possible double
encryptions of geolocations (26).

How plausible is the time delay of 17 d between the effective
R and the contact index? Since we have used the R value based
on 7-d intervals (attributed to the last day of each 14-d inter-
val) and a 4-d average of the case numbers (attributed to the
last day of the 4 d) we expect a delay of 7 + 2 d between the
actual onset of symptoms and report in the table we have used
(38). Thus, the delay of 17 d is close to the expected one if one
adds 4 to 7 d of incubation time (3). The remaining mismatch
could result from inaccuracies in the imputation of data where
the onset of symptoms is not known or where no symptoms were
reported (38).

The method we have presented here is not complete and may
be improved in several ways in the future. First, we did not
include international travel activity. During the year 2020 it was
apparent that transmission of the virus between different coun-
tries strongly affects the dynamics regionally. For instance, it is
was shown that almost 50% of cases in Germany during the main
vacation time in July and August were related to returns from
other countries (39). Further, we record for each device only the
number of different phones per day in contact. That is, we do not
consider whether the contact to a specific device/individual was
long or short, which may play a decisive role in the transmission
of the virus. Thus, we may overestimate the role of short con-
tacts, for instance in shops. However, in view of the discussion
on spreading by aerosol particles, it is possible that even a short
presence of an infectious individual may be sufficient in some
circumstances (24). We further note that smart phones and the
specific apps the data gathering is based on are not used with any
groups in the population in the same way. For instance, since cell
phones are not used as frequently by children as by adults, we do
not expect to cover children with our method.

It should be noted that the degree distribution is only one
graph-based factor that enters the epidemic threshold. A real
network could also have, for example, clustering and degree cor-
relations that may affect the R value (31). This may also explain
why the CX-R relation in our chart does not go through the ori-
gin and varies over a much wider relative range than the 7-d R
value for the first wave in Germany. Further work is needed to
clarify the impact of these graph properties.

Data Availability. Some study data are available upon request.
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