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Abstract

Plant detritus represents the major source of soil carbon (C) and nitrogen (N), and changes

in its quantity can influence below-ground biogeochemical processes in forests. However,

we lack a mechanistic understanding of how above- and belowground detrital inputs affect

soil C and N in mountain forests in an arid land. Here, we explored the effects of litter and

root manipulations (control (CK), doubled litter input (DL), removal of litter (NL), root exclu-

sion (NR), and a combination of litter removal and root exclusion (NI)) on soil C and N con-

centrations, enzyme activity and microbial biomass during a 2-year field experiment. We

found that DL had no significant effect on soil total organic carbon (SOC) and total nitrogen

(TN) but significantly increased soil dissolved organic carbon (DOC), microbial biomass C,

N and inorganic N as well as soil cellulase, phosphatase and peroxidase activities. Con-

versely, NL and NR reduced soil C and N concentrations and enzyme activities. We also

found an increase in the biomass of soil bacteria, fungi and actinomycetes in the DL treat-

ment, while NL reduced the biomass of gram-positive bacteria, gram-negative bacteria and

fungi by 5.15%, 17.50% and 14.17%, respectively. The NR decreased the biomass of these

three taxonomic groups by 8.97%, 22.11% and 21.36%, respectively. Correlation analysis

showed that soil biotic factors (enzyme activity and microbial biomass) and abiotic factors

(soil moisture content) significantly controlled the change in soil C and N concentrations (P <
0.01). In brief, we found that the short-term input of plant detritus could markedly affect the

concentrations and biological characteristics of the C and N fractions in soil. The removal

experiment indicated that the contribution of roots to soil nutrients is greater than that of the

litter.

Introduction

Forest soil has attracted much attention because of its enormous capacity for storing carbon

(C) and nitrogen (N) [1]. Slight variations in forest soil C and N storage profoundly affect the

C and N balance in terrestrial ecosystems [2]. In forest ecosystems, litter and roots are impor-

tant links between plants and soil; they are primary sources of soil C and N [3] and affect the
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formation and turnover of soil C and N by altering soil microbial activity and the soil microen-

vironment (e.g. soil temperature, soil moisture and soil pH) [4, 5]. Thus, litter and root turn-

over play a critical role in the C and N cycles between plants and soil [4]. However,

environmental change (e.g. global warming, increased precipitation, drought) will significantly

impact the net primary productivity of forests, thereby changing the quantity of aboveground

and belowground litter input into the soil [6]. Changes in the quantity of aboveground and

belowground litter can change soil physicochemical properties [7], and soil microbial commu-

nities [8] and ultimately have an important impact on biogeochemical processes [4].

In situ manipulation experiments, such as detritus input and removal treatment (DIRT),

can explore the effect of plant detritus on soil C and N characteristics by changing the amount

of roots and litter inputs to the soil [9, 10]. Extensive studies have also indicated that soil C and

N contents have different responses to litter addition (e.g. increasing or no significant change)

[11, 12]. For example, a doubled litter input (DL) treatment increased the soil organic carbon

(SOC) content by 6–12% in a temperate oak forest [13]. However, in beech and poplar forests,

the same treatment had no remarkable influence on SOC and total nitrogen (TN) over the 10-

or 14-year study period [11, 14]. These results may be in part attributable to differences in the

duration of the soil priming effect and the balance between new C/N inputs and C/N losses

caused by soil mineralization [15]. The response of the soil C and N fractions to litter addition

was similar to that of SOC and TN. For example, Miao et al. (2019) [16] demonstrated that soil

microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) increased signifi-

cantly in the DL treatment after the a 2.5-year study period. However, Wang et al. (2019) [17]

found that short-term litter addition had no significant influence on soil labile C and N con-

tents in eucalyptus forests. Furthermore, a meta-analysis based on 68 plant detritus addition

experiments showed that litter removal (NL) could reduce soil C and N contents [7]. Reynolds

et al. (2018) [18] reported that 20 years of NL reduced the soil C content by approximately

30% in temperate forests. However, there was no significant effect of long-term NL on MBC

and MBN in hardwood forests [19]. These studies have indicated that the changing plant detri-

tus input results in a nonlinear relationship with soil C and N [20, 21], which may be attributed

to varying input characteristics and decomposition rates in different forest ecosystems, as well

as soil C/N saturation and storage potential [22]. Therefore, conducting the DIRT experiment

at more sites will be instrumental to comprehensively understand the effects of the changing

litter and roots on the soil C and N contents of forest ecosystems.

Many studies have shown that soil C and N mainly originate from the decomposition of

aboveground litter and the secretion of underground roots [23, 24]. Moreover, litter and plant

roots have different material structures and decomposition rates. Therefore, scholars quanti-

fied the relative contribution of aboveground and underground detritus to soil C and N [25]

and found that they have different degrees of influence on soil C and N characteristics in

diverse forest ecosystems. For example, Wu et al. (2018) [26] found that the decrease in under-

ground detritus had a greater impact on SOC and MBC contents than aboveground litter.

However, in the Harvard forest, the litter removal treatment resulted in a larger decrease in

soil C and N contents than that of the no-roots treatments [15]. These results may be due to

changes in soil C and N budgets and factors influencing them. Additionally, previous research

has mainly focused on the effect of litter and root manipulations on topsoil (0–20 cm), neglect-

ing the changes in C and N in deeper soil and limiting the understanding of C and N turnover

and determinants in deeper soil [27, 28]. Recent evidence has shown that the amount of SOC

stored in deeper soil is estimated to be approximately 77% of the SOC pool [29], which func-

tions as a potential C sink. As a crucial component of the terrestrial C cycle, the deeper soil C

content is affected by environmental changes (e.g. the variation in soil water and heat factors

caused by the difference in litter quantity) [30, 31]. Understanding the changes in the deeper

PLOS ONE Effects of litter and root manipulations on soil carbon and nitrogen

PLOS ONE | https://doi.org/10.1371/journal.pone.0247725 February 25, 2021 2 / 18

https://doi.org/10.1371/journal.pone.0247725


soil C pool is critical to accurately assess the role of forest soil C in the regional C cycle. In pre-

vious studies, the impact of litter and root manipulations on soil C and N appeared context-

dependent, varying across forest ecosystem types and with the duration of the experiments

and litter quantity and quality [16, 17, 20]. As a result, there is uncertainty in our understand-

ing of how forest soil C and N can respond to environmental change. Therefore, it is urgent to

thoroughly study the characteristics and mechanisms of C and N cycling in different types of

forest soils [11].

Soil microorganisms are important factors connecting the plant and soil material cycles

and play a vital role in forest litter decomposition and the soil C and N cycles [32]. Soil micro-

organisms can not only transform plant-derived organic matter into soil organic matter by

participating in litter decomposition and their own metabolic activities [33], but also affect the

process of soil C and N degradation [34]. Previous studies indicated that increased microbial

activity can accelerate the decomposition of soil C and N [35, 36]. In addition, changes in

plant detritus can affect soil microbial activity and community structure by altering soil nutri-

ent availability and stability [37]. In turn, the microbial activities control the nutrient availabil-

ity to plants [38]. It is essential to consider the role of soil microorganisms to better

understand the mechanism of plant detritus change on soil C, N and nutrient cycles.

Tianshan Mountain is the largest mountain forest distribution area in Xinjiang and is

extremely sensitive to climate change [39]. Schrenk’s spruce is the dominant species in the Tian-

shan forest ecosystem and plays a vital role in fixing nitrogen, releasing oxygen, regulating the

climate, and maintaining the ecological environment. Schrenk’s spruce forest systems have low-

quality (high C/N ratio) litter and a shallow the root system [40]. However, the influence of this

type of litter input and shallow roots on soil C and N characteristics and its mechanisms remain

unclear. Therefore, we conducted a two-year experiment to investigate how root and litter

inputs affect soil C and N dynamics, documenting the role of biotic and abiotic variables linking

litter and roots to soil C and N. We addressed the following questions: (1) Does the short-term

addition and removal of low-quality (high C/N ratio) litter and shallow roots significantly affect

soil C and N pools? (2) What is the relative importance of litter and roots on soil C and N?

Materials and methods

Study site

The study was established in a area of Schrenk’s spruce (Picea schrenkiana) forest near the

Nanshan Observation Station of Xinjiang Observatory, Northwest China (87.18˚E, 43.47˚N),

at an altitude of approximately 2080 m. The region has an arid, temperate continental climate

with distinct cold and warm seasons. The average annual temperature is 0–4˚C, the average

annual precipitation is approximately 500 mm, and the frost-free period is 88.6 days [41].

Schrenk’s spruce is a dominant species of forest ecosystem in Tianshan. The stand is mostly a

pristine forest, with a height of approximately 16 m and a canopy density of 0.6–0.8. The soil

of this area is mainly gray-brown forest soil over calcium rock parent material [42], which is

weakly acidic and has a thick humus layer.

Experimental design and soil sampling

In September 2017, three 50 m × 50 m representative plots with the same altitude, similar tree age

and slope were established in the study site, with at least 100 m spacing between each plot. Five 1

m × 1 m subplots were set in each plot for different treatments: 1) the control group (CK), 2) dou-

bled litter inputs (DL), 3) removal of litter (NL), 4) root exclusion (NR), and 5) a combination of

litter removal and root exclusion (NI) (as shown in Fig 1). In the CK treatment, natural above-

and belowground litter inputs were allowed. The input of aboveground litter was doubled in the
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double litter subplots by placing litter collected monthly from NL subplots. In the NL treatment,

the aboveground litter was collected with a 100 mesh nylon net placed 0.5 m above the ground,

and the litter was removed from the subplot every month. For the NR treatment, a 0.1 m wide

and 1 m deep trench was dug around each subplot, and then the living roots were cut. PVC

boards were inserted into the trenches to prevent new roots from growing into the subplot. Both

the aboveground litter and the roots were excluded from the NI treatment.

In September 2019, soil samples were collected with a soil drill from four depths (0–10 cm,

10–20 cm, 20–30 cm, and 30–50 cm) in each 1 m × 1 m subplot. Then, residual material (e.g.

plant roots and stones) was removed, and the soil was transported to the laboratory in plastic

bags. Some part of the samples were stored in an ultralow temperature freezer at -80˚C to

determine the microbial community activity and composition. The remaining of soil samples

were dried and then sieved in order to determine physical and chemical properties.

Soil analysis

Soil C indices include SOC, dissolved organic carbon (DOC), and MBC. The SOC was mea-

sured using the potassium dichromate method [43]; DOC was determined by cold water

extraction [21]; and MBC was assayed by chloroform fumigation extraction [44].

Fig 1. Location of this study and experiment treatments. Abbreviations refer to each treatment as follows: CK: control; DL: doubled litter inputs treatment; NL:

removal of litter treatment; NR: root removal treatment; NI: root and litter exclusion treatment. black bars represent PVC boards for excluding roots.

https://doi.org/10.1371/journal.pone.0247725.g001
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Soil N indices include TN, MBN, ammonium N and nitrate N. TN was measured by the

semimicro Kjeldahl method [43]; nitrate N was determined by KCl extraction; ammonium N

was measured using indophenol blue colorimetry [45]; and MBN was determined by chloro-

form fumigation-extraction [44].

Soil enzyme activity indices include cellulase, peroxidase, β-n-acetylglucosaminidase, and

phosphatase. Cellulase activity was determined by 3,5-dinitrosalicylic acid colorimetry [46],

peroxidase activity was assayed by colorimetry [47], and phosphatase activity was determined

using disodium phenylphosphate colorimetry [48]. β-N-acetylglucosidase activity was ana-

lyzed with a multifunctional microplate reader [47].

Soil microbial indices include bacterial biomass, fungal biomass and actinomycete biomass.

Soil microbial biomass and community composition were calculated based on phospholipid

fatty acids (PLFAs). The PLFAs i14:0, a16:0, i15:0, a15:0, i16:0, i17:0 and a17:0 were used as

indicators of gram-positive bacteria. The PLFAs 16:1w7c, cy17:0, 17:1w8c, 10Me17:1w7c, and

18:1w7c were used as indicators of gram-negative bacteria. The unsaturated PLFAs 18:1ω9c,

18:2ω6, 9c were used as indicators of fungi. PLFAs 10Me16:0 and 10Me17:0 were used as indi-

cators of actinomycete [26].

Statistical analysis

Statistical analyses were conducted using SPSS 17.0 (SPSS, IBM, USA). One-way ANOVA was

used to test the effects of litter and root manipulations on soil C and N and biological charac-

teristics, and the least significant difference (LSD) was processed to test the differences

between treatments and soil layers. Redundancy analyses (RDA) were applied to identify the

biotic and abiotic factors affecting soil C and N characteristics. Origin 9.0 (Origin Lab, Massa-

chusetts, USA) and Canoco 4.5 (Biometris, Wageningen, The Netherlands) were used for

drawing graphics.

Results

Variations in soil C concentration

The concentrations of SOC, DOC and MBC decreased with soil depth (Fig 2), with the con-

centration between 0 and 10 cm being significantly higher than that between 20 and 50 cm

(P< 0.05). The effects of litter and root manipulations on the SOC, DOC and MBC were dif-

ferent (Fig 2). DL treatment had no marked effect on SOC concentration (P = 0.853) (Fig 2A)

but had a noticeable influence on DOC (P = 0.039) (Fig 2B). Compared with CK, DL increased

soil DOC and MBC by 17.65% and 10.89%, respectively. The NR, NL, and NI treatments

decreased the soil DOC by 31.23%, 15.44%, and 35.06%, respectively, and the soil MBC by

12.88%, 7.55%, and 13.46%, respectively. In contrast, the decrease in SOC concentration in the

NR treatment (-43.92%) was greater than that in the NL treatment (-12.13%).

Variations in soil N concentration

The effects of litter and root manipulations on the soil TN, MBN, ammonium N and nitrate N

were not consistent (Fig 3). DL did not significantly influence soil TN (P = 0.098) (Fig 3A) but

significantly increased MBN, ammonium N, and nitrate N, which increased by 10.89%, 7.19%,

and 7.79%, respectively. Compared to the CK, NL, NR and NI treatments decreased the soil

TN by 3.42%, 23.48% and 55.40%, the MBN by 7.55%, 12.88% and 13.46%, and the ammo-

nium N by 28.98%, 23.79% and 34.53%, respectively. However, the concentration of nitrate N

increased by 4.69%, 35.04% and 10.07% in the NL, NR and NI treatments, respectively, com-

pared to the CK.
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Variations in soil enzyme activity and microbial biomass

After two years of experimental manipulations, the activities of cellulase and phosphatase in

the 0–20 cm layer were markedly higher in the DL treatment than in relative to the CK treat-

ment (P = 0.044 and 0.047 for cellulase and phosphatase, respectively), whereas the β- N-acet-

ylglucosaminidase activities did not significantly increase (Fig 4). The activities of cellulase, β-

N-acetylglucosidase and phosphatase decreased significantly in the NR and NI treatments

(NR: P = 0.001, P = 0.001, P = 0.015; NI: P = 0.001, P = 0.001, P = 0.009), but the peroxidase

Fig 2. Mean soil organic carbon concentration (a), dissolved organic carbon concentration (b), and soil microbial carbon concentration (c) under different

treatments (n = 12 for each treatment). Abbreviations refer to each treatment as follows: CK: control; DL: doubled litter inputs treatment; NL: removal of litter

treatment; NR: root removal treatment; NI: root and litter exclusion treatment. Lowercase letters indicate differences between soil layers in the same treatment at

the p< 0.05 level; uppercase letters indicate differences between treatments within the same soil layer at the p< 0.05 level.

https://doi.org/10.1371/journal.pone.0247725.g002
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activities increased slightly. Moreover, litter removal and addition had a greater effect on the

enzymatic activity of surface soil than in deeper soil.

As shown in Fig 5, litter and root manipulations had different effects on soil microbial bio-

mass. The biomass of gram-positive bacteria, gram-negative bacteria and actinomycetes in the

0–10 cm layer was, 13.68%, 13.14% and 22.81% higher, respectively, in the DL treatment than

in the CK (gram-positive bacteria: P = 0.048, gram-negative bacteria: P = 0.001, actinomycetes:

P = 0.007). The Biomass of gram-positive bacteria, gram-negative bacteria and fungi was

8.97%, 22.11% and 21.36% lower in the NR treatment than in the CK treatment, and 5.15%,

Fig 3. Change in soil nitrogen concentration under different treatments (n = 12 for each treatment). CK: control; DL: doubled litter inputs treatment; NL:

removal of litter treatment; NR: root removal treatment; NI: root and litter exclusion treatment. Lowercase letters indicate differences between soil layers in the

same treatment at the p< 0.05 level; uppercase letters indicate differences between treatments within the same soil layer at the p< 0.05 level.

https://doi.org/10.1371/journal.pone.0247725.g003

PLOS ONE Effects of litter and root manipulations on soil carbon and nitrogen

PLOS ONE | https://doi.org/10.1371/journal.pone.0247725 February 25, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0247725.g003
https://doi.org/10.1371/journal.pone.0247725


17.50% and 14.17% lower in the NL treatment than in the CK treatment, respectively. How-

ever, compared with the CK, the biomass of actinomycetes increased by 14.21%, 21.99% and

8.96% in the NL, NR, and NI treatments, respectively.

Relationship between soil C and N and biotic and abiotic factors

The interpretation of the soil C, N and their fractions in the first (RDA1) and second axes

(RDA2) was 72.0% and 12.1%, respectively, and the cumulative interpretation of C and N indi-

cators was 84.1% (Table 1). The cumulative interpretation of the relationship between soil C,

Fig 4. Changes in soil enzyme activities under different treatments (n = 12 for each treatment). CK: control; DL: doubled litter inputs treatment; NL: removal of

litter treatment; NR: root exclusion treatment; NI: root exclusion and litter removal treatment. Lowercase letters indicate differences between soil layers in the same

treatment at the p< 0.05 level; uppercase letters indicate differences between treatments within the same soil layer at the p< 0.05 level.

https://doi.org/10.1371/journal.pone.0247725.g004
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Fig 5. Change in soil PLFA biomass under different treatments (n = 12 for each treatment). CK: control; DL: doubled litter inputs treatment; NL: removal of

litter treatment; NR: root removal treatment; NI: root exclusion and litter removal treatment. Lowercase letters indicate differences between soil layers in the same

treatment at the p< 0.05 level; uppercase letters indicate differences between treatments within the same soil layer at the p< 0.05 level.

https://doi.org/10.1371/journal.pone.0247725.g005

Table 1. RDA of the eigenvalues of soil C and N.

Axes 1 2 3 4

Eigenvalues 72.0% 12.1% 2.9% 1.6%

Explained variation (cumulative) 71.9% 84.1% 87.0% 88.6%

Cumulative eigenvalues of the relationship between soil carbon and nitrogen and

other soil factors

96.8% 88.4% 77.7% 92.38%

https://doi.org/10.1371/journal.pone.0247725.t001
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N and their indicators and other factors reached 88.4%. Therefore, the first two axes can better

explain the relationship between soil C, N and soil environmental factors, and it is mainly

determined by the first axis.

The RDA indicated that the soil β-N-acetylglucosaminidase activity had a strong positive

correlation with soil ammonium N concentration (Fig 6). Likewise, it showed a strong positive

correlation between SOC and phosphatase activity. There was also a remarkable positive corre-

lation between DOC and cellulase activity. Except for soil pH, the interpretation of the first

seven factors for soil C and N and their fractions were 62.3%, 54.5%, 54.2%, 52.9%, 49.9%,

49.4%, 42.3%, 31.5%, and 29.5% (Table 2). They were important factors affecting soil C and N

concentrations under different litter and root manipulations.

Discussion

Effects of litter addition on soil C, N, enzyme activity and microorganisms

Litter is an important link between the material cycle and energy flow in forests, providing

nutrients for soil through microbial decomposition and leaching, thereby affecting soil C and

N recycling [49, 50]. Our results showed that DL treatment has no significant effect on SOC

concentration but significantly increases soil DOC concentration. Previous studies have dem-

onstrated that adding fresh litter can increase the amount of activated C input into the soil and

induce the decomposition of old SOC [20, 51]. Increasing low-quality litter can cause indige-

nous soil microorganisms to grow vigorously and accelerate the decomposition rate of pre-

existing soil organic matter, and the excess C will return to the atmosphere in the form of CO2

[52]. Thus, the decomposition of pre-existing soil C offsets the new C input into the soil by lit-

ter [20]. Moreover, changes in SOC can take a long time to be detected; therefore, the 2-years

is likely not sufficient to detect significant changes. This finding is inconsistent with the results

by Cusack et al. (2018) [12] that the litter can significantly increase SOC, presumably due to

the differences in tree species, litter quality and soil C saturation. DOC and MBC were more

sensitive to litter addition, likely because litter addition increases the concentration of available

organic matter in soil [53]. Another potential explanation for our results is that doubling the

litter may provide a favorable microenvironment and metabolism materials for soil microor-

ganisms, improve microbial biomass, and increase soil DOC concentrations [4, 54]. Further-

more, lignin degradation can also increase the production of soil DOC. Phenols produced by

lignin degradation under the DL treatment increased the source of soil DOC [55].

Soil N is a crucial element for plant growth, while plant debris, in turn, can affect the

dynamics and transformation of forest soil N. In this study, the DL treatment had no signifi-

cant on soil TN but led to a marked increase in the soil MBN, ammonium N and nitrate N

concentrations. Doubling the litter alters the decomposition rate of litter, provides numerous

soluble substances and carbohydrates to the soil and increases soil N input [16, 56]. Addition-

ally, the increase in litter improves the soil hydrothermal environment and increases the bio-

mass of bacteria and fungi in the litter layer and the rate of soil N mineralization, eventually

triggering increases in soil MBN and inorganic N [57, 58]. Our results do not conform with

the results of Rinnan et al. (2008) [59], who found that litter addition had no remarkable effect

on soil ammonium N and MBN in a subarctic heath ecosystem. This difference presumably

was a result of the difference in microbial processes caused by climate conditions and experi-

ment durations.

Soil enzymes and microorganisms are involved in the soil nutrient cycle, energy flow and

organic matter decomposition and transformation, which are closely related to soil C and N

dynamics [60]. In addition to β-N-acetylglucosaminidase, doubling the litter significantly

increased soil cellulase, phosphatase, peroxidase activity and soil microbial biomass. Given
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that litter addition improves soil water, gas, heat and other factors and increases soil C and N

concentrations, it would also provide additional substrate sources for soil enzymes and micro-

organisms and promote the growth and metabolism of soil microorganisms [4, 7]. Another

Fig 6. Redundancy analysis of soil carbon and nitrogen, enzyme activity and microorganisms. The filled arrow represents soil carbon and nitrogen and its

fractions, and the open arrows represent soil physical, chemical and biotic factors. Symbols: pH, soil pH; NO3-, soil nitrate nitrogen; Actinomc, soil

actinomycetes; Per, soil peroxidase; MBC, soil microbial biomass carbon; MBN, soil microbial biomass nitrogen; G+, gram-positive bacteria; Fungi, soil fungi;

Phosphate, soil phosphatase; TOC, soil organic carbon; DOC, soil dissolved organic carbon; Moisture, soil moisture content; G-, gram-negative bacteria; NH4+,

soil ammonium nitrogen; Cellulase, soil cellulase; β-N, soil β -N-acetylglucosaminidase; TN, total nitrogen.

https://doi.org/10.1371/journal.pone.0247725.g006
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possible explanation for this phenomenon is that litter will also release enzymes to the soil dur-

ing the decomposition process [61]. However, for β-N-acetylglucosaminidase, DL can increase

the available N in the soil and provide the N content required for the growth of microorgan-

isms and plants. Soil microorganisms do not need to secrete a large amount of β-N-acetylglu-

cosaminidase to obtain N, so it does not increase significantly [62].

Effects of combined root exclusion and litter removal on soil C, N, enzyme

activity, and microorganisms

In this study, soil C and N concentrations decreased in the NL and NR treatments. We attri-

bute this finding to two mechanisms. First, the removal of plant detritus blocks exudates from

litter and root systems and reduces the input of soil active C and N [63]. Second, the removal

of litter and roots reduced the soil water retention capacity and accelerated the leaching of soil

nutrients [64], which resulted in a decrease in soil C and N concentrations. Similarly, our

observations of decreased soil microbial biomass (gram-positive bacteria, gram-negative bacte-

ria and fungi) in the NL and NR treatments are presumably driven by the decline in soil nutri-

ents and changes in the soil microbial habitat. The removal of litter and root reduces the

availability of soil nutrients and the substrate C source required for microbial activity [65].

Imbalanced soil nutrients can inhibit microbial activity. Alternatively, the soil is exposed to

intense light and rain when the litter is removed [66], creating suboptimal or lethal conditions

for soil microorganisms, possibly damaging the mycelium structure [67]. Given that soil

microorganisms are closely associated with the production of enzymes [68], the soil enzyme

activity is correspondingly reduced with the decrease in soil microorganisms. Furthermore,

removing plant detritus reduces soil enzyme activity by lowering the substrate concentration

of the soil enzymatic reaction [69].

We found that the soil nitrate concentration increased in the NL and NR treatments. We

speculate that removing litter increases the contact between the soil and atmosphere, improv-

ing soil ventilation, and providing sufficient oxygen for soil nitrification [65]. Moreover, the

exclusion of roots relieved the inhibition of phenols and organic acids on soil nitrification and

blocked soil nitrates removal by nearby plants [70, 71]. The combination of the two increased

the soil nitrate N concentration.

Our results revealed that the NL and NR treatments increased soil actinomycete biomass

relative to the CK. This result may be because NL reduces the soil water content, alleviates the

Table 2. Importance ranking and significance test of physical and chemical factor explanatory quantity.

Index Order of importance Interpretation of environmental factors /% F P
phosphatase 1 62.3 29.8 0.002

G+ 2 54.5 21.6 0.002

per 3 54.2 21.3 0.002

Fungi 4 52.9 20.2 0.002

Moisture 5 49.9 17.9 0.002

G- 6 49.4 17.6 0.002

β-N 7 42.3 13.2 0.002

cellulase 8 31.5 8.3 0.006

Actinomycetes 9 29.5 7.5 0.008

pH 10 11.8 2.4 0.11

Symbols: pH, soil pH; Actinomc, soil actinomycetes; Per, soil peroxidase; G+, gram-positive bacteria; Fungi, soil fungi; Phosphate, soil phosphatase; Moisture, soil

moisture content; G-, gram-negative bacteria; cellulase, soil cellulase; β-N, soil β—N-acetylglucosaminidase.

https://doi.org/10.1371/journal.pone.0247725.t002

PLOS ONE Effects of litter and root manipulations on soil carbon and nitrogen

PLOS ONE | https://doi.org/10.1371/journal.pone.0247725 February 25, 2021 12 / 18

https://doi.org/10.1371/journal.pone.0247725.t002
https://doi.org/10.1371/journal.pone.0247725


competition between soil actinomycetes and other bacterial groups, and thus increases the

number of drought-resistant actinomycetes [72]. In addition, previous studies have indicated

that soil actinomycetes are associated with the degradation of refractory C, such as lignin, and

thus actinomycete numbers can increase as the number of live roots decreases [73]. Our results

also revealed that NR had a greater impact on soil C and N characteristics and biological activi-

ties than the NL, congruent with previous findings [11, 63]. As the main source of organic mat-

ter, roots, are in direct contact with mineral soil [74], and litter must input nutrients into the

soil through leaching and decomposition [75, 76]. NR reduced root exudates and mycorrhizal

hyphae and inhibited the formation of soil aggregates [77], thereby reducing the physical pro-

tection of SOC stability [78]. Furthermore, the accumulation of root-derived aliphatic com-

pounds (a source of organic carbon) in soil was greater than that in litter [79]. Another

possible explanation is the slow decomposition rate of needles and the short experiment dura-

tion relative to the average residence time of litter [80].

Relationship between soil C and N and other factors under different litter

inputs

Changes in litter quantity and quality can affect soil C and N dynamics by affecting the soil

environment and biological activity [81, 82]. Several studies have demonstrated that microor-

ganisms are the crucial driving factors for cycling soil C and N [83]. We found that soil micro-

bial groups were positively correlated with soil C and N concentrations. This finding may be

because the change in the amount of plant detritus under different treatments affects the C

and N required for microbial metabolism, altering the rate of microbial decomposition of

organic matter, humus synthesis, and C mineralization [9, 84]. Additionally, microorganisms

store soil C and other elements in their cells. Therefore, soil microorganisms are closely related

to changes in soil nutrients.

Soil enzymes are involved in soil C mineralization, oxidation-reduction and other pro-

cesses, which are the main driving factors of soil nutrient cycling [85]. In this study, phospha-

tase activity is closely related to SOC. It seems likely that phosphatase changes the content of

soil nutrients by enzymatic reactions, participates in the decomposition and mineralization of

SOC, and promotes the transformation of soil C and N [86]. A remarkable positive correlation

between DOC and cellulase was observed in this study, suggesting that the soil cellulase

decomposes insoluble cellulose and lignin into water-soluble cellobiose, fructose and other

small molecules, promoting the formation of active organic carbon [87]. Conversely, the

increase in active organic C will provide sufficient substrate sources for enzymatic reactions.

We found a remarkable positive correlation between β-N-acetylglucosidase and soil ammo-

nium N concentration. It may be that β- N-acetylglucosidase can transform chitin into amino

sugars. Amino sugars are crucial components and sources of soil active organic N and mineral

N [88].

Conclusions

This study demonstrates that detritus manipulations have different effects on soil properties

over a short, two-year period. DL treatment significantly increased soil active C, inorganic N,

microbial biomass and enzymatic activity in the surface soil. Litter and root removal signifi-

cantly reduced soil C, N, enzyme activity and microbial biomass. Collectively, the effect of the

belowground litter on soil C, N and biological characteristics was greater than that of the

aboveground litter. We found that the above- and belowground detritus input controlled the

alteration of soil C and N by changing biotic (enzyme activity and microbial biomass) and abi-

otic (water content) factors in the studied Schrenk’s spruce forest. These results are of great
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significance for understanding of the soil C and N turnover of Schrenk’s spruce forest under

global change. Future studies are to increase molecular and microbial levels understanding

and keep observing over a longer time period, which will help improve understanding of forest

soil C and N stability turnover mechanisms.
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