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Abstract
The diversity of traits associated with plant regeneration is often shaped by functional 
trade-offs where plants typically do not excel at every function because resources al-
located to one function cannot be allocated to another. By analyzing correlations 
among seed traits, empirical studies have shown that there is a trade-off between 
seedling development and the occupation of new habitats, although only a small range 
of taxa have been tested; whether such trade-off exists in a biodiverse and complex 
landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a 
biodiversity hotspot of the Mountains of Southwest China and analyzed the relation-
ship between seed mass and the number of seeds and between seed mass and time to 
germination. Our results showed that seed mass was negatively correlated with seed 
number but positively correlated with time to germination. The same trend was found 
regardless of variation in life-form and phylogenetic conservatism. Furthermore, the 
relation between seed mass and other seed traits was randomly dispersed across the 
phylogeny at both the order and family levels. Collectively, results suggest that there 
is a functional trade-off between seedling development and new habitat occupation 
for seed plants in this region. Larger seeds tend to produce fewer seedlings but with 
greater fitness compared to those produced by smaller seeds, whereas smaller seeds 
tend to have a larger number of seeds that germinate faster compared to large-seeded 
species. Apart from genetic constraints, species that produce large seeds will succeed 
in sites where resource availability is low, whereas species with high colonization abil-
ity (those that produce a high number of seeds per fruit) will succeed in new niches. 
This study provides a mechanistic explanation for the relatively high levels of plant 
diversity currently found in a heterogeneous region of the Mountains of Southwest 
China.
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1  | INTRODUCTION

Functional traits associated with species coexistence often result in 
trade-offs due to disparate allocations of limited resources (Leishman, 
2001; Liu & Ma, 2015; Reich, 2014). In seed plants, this ecological 
strategy has been demonstrated in the leaves, stems, fruits (refer-
ring to seedling recruitment), and seeds and at the whole plant level 
(Chave et al., 2009; Moles, Ackerly, Webb, Tweddle, Dickie, Pitman, 
et al., 2005; Muller-Landau, 2010; Muñoz, Schaefer, Böhning-Gaese, 
& Schleuning, 2016; Philipson et al., 2014; Wright et al., 2010; Wright 
et al., 2004). Trade-offs associated with seed traits play an import-
ant role in explaining species coexistence (Muller-Landau, 2010). It 
is widely known that seed traits are closely related to seedling de-
velopment and new habitat occupation (Fenner & Thompson, 2005; 
Kleyheeg, Treep, de Jager, Nolet, & Soons, 2017). For example, seed 
mass can influence the initial size of the seedling by providing pro-
visions during the early stages of a seedling’s life (Coomes & Grubb, 
2003; Hu, Zhang, Wu, & Baskin, 2017; Ozinga et al., 2005; Westoby, 
Falster, Moles, Vesk, & Wright, 2002). Alternatively, the number of 
seeds a plant produces can directly contribute to its colonization 
ability as the number of seeds available in the surrounding landscape 
will determine how many seeds land in suitable patches, given that 
all seeds have the same dispersal effectiveness (Coomes & Grubb, 
2003; Coomes, Rees, Grubb, & Turnbull, 2002; Ozinga et al., 2005). 
Furthermore, rapid germination can provide a positive advantage for 
the survival of individuals as seeds gain a longer growing season for 
their seedlings and reduce the impact of neighboring plants at the 
colonization stage (Donohue, de Casas, Burghardt, Kovach, & Willis, 
2010; Dubois & Cheptou, 2012); long germination times (slow ger-
mination) is a bet hedging strategy that can increase the risk of los-
ing a cohort of seedlings (Norden et al., 2009). Analyzing correlations 
between seed traits can provide novel insights into the presence of 
trade-offs between those associated with seedling development and 
those associated with new habitat occupation (Chave et al., 2009).

Previous studies have shown that there is a negative correlation 
between seed mass and the number of seeds at the interspecific or 
intraspecific level (Giorgis, Cingolani, Gurvich, & Astegiano, 2015; 
Greene & Johnson, 1994; Gundel, Garibaldi, Martínez-Ghersa, & 
Ghersa, 2012; Guo, Mazer, & Du, 2010; Harper, Lovell, & Moore, 
1970; Jakobsson & Eriksson, 2000; Salisbury, 1943; Shipley & Dion, 
1992; Stocklin, 1999; Turnbull, Rees, & Crawley, 1999; Wang, Du, 
Guo, & Zhao, 2009) or that there is no relationship at all (Koenig, 
Knops, Carmen, & Sage, 2009; Willis & Hulme, 2004). Furthermore, 
theoretical models have shown that large seeds germinate faster 
than small seeds due to postdispersal selection for predator avoid-
ance (Blate, Peart, & Leighton, 1998; Louda, 1989; Rees, 1994; 
Venable & Brown, 1988). Although there is evidence that seed mass 
is negatively correlated with time to germination (shorter germina-
tion times) (Wu, Du, & Shi, 2013), it has also been shown that seed 
mass is positively correlated with time to germination (Murali, 1997; 
Norden et al., 2009) or there is no trade-off at all (Hill, Edwards, & 
Franks, 2012; Jurado & Flores, 2005). While large-scale trends asso-
ciated with the trade-offs of seed mass versus seed number or seed 

mass versus time to germination remain elusive, results suggest that 
the magnitude of these ecological strategies may vary depending 
not only on habitat but also on the extent of the evolutionary rela-
tionships among the taxa being studied.

Most studies on the trade-offs associated with seed traits have 
been obtained from a small range of taxa, with relatively little data 
and limited statistical power (Greene & Johnson, 1994; Jakobsson & 
Eriksson, 2000; Shipley & Dion, 1992; Turnbull et al., 1999). In ad-
dition, a plant’s life history strategy (woody vs. nonwoody) has been 
shown to be an important factor influencing seed mass (Moles et al., 
2007; Qi et al., 2014; Zheng, Guo, & Wang, 2017), and functional 
traits might not be independent due to phylogeny (Ackerly, 1999). 
Considering an evolutionary perspective, for example, may mean 
that more closely related species share similar genetic constraints 
associated with seed trait trade-off, which, in turn, can lead to a 
nonindependent evaluation of traits that are actually phylogeneti-
cally conserved (Felsenstein, 1985). Here, phylogenetic conserva-
tisms are manifest in phylogenetically related species that resemble 
each other for most aspects of the traits being measured (Blomberg, 
Garland, & Ives, 2003) in contrast to phylogenetic dispersion, which 
reflects a more scattered pattern for the relation between traits 
and phylogeny. Fortunately, phylogenetically independent contrasts 
(PICs) can detect these relationships in an unbiased way; an attrac-
tive feature of PICs is that it transforms phylogenetically noninde-
pendent trait values to statistically independent contrasts according 
to clade length on the phylogenetic tree (Blomberg et al., 2003). 
But blindly correcting for phylogeny may not be appropriate due 
to differences in trait conservatism among species (Agrawal, 2007). 
Taking these factors into account underscores how the ecological 
and evolutionary role of traits associated with seeds remains poorly 
tested across a broad suite of species in contrasting environmental 
habitats.

The Mountains of Southwest China region is a global biodiver-
sity hotspot that harbors at least 13,000 plant species and is argu-
ably the most botanically rich temperate region in the world (Myers, 
Mittermeier, Mittermeier, da Fonseca, & Kent, 2000). Due to its com-
plicated geological history and dramatic variations in local climate and 
topography, more than 29% of species are endemic (Li & Li, 1993; Sun, 
2002; Wu, 1988), and this substantial component of the world remains 
largely understudied. This relatively high level of plant diversity and 
endemism provides an ideal opportunity to study the functional trade-
offs of seed traits at a regional scale where most ecological studies to 
date have focused on local processes that determine plant distribu-
tion and diversity. In such a hyperdiverse environment, we predict that 
small-seeded species will produce more seeds and germinate faster 
than large-seeded species. In this study, we examined three seed 
traits (seed mass, seed number, and time to germination) for 1,119 
species of seed plants collected in the Mountains of Southwest China. 
We aimed to address the following questions: (1) What is the relation 
between seed mass and seed number? (2) Does seed mass influence 
time to germination? (3) Do relationships among seed traits vary with 
life-form (woody vs. nonwoody)? (4) Are seed traits phylogenetically 
conserved?
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2  | MATERIALS AND METHODS

2.1 | Study site

The Mountains of Southwest China region covers an area of approxi-
mately 262,400 km2, stretching from 25°0′ to 33°30′ N and from 
92°30′ to 104°30′ E (Zachosl & Habel, 2011) (Figure 1). This area in-
cludes numerous mountain ranges and river systems that are oriented 
in a north–south direction, perpendicular to the main Himalayan chain 
(Zhang et al., 2014). The combined effects of geography, topography, 
and climate have resulted in a wide variety of vegetation types (includ-
ing broad-leaved and coniferous forests, bamboo groves, scrub com-
munities, savanna, meadow, prairie, freshwater wetlands, and alpine 
scrub and scree communities) and high species richness (Zachosl & 
Habel, 2011).

2.2 | Seed traits

We amassed seed trait data for 1,119 species of seed plants collected 
from the Mountains of Southwest China, representing 30 orders, 93 
families, and 380 genera. Of these 1,119 species, 393 are woody spe-
cies and the remaining 726 are nonwoody species. Our dataset rep-
resents approximately 15% of all seed plants, 30% of the genera, and 
around 40% of the families that occur in this region (Li & Li, 1993). Data 

for seed mass (based on the weight of 1,000 seeds per species) and 
time to germination were obtained from the Germplasm Bank of Wild 
Species (GBOWS). Mature seeds were dried in a drying room where 
the relative humidity and temperature were maintained at 15% and 
15°C, respectively. Moisture was drawn out of the seeds until water 
content was the same as that in the air. After drying, seed mass was 
measured to the nearest 0.1 mg. Germination tests were conducted in 
incubators with a 12-hr daily photoperiod, and each species was sown 
on a 1% agar medium. Temperature conditions were not uniform, as 
different species have different temperature range to germinate. The 
details of temperature conditions were listed in Table S1. All seeds 
that were used to test germination were stored for a year with the 
relative humidity at 15% and temperature at −20°C. Time to germina-
tion was calculated as TG = ∑(Di*Ni)/∑Ni), where Ni is the number 
of seeds that germinate on day Di (Saxena, Singh, & Joshi, 1996; Yu, 
Baskin, Baskin, Tang, & Cao, 2008). In this study, seed number was 
calculated as the number of seeds per fruit. We used this response 
variable because (1) it is very difficult to count all seeds of each species 
when the sample size is large; (2) previous studies showed that num-
ber of seeds per fruit differs significantly among species (Giorgis et al., 
2015; Guo et al., 2010; Stocklin, 1999) and it is positively correlated 
with the number of fruits per plant (Kelly, 1984), a possible indicator 
of fecundity; and 3) empirical evidence has shown that the number 

F IGURE  1 Range of plant collections 
from the Mountains of Southwest China 
that were included in our study
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of seeds per individual was more affected by plant size than seeds 
per fruit (which means the latter is likely a relatively stable index by 
comparison) (Guo et al., 2010). Most of these data were derived from 
online Flora Reipublicae Popularis Sinicae: In all cases, the maximum re-
ported number of seeds per fruit was the value that was used for seed 
number in our analyses (Table S2). If Flora Reipublicae Popularis Sinicae 
did not have the record of seeds per fruit but had ovule number, ovule 
number was used (Table S2). Web links of these records are provided 
in Table S2. For 71 records, data were obtained from GBOWS (Table 
S2). They randomly selected five complete and ripe fruits and counted 
seed number of each fruit. Then, maximum value was recorded. If the 
seeds were too small to count, all seeds of each fruit were put on a 
10 cm × 10 cm white paper and a photograph was taken (by Canon 
EOS-70D, 20.20 MP). At last, ImageJ (http://imagej.net/Welcome) 
was used to count the seed number of each photograph.

2.3 | Data analysis

2.3.1 | Phylogenetic tree construction

We built phylogenetic trees, resolved to the genus level, using the 
“TPL” function in “plantlist” package (Zhang, 2017) of R3.2.4 for 
Windows (R Core Team, 2016) and the supertree of Phylomatic 
(http://phylodiversity.net) based on the Angiosperm Phylogeny 
Group III. Branch lengths were assigned using the Bladj function of 
the Phylocom software, which assigned nodal ages down to the family 
level based on Wikström, Savolainen, and Chase (2001). Phylogenetic 
trees were generated at order, family, and species levels for all species 
as well as nonwoody and woody species separately. The “multi2d” 
function in “ape” package was then used to randomly resolve polyto-
mies (Swenson, 2014).

2.3.2 | Seed trait analysis

We performed a series of Student’s t tests to evaluate overall dif-
ferences in each of the three seed traits among the two life history 
strategies (woody vs. nonwoody) represented in our dataset. Because 
closely related species tend to have similar traits and interspecific 
analyses can be biased by phylogenetic conservatism (Felsenstein, 
1985; Lynch, 1991), we used Blomberg’s K as an index of the phylo-
genetic conservatism. This metric was calculated using the “phylosig” 

function in the R package “phytools” (Swenson, 2014). Pearson cor-
relation was performed to determine the relation between seed mass 
and seed number, as well as between seed mass and time to germi-
nation, using the “cor.test” function. We also analyzed our dataset 
using PIC correlations calculated from the three phylogenetic trees 
(Swenson, 2014). To meet the assumptions of normality for the 
Student’s t test and the Pearson correlation, seed mass was log10-
transformed and seed number and time to germination were both 
square-rooted before analysis.

We also wanted to test the phylogenetic dispersion of the rela-
tion between seed traits. Here, we scored each taxon as having one 
of three traits for the relation between seed mass and seed number: 
(1) a significant negative relation, (2) a significant positive relation, or 
(3) no relation. We also scored each taxon for the relation between 
seed mass and time to germination according to the same three traits. 
We quantified the parsimony Sankoff score for the three categori-
cal traits arrayed on the phylogeny (Maddison & Slatkin, 1991) using 
“phylo.signal.disc” function (Montesinos-Navarro, Segarra-Moragues, 
Valiente-Banuet, & Verdu, 2012). Traits were then mapped onto order- 
and family-level phylogenetic trees to visually depict the results from 
the analysis. All statistical analyses were conducted with R3.2.4 for 
Windows (R Core Team, 2016).

3  | RESULTS

Across all 1,119 species, seed mass (based on the weight of 1,000 seeds 
per species) varied from 2.5 × 10−2 to 2.12 × 103 g (mean = 18.94 g), 
and on average, there were 13 seeds per fruit (seed number varied 
from 1 to 1,330 seeds). Time to germination ranged from 0.63 to 
274.33 days, with most seeds germinating in ~21 days (Tables S3 and 
S4). The average seed mass of woody species was greater than that 
for nonwoody species (t = 15.42, p < .001; Figure 2a), but the mean 
number of seeds per fruit was not significantly different between 
these two life history strategies (t = 1.03, p = .3; Figure 2b). Seeds of 
woody species, on average, required more time to germinate than 
those of nonwoody species (t = 27.62, p < .001; Figure 2c).

We next considered phylogenetic conservatism among the three 
seed traits (Table 1). Across all species, the phylogenetic signals for all 
three seed traits were significant. The Blomberg K-value was highest 
for the seed number and lowest for time to germination; seed mass 

F IGURE  2 Variation in (a) seed mass, (b) 
seed number, and (c) time to germination 
for nonwoody species (726) and woody 
species (393) collected from our study sites 
in the Mountains of Southwest China

(a) (b) (c)
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TABLE  1 Phylogenetic signals (K) of seed mass, seed number, and time to germination for order, family, and species levels in the Mountains 
of Southwest China. K = 1 indicates that the observed trait distribution matches the model of Brownian motion for trait evolution across the 
phylogenetic tree; K < 1 indicates that the trait shows greater convergence than expected under the Brownian model of evolution; p < .05 
means that the trait is more conserved compared to a random association with the phylogeny (Blomberg et al., 2003)

Trait

Order Family All species Nonwoody Woody

K p K p K p K p K p

Seed mass (SM) 0.66 .839 0.38 .816 0.37 <.001 0.46 .002 0.38 .004

Seed number per fruit 
(SN)

0.80 .290 0.51 .457 0.48 <.001 0.53 .004 0.49 .007

Time to germination 
(TG)

0.71 .713 0.52 .451 0.25 <.001 0.24 .011 0.26 .003

F IGURE  3 Ordinary Pearson correlations between seed mass and seed number (a) as well as between seed mass and time to germination 
(b) for 1,119 seed plants collected from the Mountains of Southwest China. (c) and (d) represent Ordinary Pearson correlations with 
phylogenetically independent contrasts for the same response variables. The gray areas represent 95% confidence intervals of models

(a) (b)

(c) (d)

–

–
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had an intermediate value. At the order and family levels, the phylo-
genetic signals of all three seed traits were not significant. When non-
woody and woody species were analyzed separately, the same trends 
were found as that for all species.

Across all species, seed mass was negatively correlated with 
seed number (r = −.18 p < .001; Figures 3a and S1a) and positively 
correlated with the time to germination (r = .24, p < .001; Figures 3b 
and S1b). After correcting for phylogenetic effects (PICs), there was 
still a negative relation between seed mass and seed number across 
all species (r = −.18, p < .001; Figures 3c and S1c) as well as a pos-
itive relation between seed mass and time to germination (r = .09, 

p < .05; Figures 3d and S1d). The same trends were found for non-
woody (seed mass rnonwoody = −.22, p < .001; time to germination rnon-

woody = .15, p < .001; Figures 4a,b and S2a,b) and woody species (seed 
mass rwoody = −.22, p < .001; time to germination rwoody = .14, p < .001; 
Figures 4a,b and S2a,b). Similarly, after correcting for phylogenetic 
effects (PICs), there was still a negative relation between seed mass 
and seed number for both nonwoody (rnonwoody = −.14, p < .001) and 
woody (rwoody = −.20, p < .001) taxa (Figures 4c and S2c). Furthermore, 
a positive relation between seed mass and time to germination was 
also found for both nonwoody (rnonwoody = .12, p < .001) and woody 
(rwoody = .06, p > .05) taxa (Figures 4d and S2d).

F IGURE  4 Ordinary Pearson correlations between seed mass and seed number (a) as well as between seed mass and time to germination 
(b) for 726 nonwoody (circles) and 393 woody species (triangles) from the Mountains of Southwest China. (c) and (d) represent ordinary Pearson 
correlations with phylogenetically independent contrasts for the same response variables and sources of variation. The gray areas represent 95% 
confidence intervals of models

(a) (b)

(c) (d)
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Ordinary Pearson correlation showed that the relation between seed 
mass and seed number as well as seed mass and time to germination 
varied across orders (Table 2). For example, when considering only orders 
that contain more than 30 species, seed mass was negatively correlated 
with seed number in the Asterales and Dipsacales (Table 2; Figure S3) but 
was positively correlated in the Apiales (Table 2 and Figure S3); no signif-
icant relationships were found for the Caryophyllales, Fabales, Lamiales, 
Ranunculales, and Rosales (Table 2; Figure S3). A positive relation be-
tween seed mass and time to germination was found in the Apiales, 
Dipsacales, and Lamiales, but no relation was detected in the Asterales, 
Caryophyllales, Fabales, Poales, Ranunculales, and Rosales (Table 2 and 
Figure S4). Similar results were obtained at the family level (Table S5). 
There was a positive relation between seed mass and seed number in the 

Lamiaceae, but no relation was found in the Berberidaceae, Fabaceae, 
Ranunculaceae, and Rosaceae (Table S5; Figure S5). A positive relation be-
tween seed mass and time to germination was detected in the Apiaceae, 
Asteraceae, and Rosaceae, no significant relationships were found in 
the Berberidaceae, Fabaceae, Lamiaceae, Poaceae, Polygonaceae, and 
Ranunculaceae (Table S5 and Figure S6).

We did not detect a phylogenetic signal for the relation between 
seed mass and seed number. The relation between seed mass and 
time to germination also showed a random distribution across the 
phylogeny. More specifically, for both relationships, the number of 
observed evolutionary transitions did not differ significantly from the 
mean number of evolutionary transitions under a null model at both 
the order and family levels (Table 3; Figure 5 and Figures S7 and S8).

Order
Number of 
species

Traits

Seed mass by seed number
Seed mass by time to 
germination

Coefficient p-Value Coefficient p-Value

Alismatales 5 0.50 >.05 0.01 >.05

Apiales 83 0.24 .031 0.31 .005

Asparagales 9 −0.89 .001 0.84 .005

Asterales 194 −0.62 <.001 0.07 >.05

Boraginales 11 NA NA 0.12 >.05

Brassicales 10 −0.84 .002 0.06 >.05

Caryophyllales 66 0.04 >.05 −0.02 >.05

Celastrales 5 0.86 >.05 0.74 >.05

Cornales 6 0.66 >.05 −0.66 >.05

Dioscoreales 4 0.65 >.05 0.42 >.05

Dipsacales 31 −0.65 <.001 0.52 .003

Ericales 23 −0.65 <.001 −0.15 >.05

Fabales 58 0.19 >.05 0.04 >.05

Fagales 4 NA NA −0.28 >.05

Gentianales 18 −0.52 .029 0.38 >.05

Gnetales 3 NA NA 0.99 >.05

Lamiales 114 −0.07 >.05 0.31 <.001

Liliales 25 −0.01 >.05 0.62 .001

Magnoliales 3 −0.11 >.05 −0.99 >.05

Malpighiales 13 −0.71 .007 −0.30 >.05

Malvales 11 −0.32 >.05 0.23 >.05

Pinales 7 −0.31 >.05 0.17 >.05

Poales 80 NA NA −0.20 >.05

Ranunculales 87 −0.03 >.05 0.09 >.05

Rosales 184 −0.12 >.05 0.18 >.05

Sapindales 28 −0.30 >.05 0.15 >.05

Saxifragales 3 −0.40 >.05 −0.79 >.05

Solanales 8 −0.23 >.05 −0.43 >.05

Vitales 9 0.40 >.05 0.45 >.05

Zingiberales 3 0.98 >.05 0.15 >.05

TABLE  2 Ordinary Pearson correlations 
between seed mass and seed number as 
well as between seed mass and time to 
germination at the order level for 1,119 
plant species from the Mountains of 
Southwest China. NA indicates insufficient 
data to complete the analysis
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4  | DISCUSSION

4.1 | Seed traits and phylogenetic relatedness

Overall, two of the three seed traits analyzed in this study, seed mass 
and time to germination, differed significantly among woody and non-
woody species in the Mountains of Southwest China. Similar trends 
have been found at both local (Mexican desert; Flores & Briones, 
2001) and global (Díaz et al., 2016; Moles et al., 2007) scales. In the 
present study, differences in overall seed mass and time to germina-
tion represent different modes of resource investment (such as en-
ergy and time), confirming that global distribution patterns of woody 
and nonwoody species are uneven in both form and function (Díaz 
et al., 2016).

Phylogenetic signals (K) for seed mass, seed number, and time to 
germination reveal that seed traits are phylogenetically conserved at 
the species level, verifying previous findings from independent data-
sets (Cao et al., 2013; Kraft & Ackerly, 2010; Moles, Ackerly, Webb, 
Tweddle, Dickie, Pitman, et al., 2005; Norden et al., 2009; Rathcke & 
Lacey, 1985). This result indicates that related species share similar 
genetic constraints that shape their potential evolutionary responses 
to the environment (Rathcke & Lacey, 1985). Furthermore, because 
phylogenetic constraints on seed traits are regional properties of taxa, 
closely related species should have similar modes of energy storage, 
dispersal, and germination regardless of their specific geographic lo-
cation, which may be a driver for the coexistence of related species 
(Du et al., 2015). The fact that phylogenetic constraints on seed traits 
may therefore be stronger than local selective pressures suggests 
that each species (woody or nonwoody) may employ a relatively sta-
ble seed trait strategy to assure reproductive success. It is interesting 
that the phylogenetic signals of seed mass, seed number, and time to 
germination in our study were not detected at the order and family 
levels (Blomberg’s K-values were not significant). One explanation for 
this is that the evolution of seed traits across the phylogeny may be 
not under the Brownian model of selection at the order and family 
levels (Blomberg et al., 2003). Collectively, our results provide a po-
tential mechanistic explanation for seed trait variation that is shaped 
by evolutionary history among the plant species in the Mountains of 
Southwest China.

4.2 | Relationships of seed mass with seed 
number and time to germination

Across all 1,119 species, we found a negative relation between 
seed mass and seed number. Previous studies investigating seed 
trait variation among species (Giorgis et al., 2015; Guo et al., 2010) 
or within a particular species (Agren, 1989; Vaughton & Ramsey, 
1998) have found similar results at different study scales, although 
a lack of relation between seed mass and seed number has also 
been found, for example, Impatiens glandulifera (Willis & Hulme, 
2004) and Quercus lobata (Koenig et al., 2009). There are two pos-
sibilities for such discrepancies among seed plants. First, some spe-
cies might escape the seed mass–number trade-off by changing 
the chemical or physical composition of their seeds due to selec-
tion by dispersal agents such as animals, wind or water (Lokesha, 
Hegde, Shaanker, & Ganeshaiah, 1992). Second, the intraspecific 
relationship between seed mass and seed number might be af-
fected by stress, as species allocate more resources to reproduc-
tion under stress and thus allocate more resources to bigger or 
more seeds under such conditions (Koivunen, Saikkonen, Vuorisalo, 
& Mutikainen, 2004). In addition to these two resource constraints 
during seed provisioning (Vaughton & Ramsey, 1998), the trade-
off between seed mass and seed number could, to some extent, 
be explained by conflicts over the allocation of maternal resources 
within flowers prior to seed production, which often results in a 
trade-off between ovule size and number (Lloyd, 1980; Westoby 
& Rice, 1982). Regardless of these sources of variation, overall the 
proportion of resources allocated to reproduction does not vary 
greatly among species, and plant mass and seed mass can explain 
most seed production variation in plant species (Shipley & Dion, 
1992). That our results show the same but weaker trends com-
pared to those of previous studies at different scales indicates that 
the negative relation between seed mass and seed number is likely 
scale-independent (Díaz et al., 2016; Donoso, Schleuning, García, 
& Fründ, 2017), but the strength of this relation may be affected 
by the environment heterogeneity and the composition of highly 
diverse taxa. It is worth noting that the method to quantify seed 
number may be limited in our study. When we use the number of 

TABLE  3 Phylogenetic signal for the distribution of three possible states for the relation between seed mass and seed number as well as the 
relation between seed mass and time to germination at the order and family levels for 1,119 samples collected in the Mountains of Southwest 
China. Each taxon was classified as having a negative, a positive, or a lack of relation for each source of variation. (Observed transitions = the 
number of observed evolutionary transitions. The expected mean null = mean number of transitions under a null model in which data were 
reshuffled 1,000 times across the tips of the phylogeny. The p-value in each case is based on the comparison between the observed vs 
expected values)

Traits

Seed mass by seed number Seed mass by time to germination

Observed  
transitions Mean null p-Value

Observed  
transitions Mean null p-Value

Order 6 7 .119 6 8 .100

Family 9 9 .999 9 10 .466
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seeds per fruit as the seed number, some factors affecting species 
seed number, such as inflorescence architecture, fruit number, fruit 
size, and dispersal mode, to name a few, are not controlled for. 
Therefore, we suggest that field investigations that can contrib-
ute to the standardization of seed trait data should broaden our 

understanding of how reproductive success varies among species 
and across heterogeneous environments.

We found a positive relation between seed mass and time to germi-
nation. Compared to other studies, the strength of the relation between 
seed mass and time to germination appears to vary according the type of 
forest system under study (Jurado & Flores, 2005). While results similar 
to ours have been shown in tropical forests (Murali, 1997; Norden et al., 
2009), Hill et al. (2012) studied 15 species from a seasonal tropical for-
est and found that a direct relation between seed mass (size) and time 
to germination is lacking where pregermination viability of desiccation-
sensitive seeds may not be solely determined by seed size. Such phys-
iological constraints, however, cannot explain the positive relationship 
we found between seed mass and time to germination for a broad 
suite of plant species spanning diverse but relatively wet habitats in the 
Mountains of Southwest China. First, before germination, seeds need 
water for seed coat rupture, cell elongation, and nutrient hydrolyzation 
(Fenner & Thompson, 2005; Vazquez-Yanes & Orozco-Segovia, 1993). 
The longer times to germination of large seeds found in our study might 
be due to their higher water requirements and slower water absorption 
capacity due to a smaller surface area-to-mass ratio as well as the need 
to hydrolyze relatively more nutrients to support a longer germination 
process (Kikuzawa & Koyama, 1999). Second, species with large seeds 
here may have tougher physical defenses (thick endocarp or seed coat) 
(Blate et al., 1998; Fenner, 1983). Our results, then, are inconsistent with 
the general hypothesis that large seeds need to germinate quickly to 
avoid postdispersal predation (Janzen, 1971; Louda, 1989). The nega-
tive relationship between seed mass and postdispersal survivorship has 
not, however, been verified across diverse habitats, and it is possible 
that large seeds are protected from predation by toxic or unpalatable 
compounds, despite containing more nutrients (Blate et al., 1998; 
Finkelstein & Grubb, 2002; Janzen, 1969; Moles, Warton, & Westoby, 
2003; Osunkoya, Ash, Hopkins, & Graham, 1994). Based on our results, 
it seems plausible that the positive relation between seed mass and time 
to germination has resulted from regional adaptation to wet environ-
ments, although this relation remains to be tested at the local scale.

Given that seed traits of broad phylogenetic dispersion appear 
to be coordinated at a regional scale in our study, it is not surprising 
that we found the relation between seed mass, seed number, and 
time to germination persisted when phylogenetic nonindependence 
(PIC) was accounted for in our analysis, suggesting evolutionary asso-
ciations for seed traits. Our results are in line with available evidence 
that indicates seed traits have likely coevolved with other functional 
traits (Liu, Barot, El-Kassaby, & Loeuille, 2017; Moles, Ackerly, Webb, 
Tweddle, Dickie, Westoby, et al., 2005). Collectively, correlated evo-
lutionary divergence of seed mass, seed number, and time to germi-
nation might have occurred at a phylogenetic branch point deep in 
the past, with the trait combinations persisting within each of the 
descendant linages (Westoby et al., 2002). This is consistent with 
the fact that the mean number of evolutionary transitions under a 
null model (random dispersion) for the relation between seed mass 
and seed number as well as for the relation between seed mass and 
time to germination did not differ significantly from the number of 
observed evolutionary transitions at both the order and family levels. 

F IGURE  5 Phylogenetic tree based on APGIII at the order level 
for 1,119 samples collected from our study site in the Mountains 
of Southwest China. Tree depicts the phylogenetic dispersion of 
the relation between (a) seed mass and seed number as well as (b) 
seed mass and time to germination. The taxa highlighted in blue 
indicate the presence of a significant negative relation, while the taxa 
highlighted in green indicate the occurrence of a significant positive 
relation. The taxa highlighted in red did not show a significant relation 
among seed traits
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Thus, it appears likely that groups of seed plants under pressure from 
limited resources in the Mountains of Southwest China have evolved 
a diversity of seed trait combinations and relationships to adapt to 
different habitats. This point is underscored by the fact that our cor-
relation coefficients were weaker than those found in most previous 
studies (Guo et al., 2010; Norden et al., 2009). The fact that we found 
a twofold variation in seed trait associations across the diverse hab-
itats is certainly telling given that the correlations, although weak, 
were still significant (see Wang et al., 2014, 2016; Wu et al., 2013).

4.3 | Functional traits and trade-off strategies

Measuring the traits of a particular species and analyzing correlations 
among these traits is the most common approach to verify the pres-
ence of a particular functional trade-off among species (Chave et al., 
2009; Muller-Landau, 2008). Our study provides evidence for the 
presence of a possible functional trade-off between producing seed-
lings with high fitness and occupying new habitats among seed plants 
in the Mountains of Southwest China. Specifically, we found that seed 
mass was negatively correlated with seed number but positively cor-
related with time to germination. Empirical studies have shown that a 
short time to germination is an advantage for occupying new habitats, 
due, in part, to gaining a longer growing season and reducing the im-
pact of neighboring plants (Donohue et al., 2010; Dubois & Cheptou, 
2012). This trade-off suggests that seeds found in large numbers with 
fast germinating ability are good at occupying new habitats, but may 
produce weak seedlings, whereas seeds of large size are good at pro-
ducing seedlings with high fitness, but may exhibit poor ability at in-
vading new habitats. For example, large seeds can be found in habitats 
with hazards, such as shade, mineral shortages, drought, and high com-
petitiveness, but small seeds are more important in open and disturbed 
environments (Dwyer & Laughlin, 2017; Gross, 1984; Metcalfe, Grubb, 
& Turner, 1998; Westoby, Leishman, & Lord, 1996; Westoby et al., 
2002). Our results support a competition–colonization trade-off that 
appears to be ubiquitous among seed plants in our study region.

Although seedling establishment was not directly measured in 
all the habitats associated with this study, it seems likely that such 
trade-off strategies coupled with spatial variation in resource avail-
ability may contribute to species coexistence (Muller-Landau, 2010) 
and distribution patterns in the Mountains of Southwest China. 
Seed plants and communities sensitive to habitat patch dynamics, 
including areas of insufficient light, water, and nutrition, are able 
to maintain abundance by succeeding in different spatial niches 
(patches) (Bossuyt & Honnay, 2006; Herben & Soderstrom, 1992; 
Jankowska-Blaszczuk & Daws, 2007). Species that produce seed-
lings with high fitness will succeed in sites where resource availabil-
ity is low, whereas species with high colonization ability will succeed 
in new patches (Levine & Rees, 2002; Muller-Landau, 2010). At a 
global scale, large-seeded species are mainly distributed in tropical 
rain forests near the equator where seedlings with relatively high 
fitness can flourish, but small-seeded species have wider distribu-
tion ranges due to the superior colonization ability of their seeds 
(Moles et al., 2007; Morin & Chuine, 2006). High spatial variation 

in resource availability is one of the most important characteristics 
of the Mountains of Southwest China. Large-seeded species that 
produce seedlings with high fitness can successfully establish and 
reproduce in closed or shaded habitats, while small-seeded species 
with high colonization ability can succeed in open environments 
where light is more available (Jankowska-Blaszczuk & Daws, 2007; 
Muñoz et al., 2016; Westoby et al., 2002). This functional trade-off 
mediates species coexistence in this region by driving different spe-
cies to occupy different habitats, leading to high plant diversity.

5  | CONCLUSIONS

Plants allocate limited resources among different functions by employ-
ing a variety of trade-off strategies. The present study highlights po-
tential trade-offs between the production of seedlings with relatively 
fitness and the capacity to occupy new habitat over a regional flora of 
broad phylogenetic dispersion. This was reflected by a negative rela-
tion between seed mass and seed number as well as a positive relation 
between seed mass and time to germination. This functional trade-off 
may provide a causal explanation for current patterns of plant abun-
dance and diversity in biodiversity hotspots such as the Mountains 
of Southwest China. Although it is beyond the scope of this study to 
discern seed trait variation among the diversity of environments in our 
study region, this source of variation as well as potential evolutionary 
associations among taxa that occupy specific microhabitats should be 
considered in future studies.
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