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A B S T R A C T

Here we investigated the effects of Ce and Mo doping on hydrothermally synthesized bismuth vanadate BiVO4 nanoparticles (NPs). The existence 
of monoclinic scheelite and tetragonal zircon phases of NPs was validated from Rietveld refinement of the powdered X-ray diffraction, room 
temperature Raman, and Fourier-transform infrared spectroscopy. The co-doping of Bi and V sites with respective Ce and Mo dopants in a mixed 
tetragonal zircon and monoclinic scheelite phases of BiVO4 lattice was corroborated from high-resolution transmission electron microscopy and 
X-ray photoelectron spectroscopy. The photoluminescence measurements revealed enhancement of photo-generated carrier recombination in (Ce, 
Mo) co-doped BiVO4 NPs which may have hampered its photocatalytic efficiency in degrading the methylene blue dye. The simulations based 
on Hubbard 𝑈 corrected density functional theory (DFT+𝑈 ) suggest that Mo and Ce co-doping introduced deep impurity states which may have 
facilitated the photo-generated carrier recombination detrimental to photocatalytic performance. The UV-vis diffuse reflectance measurements 
provided evidence for the presence of these defect states. In summary, this work may have presented a comprehensive experimental analysis of (Ce, 
Mo) doped BiVO4 supported by DFT simulations.

1. Introduction

The ternary oxide bismuth vanadate BiVO4 has sparked widespread research interests as a promising photocatalytic material 
due to its (i) proper electronic band gap, (ii) steep optical absorption edge in the visible range of the electromagnetic spectrum, 
(iii) photo-stability, and (iv) abundance and benign nature [1–4]. Out of its tetragonal scheelite (𝑡𝑠), monoclinic scheelite (𝑚𝑠), and 
tetragonal zircon (𝑡𝑧) structures; the 𝑚𝑠 phase turned out to be the most photosensitive phase [5]. The 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 density functional 
theory (DFT) based simulations have been the guiding star for comprehending the functional properties of BiVO4 relevant to pho-
tocatalytic performance [6–18]. Numerous methods like noble metal loading, heterojunction, co-catalysts deposition, semiconductor 
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recombination, facet control, morphology control, microstructure control, and metal doping were put forward to modulate the pho-
tocatalytic activity of BiVO4 [2,19–27]. Among these techniques, doping turned out to be a simple, low-cost, and efficient way of 
tuning the photocatalytic activity of BiVO4.

The rare earth (RE) lanthanide elements containing 𝑓 orbitals (Ce, Eu, La, Gd, Nd, Yb, and Sm) and transition metals (TMs) (Y, Zr, 
Fe, Co, Ni) having 𝑑 orbitals preferentially go to Bi-site in BiVO4 to reduce the photo-generated carrier recombination. For example, 
the Ce3+ ion (102 pm) with 4𝑓 1 electron tends to replace Bi3+ (103 pm) ion due to comparable ionic radii and played important role 
in determining the photocatalytic performance [28–30]. The unperturbed V5+ site leaves the [VO4] tetrahedral chain in BiVO4 lattice 
almost undisturbed that favors 𝑚𝑠 phase over the 𝑡𝑧 phase. The Ce3+ dopants in 𝑚𝑠 BiVO4 phase can localize holes and prevent them 
from recombining with electrons [31]. Due to similar ionic radii, the Mo6+ (59 pm) dopant can act as an n-type hexavalent dopant 
for the V5+ (54 pm) [32]. The DFT simulations also confirmed the Mo6+ as V-site dopants in BiVO4 lattice [33,34]. The Mo6+ having 
one excess electron compared to the host V5+ forms shallow n-type donor impurity states that can be activated at room temperature 
to boost up photo-generated carrier separation [35–40].

The co-doping of BiVO4 with multiple dopants has proven to be an efficient way of enhancing photocatalytic performances [41]. 
The co-doping of the Bi-site can be facilitated by a combination of RE/TM elements such as (La, Gd), (Er, Y), (Gd, Y), (Yb, Er), and 
(Yb, Tm, Er) [42–46]. In the case of V-site, the co-doping attempts have been made through (W, Mo), and (W, Ti) combinations to 
enhance the photocatalytic activity of BiVO4 [47,48]. Moreover, co-doping of combined Bi and V sites with the chemical formula 
Bi1-xAxV1-yByO4 where A = Fe, Zr, Yb, Ti, and B = W, Mo have shown promising photocatalytic results [41,49–51]. Since RE element 
Ce and TM Mo are prominent Bi and V-site dopants in the case of mono-doped BiVO4, their combined effect in Bi1-xCexV1-yMoyO4 co-
doped structure deserves much attention and rigorous investigation. The 10% Ce doping of the Bi site in mono-doped Bi0.90Ce0.1VO4
was shown to provide the best photocatalytic performance [31]. For Mo mono-doping in the V site of BVO, the notable photocatalytic 
performance was achieved at 2-3% doping concentrations [32,52]. Moreover, in the V-cite, the Mo doping concentration beyond 3% 
tends to distort the [VO4] tetrahedral chains triggering the phase transition from the monoclinic to the tetragonal structure [30]. In 
addition, Mo concentration higher than 3% led to the formation of detrimental defect states hampering n-type conductivity [8,53]. 
Hence the Ce and Mo doping concentrations can be fixed at 10% and 2%, respectively.

Here we synthesized undoped, Ce and Mo mono-doped and (Ce, Mo) co-doped bismuth vanadate NPs following the hydrothermal 
method with chemical formulas BiVO4, Bi0.90Ce0.10VO4, BiV0.98Mo0.02O4 and Bi0.90Ce0.10V0.98Mo0.02O4, respectively. The phase evo-
lution among 𝑚𝑠 and 𝑡𝑧 was studied from X-ray diffraction, Raman, and Fourier-transform infrared spectroscopy. The high-resolution 
transmission electron microscopy and X-ray photoelectron spectroscopy confirmed the Ce and Mo co-doping of respective Bi and V 
sites in mixed 𝑚𝑠-𝑡𝑧 BiVO4 lattice. The field emission scanning electron microscopy confirmed the NP size to be ∼ 20 nm. The steady-
state photoluminescence revealed significant photo-generated carrier recombination in (Ce, Mo) co-doped Bi0.90Ce0.10V0.98Mo0.02O4
NPs. The (Ce, Mo) co-doping also deteriorated the photocatalytic performance of Bi0.90Ce0.10V0.98Mo0.02O4 in degrading the methy-
lene blue (MB) dye. To the best of our knowledge, it is hard to find detailed DFT simulations of the electronic structure of (Ce, 
Mo) co-doped Bi1-xCexV1-yMoyO4 structure. We performed reliable DFT+𝑈 simulations and showed that the Ce and Mo dopants 
introduced deep impurity states that can act as photo-generated recombination centers and may have hampered the photocatalytic 
performance which is at par with our experimental findings. Moreover, increased defect density was confirmed by diffuse reflectance 
measurements. The irregular agglomeration and grain growth were also observed in FESEM measurements. Overall, this work may 
have provided an in-depth experimental analysis of functional properties of (Ce, Mo) co-doped BiVO4 supported with DFT simulation.

2. Methodology

2.1. Computational details

The Vienna 𝐴𝑏 𝐼𝑛𝑖𝑡𝑖𝑜 Simulation Package (VASP) was used to carry out spin-polarized simulations facilitated by the projector 
augmented wave (PAW) method within the framework of ab initio DFT [54,55]. The PAW treats Bi-5𝑑106𝑠26𝑝3, V-3𝑝63𝑑44𝑠1, 
O-2𝑠22𝑝4, Ce-5𝑠25𝑝64𝑓 15𝑑16𝑠2, and Mo-4𝑝64𝑑55𝑠1 as valence electrons. The 2 × 2 × 1 supercell containing 96 atoms was considered 
for all simulations. Two Bi atoms were replaced by Ce atoms to form 12.5% Ce doped BiVO4 supercell. The Mo-doped supercell had 
one V atom replaced by a Mo atom to emulate 6.25% doping. The (Ce, Mo) co-doped supercell was created with 12.5% Ce and 6.25% 
Mo doping concentrations. The k-space integrations in the Brillouin zone were facilitated by 2 × 2 × 2 Monkhorst Pack grid k-points 
mesh to perform structural relaxation until Hellmann–Feynman forces and the self-consistent total energy reached 0.01 eV/Å and 
10−5 eV, respectively. The plane-wave energy cut-off was set to 500 eV. The computational complexities and accuracy of the DFT 
simulation depend on the type of functional used to model the unknown electron exchange-correlation [56,57]. The localized V-3𝑑
dilutes the Coulomb interaction in GGA-PBE functional that requires boosting by the parameter 𝑈 and following our previous work, 
we used 𝑈 = 4.8 eV in Bi-6𝑝, 𝑈 = 3.1 eV in V-3𝑑 and 𝑈 = 2 eV in O-2𝑝 [13,58–62]. In the case of the Ce and Mo atoms, the optimum 
values of the 𝑈 were set to 3 and 2.3 eV on Ce-4𝑓 and Mo-4𝑑, respectively [31,34,63,64].

2.2. Sample preparation

The AR grade Bi(NO3)3.5H2O and NH4VO3 were dissolved with proper stoichiometry in HNO3 and deionized (DI) water, re-
spectively in case of undoped BiVO4. The solutions were mixed under continuous magnetic stirring for 1 h. In cases of 10% Ce 
doped Bi0.90Ce0.10VO4, 2% Mo doped BiV0.98M0.02O4 and (Ce=10%, Mo=2%) co-doped Bi0.90Ce0.10V0.98M0.02O4 samples, AR grade 
2

Ce(NO3)3.6H2O and (NH4)2MoO4 precursors were used in stoichiometric proportion. The solution pH was kept to ∼ 10 by adding 
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the required amount of NH4OH in all cases. For each sample, the mixture was heated to 180 ◦C for 24 h in an oven by loading it in a 
100 ml Teflon-lined stainless steel autoclave. The solution was agitated by subsequent vortex mixing and sonication. The precipitate 
resulting from centrifugation (8,000 rpm; 10 min; 4 cycles) and washing in DI water and ethanol, was dried at 120 ◦C for 24 h. The 
dried sample was collected and hand-milled for 1 h. The powdered sample was sintered subsequently at 400 ◦C for 2 h. The sintered 
undoped, Ce, Mo, and (Ce, Mo) co-doped samples were termed BVO, CBVO, MBVO, and CMBVO, respectively. For doped cases, the 
unsintered as-prepared samples were labeled as CBVO-A, MBVO-A, and CMBVO-A.

Photocatalytic Sample Preparation: The proper amount of MB dye was dissolved into DI water to obtain 100 ml of 10 ppm 
MB solutions. The BVO, CBVO, MBVO, and CMBVO NPs were dispersed as photocatalytic material to prepare 1 g/L solution. The 
pH was set to 10 by adding NH4OH in the mixture of MB dye and the photocatalyst. The solution became a suspension as the 
adsorption-desorption equilibrium persisted after being subjected to vigorous magnetic stirring for 30 min in the dark. The mixture 
was kept under magnetic stirring while irradiated by simulated solar radiation facilitated by a Hg-Xe lamp. The stirring prevented 
the MB concentration gradient from occurring in the solution and thereby eliminated spurious degradation effects. The photocatalyst 
material was removed from the dye solution by several high-speed centrifuging cycles (10, 000 rpm, 7 cycles). The absorption spectra 
of the dye solution were recorded to estimate the degradation effect once every 30 min.

2.3. Characterization techniques

The sample sintering was facilitated by Muffle Furnaces (Nabertherm LT 5∕14 & Kejia M1700). The powdered X-ray Diffraction 
(XRD) patterns within an angular range of 10◦ to 80◦ were obtained using a Rigaku SmartLab SE multipurpose XRD system with Cu 
K𝛼 radiation (𝜆 = 0.15418 nm) at 35 kV accelerating potential with an emission current of 20 mA. The AVO 18 Research Scanning 
Electron Microscope with Energy Dispersive X-ray Spectroscopy (EDX, EDAX Team) and a Field Emission Scanning Electron Mi-
croscopy (FESEM, JEOL 7610F) coupled with EDX Model: JED 2300 were used to perform NPs morphology, chemical purity analysis, 
and spatial elemental scans. The Transmission Electron Microscopy (TEM) images were obtained at 200 kV by Talos F200X. The 
Thermo Fischer Scientific X-ray Photoelectron Spectrometer was used to carry out K𝛼 monochromated photoelectron spectroscopy 
of the NPs. The photoelectron binding energy calibration was done with 284.8 eV C-1𝑠 level as reference. The Horiba Scientific 
Confocal Raman Microscope LabRAM HR Evolution with 532 nm laser excitation was used to obtain the Raman spectra of the 
NPs. The absorption bands due to chemical bond vibrations were detected by the PerkinElmer Spectrum Fourier Transform Infrared 
(FTIR) spectrometer. The steady-state photoluminescence (PL) spectra of the NPs are recorded with 260 nm excitation in a Shi-
madzu RF-6000 Spectro Fluorophotometer. The UV-vis diffuse reflectance spectroscopy (DRS) was done with Shimadzu UV-2600i 
UV–vis–NIR spectrometer. The photocatalytic efficiency of the NPs was evaluated from UV-Vis absorption spectra recorded by the 
Shimadzu UV-1900i spectrometer.

3. Results and discussion

3.1. X-ray diffraction analysis

The XRD patterns of BVO, CBVO-A, CBVO, MBVO-A, MBVO, CMBVO-A, and CMBVO NPs with Miller indices are shown in 
Fig. 1(a). The detailed Rietveld refinements of all the XRD patterns are presented in Fig. S1 of Electronic Supplementary Informa-
tion (ESI). The experimental crystallographic parameters are benchmarked against that of the GGA-PBE+𝑈 relaxed structures in 
Table S1. The 𝑚𝑠 phase (JCPDS 014-0688/ICSD-100602) having point group 𝐶6

2ℎ and space group 𝐶2∕𝑐 (15) prevailed in BVO, 
CBVO, MBVO-A, and MBVO NPs. For as-product 10% Ce doped Bi0.90Ce0.10VO4 (CBVO-A) NPs, the mixed 𝑚𝑠 and 𝑡𝑧 phases 
(JCPDS 14-0133/ICSD-100733, with point group 𝐶19

4ℎ and space group 𝐼41∕𝑎𝑚𝑑 (141)) were observed. In the (Ce, Mo) co-doped 
Bi0.90Ce0.10V0.98M0.02O4 NPs, both as-product (CMBVO-A, 𝜒2=4.2) and sintered (CMBVO) samples displayed mixed 𝑚𝑠-𝑡𝑧 phases.

From the full-wave-half-maxima analysis of the (−221) XRD peak, the crystallite size 𝐷 was estimated for all samples using the 
standard Debye-Scherrer’s formula [65]. The values of defect density and strain were also estimated and displayed in Table S2 of 
ESI. It is evident that sintering at 400 ◦C enhances crystalline size, and reduces dislocation density and strain. In addition, sintering 
helped to attain 𝑚𝑠 purity in CBVO from a mixed 𝑚𝑠-𝑡𝑧 phase of CBVO-A as-prepared NPs. This may help to achieve better pho-
tocatalytic performances compared to the as-synthesized NPs [66,67]. Hence only sintered NPs were considered for the subsequent 
measurements.

Now we analyze the effect of doping and sintering temperature from the XRD peak shift in magnified view as displayed in 
Fig. 1(b)-(d). In all three 2𝜃 ranges, the common thing to note is that XRD peaks are shifted towards lower diffraction angles for 
sintered samples (CBVO, MBVO, and CMBVO) compared to the as-prepared ones (CBVO-A, MBVO-A, and CMBVO-A). This shift can be 
attributed to a reduction in strain due to better crystallinity achieved from sintering [42]. The effect of doping can be comprehended 
by observing the peak shift of the sintered BVO, CBVO, MBVO, and CMBVO NPs. The negative 2𝜃 shift is present in all mono and 
co-doped samples. This is expected as the Mo6+ have larger ionic size relative to host V5+, respectively. This size mismatch increases 
the 𝑑-spacing which in turn sifted the peaks to lower diffraction angles [28,32,68].

The tetragonal scheelite phase was absent due to higher synthesis temperature (180 ◦C) and pH value (10) [69–72]. It is well 
established that the 𝑡𝑧 phase appears during the start of hydrothermal reaction independent of pH level [71,72]. But as the reaction 
progresses, the 𝑡𝑧 phase dissolves, and the 𝑚𝑠 phase starts to form for pH ≥ 7 [73,74]. Since the precursor solution pH was kept 
fixed at ∼ 10, the 𝑚𝑠 phase prevailed in BVO. The 10% Ce doing may have inhibited the complete 𝑡𝑧 to 𝑚𝑠 transformation of the as-
3

prepared CBVO-A and the mixed 𝑚𝑠-𝑡𝑧 phase existed. The sintering helped to achieve the full 𝑡𝑧 to 𝑚𝑠 transformation in CBVO. The 
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Fig. 1. (a) XRD patterns and magnified view to display peaks shifts in the 2𝜃 range of (b) 17.5-20◦, (c) 34-36◦ and (d) 46-50◦ of BVO, CBVO-A, CBVO, MBVO-A, 
MBVO, CMBVO-A, and CMBVO NPs.

relatively small (2%) Mo dopant did not hinder the complete 𝑡𝑧 to 𝑚𝑠 in MBVO-A sample. But for the (Gd=10%, Mo=2%) co-doped 
samples, the mixed 𝑚𝑠-𝑡𝑧 phase persisted regardless of the sintering. We speculate that the presence of Gd and Mo dopants prevented 
the 𝑚𝑠 phase purity from occurring in both CMBVO-A and CMBVO. For the two mixed-phase CBVO-A and CMBVO samples, the 
percentage of the monoclinic phase 𝜁ms was estimated from the normalized intensities 𝐼 (121)ms and 𝐼 (200)tz corresponding to (121) and 
(200) diffraction peaks 𝑚𝑠 and 𝑡𝑧 phases, respectively as

𝜁ms =
𝐼
(121)
ms

𝐼
(121)
ms + 𝐼

(200)
tz

, (1)

and displayed in Table S1.

3.2. Raman analysis

The phonon vibrational spectra of 𝑚𝑠 BiVO4 originate from Γ = 8𝐴g + 10𝐵g + 8𝐴u + 10𝐵u consisting of 18 internal, 15 external, 
and 3 acoustic modes [13,75]. Among these symmetry-related 36 modes, only 13 modes defined by ΓRaman = 3𝐴g + 5𝐵g + 5𝐸g
turned out to be Raman active [18]. The room temperature Raman spectra of BVO, CBVO, MBVO, and CMBVO were displayed in 
Fig. 2, and corresponding band assignments were shown in Table S3. Now for Ce substitutional doping of Bi site, due to very similar 
ionic sizes Ce3+ and Bi3+, once expects very low crystal deformation of the 𝑚𝑠 phase of the BVO. The same is true for Mo-doped 
BiV0.98Mo0.02O4 as Mo6+ and V5+ share similar ionic size and the ms phase purity persisted. Hence for both Ce and Mo mono-doped 
samples, we did not observe any significant variation in phonon energy, and this resulted in similar Raman peak positions as that of 
undoped 𝑚𝑠 BVO [30,31,40,52,76]. All samples have external lattice modes that stem Raman bands near 114 and 186 cm−1 which 
are not phase-specific [77]. The Raman bands that appeared at 335, 365, 710 and 811 cm−1 corroborate the 𝑚𝑠 phase purity in BVO, 
MBVO and CBVO samples [78,79]. The Raman peaks at 335 and 365 cm−1 are characteristic to asymmetric 𝐵g and symmetric 𝐴g

deformation of [VO4]3− tetrahedron, respectively. The asymmetric 𝐵g and symmetric 𝐴g stretching of V-O bonds correspond to 710
and 811 cm−1 Raman bands, respectively [2]. The presence of the 𝑡𝑧 phase in the CMBVO sample can be prescribed by Raman bands 
at 250 cm−1 owing to the stretching vibration of Bi-O bonds. Moreover, the Raman bands near 764 and 855 cm−1 in the CMBVO 
sample further confirm the presence of the 𝑡𝑧 phase in it [80,81]. The coexistence of characteristic Raman bands of 𝑚𝑠 (335, 365, 710
4

and 811 cm−1) and 𝑡𝑧 (250, 764 and 855 cm−1) phase validate the presence of 𝑡𝑧-𝑚𝑠 mixed phase in the co-doped CMBVO sample.
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Fig. 2. Room temperature Raman spectra of BVO, MBVO, CBVO, and CMBVO NPs.

Fig. 3. FTIR spectra of BVO, CBVO, MBVO, and CMBVO NPs.

3.3. Fourier transform infrared spectroscopy

The FTIR spectra of BVO, CBVO, MBVO, and CMBVO are presented in Fig. 3, and the corresponding atomic bond vibrations are 
displayed in Table S4 [82]. The Bi-O bond stretching vibrations created weak IR absorption near 366 and 408 cm−1. The absorption 
near 470 cm−1 may arise from the symmetric bending vibrations [VO4]3−. The anti-symmetric stretching of the V-O bond stems from 
the FTIR bands in the range 580-620 cm−1. The VO3−

4 stretching modes have originated the weak absorption band near 730-750
cm−1 [83–86]. The symmetric stretching of the V-O bond emanated the absorption near 820 cm−1. The Bi-O stretching vibrations 
remained unchanged in undoped, mono-doped, and co-doped samples. The antisymmetric stretching of the V-O bond of undoped BVO 
shifted to a higher wavenumber in cases of Ce, Mo mono-doped, and (Ce, Mo) co-doped samples [87,88]. Moreover, the symmetric 
stretching of the V-O bond was shifted towards the lower wavenumber in the (Ce, Mo) doped sample. In BVO and MBVO samples, 
the IR absorption band near 1300 cm−1 can be assigned to the stretching vibration of the C=O bond in adsorbed atmospheric CO2
in the samples. The absorption near 1600 cm−1 in BVO, CBVO, and MBVO samples correspond to the bending vibration of H2O 
molecules present in the samples. We assumed that both CO2 and H2O/OH− ions adsorbed in the photocatalyst have ambient origin. 
This ambient adsorption is quite common for BiVO4 [38,42,89]. The presence of the IR bands due to the stretching vibration of water 
molecules indicates the tendency of water adsorption at the surface which could be beneficial for their photocatalytic activity [90].

3.4. Surface morphology analysis

The FESEM micrographs of the samples are shown Fig. 4 (a)-(d). The histogram analysis yields average particle size to be ∼ 25 nm 
(BVO), ∼ 23 nm (CBVO), ∼ 18 nm (MBVO), and ∼ 35 nm (CMBVO). The spherical shape of the particle remains relatively invariant 
in undoped, mono-doped, and co-doped NPs as expected due to high pH value during the synthesis [2,31,36,42,91]. The observed 
5

agglomerations across all the samples bear the signature of large surface energies of the NPs inevitable in hydrothermal synthesis 
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Fig. 4. FESEM micrographs of (a) BVO, (b) CBVO, (c) MBVO, and (d) CMBVO with particle size histograms superimposed.

Fig. 5. (a) TEM and (b)-(c) HRTEM and SAED images CMBVO NPs.

[92]. The incorporation of Ce in CBVO and (Ce, Mo) in CMBVO inflates the irregular agglomerations and grain growths. This irregular 
agglomeration creates intra-agglomerate pores that may have reduced the specific surface area of the samples. This may hinder the 
photocatalytic performances of the CBVO and CMBVO, as we shall see in Section 3.8 [93]. In the Mo-doped MBVO NPs, the uniform 
compact agglomeration hinders the intra-agglomerate pore formation that may enhance the photocatalytic performance [94].

The morphology study was extended further for the CMBVO sample using TEM, High-Resolution TEM (HRTEM), and selective 
area electron diffraction (SAED) analysis as shown in Fig. 5(a)-(c). The spherical-shaped NPs were evident in the TEM image in 
Fig. 5(a). The polycrystalline nature of the CMBVO sample was confirmed by the SAED patterns in the insets of Fig. 5(b) and 
Fig. 5(c). The lattice fringes are visible in HRTEM images marked by yellow rectangular boxes R1 to R4. The lattice fringes with 
a spacing of 0.45 nm 𝑑-spacing in the regions R1 and R3 were characteristic of (1 1 −1) crystallographic plane of the 𝑚𝑠 phase. 
The 𝑑-spacing of 0.17 nm in the R2 region as displayed in Fig. 5(b) inset corresponds to (4 1 1)/ (0 6 1) crystallographic planes of 
𝑡𝑧/𝑚𝑠 phases. The observed 𝑑-spacing of 0.29 nm in region R4 in Fig. 5(c) can be mapped to the (0 4 0)/ (2 1 1) crystallographic 
planes of 𝑚𝑠/𝑡𝑧 phases. Overall, the presence of mixed 𝑚𝑠/𝑡𝑧 phases along with the desired crystallographic planes in CMBVO was 
substantiated by the TEM analysis. The EDX spectra confirmed the elemental identifications of all samples as shown in Fig. S2-S3. 
Moreover, the uniform spatial distribution of the Ce and Mo dopants in CBVO, MBVO, and CMBVO samples was evident in Fig. S4-S6
6

which eliminates the possibility of spurious effects due to dopant segregation [95–100].
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Fig. 6. (a) XPS Full Survey, Core level of (b) Bi-4𝑓 , (c) V-2𝑝 (d) O-1𝑠, (e) Ce-3𝑑, and (f) Mo-3𝑑 of BVO, CBVO, MBVO, and CMBVO NPs.

3.5. X-ray photoelectron spectroscopy

The full XPS spectra of BVO, CBVO, MBVO, and CMBVO displayed in Fig. 6(a) confirmed the presence of constituent Bi, V, O, Ce, 
and Mo elements. The Bi-4𝑓 XPS spectra of BVO in Fig. 6(b) revealed two distinct symmetrical peaks located at 159 and 164.3 eV 
owing to 5.3 eV spin-orbit split of the Bi-4𝑓7∕2 and Bi-4𝑓5∕2 [101,102]. The binding energies of these two XPS peaks are blue-shifted 
in both Ce and Mo mono-doped CBVO and MBVO, and red-shifted for co-doped CMBVO due to different electronegativities of the 
doping impurities [32]. The spin-split V-3𝑝 XPS lines at 516.6 and 524.1 eV of BVO in Fig. 6(c) were shifted to higher binding energies 
for mono-doped CBVO, MBVO, and co-doped CMBVO [103]. This shift was expected due to different electronegativities of Mo6+ and 
V5+ as well as changes in local coordination environments of Bi and V ions [8,97]. The core level O-1𝑠 of BVO exhibits a peak at 
a binding energy of 529.8 eV in Fig. 6(d) which can be attributed to the lattice oxygen [42]. The presence of Ce and Mo dopants 
blueshifted the bind energy of this XPS peak in cases of CBVO, MBVO, and CMBVO. The relative shift of Ce3+ XPS lines in Fig. 6(e) at 
binding energies (881.5, 885.7 eV) and (900.1, 904.2 eV) corresponding to Ce-3𝑑5∕2 and Ce-3𝑑3∕2 from CBVO to CMBVO was found 
7

to be nominal [31,104]. The binding energies of Mo-3𝑑5∕2 and Mo-3𝑑3∕2 at 232.2 and 235.4 eV respectively in Fig. 6(f) indicate the 
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Fig. 7. (a) UV–Vis diffuse absorption spectra. (b) Band gap estimation from Tauc plot of BVO, CBVO, MBVO, and CMBVO NPs.

presence of Mo6+ oxidation state suitable for V-site in the sample as per the literature [32,97,105,106]. The binding energies of these 
XPS peaks have undergone a small red shift from MBVO to CMBVO. The Ce at% estimated from the XPS turned out to be 1.47 and 
1.56 in CBVO and CMBVO, respectively which are quite close to the stoichiometric value of 1.67%. The at% of Mo was found to be 
0.38 (CBVO) and 0.41 (CMBVO) at% which are in good agreement with the theoretical value of 0.33%.

3.6. UV-Vis spectroscopy

The measured UV-Vis diffuse reflectance was converted to absorption by using the Kubelka-Munk function 𝐹 (𝑅∞) as displayed 
in Fig. 7(a) [107]. All samples have their primary absorption bands within the 450-550 nm wavelength range. The electronic band 
gap 𝐸g and the photon energy ℎ𝜈 can be related with 𝐹 (𝑅∞) as

[𝐹 (𝑅∞)ℎ𝜈]1∕𝛾 =𝐴(ℎ𝜈 −𝐸g), (2)

where A is a constant, and the nature of the electronic transition is defined by the parameter 𝛾 [108–111]. The longer wavelength sub 
band gap optical absorption was significantly enhanced in the cases of CBVO and CMBVO NPs. The incorporation of Ce and (Ce, Mo) 
may have introduced defect states in the band gap that inflated the optical absorption leading to the Urbach tails in long wavelength 
region [112,113]. These deep sub-band defect states were substantiated by the DFT simulations in Section 3.9. Setting 𝛾 = 2 and 
extrapolating the steepest slopes of the Tauc plots to the energy axis as shown in Fig. 7(b), the indirect band gap was estimated to 
be 2.42, 2.45, 2.42, and 2.45 eV for BVO, CBVO, MBVO, and CMBVO samples, respectively. The estimated band gaps were consistent 
with that of the BiVO4 [2,8,13,77,95,114,115]. The energy band gap remains essentially unchanged due to Ce doping in CBVO which 
is in line with the findings of Ref. [31,116,117].

3.7. Steady state photoluminescence measurements

Photoluminescence (PL) spectra encode information regarding photo-generated free electron-hole pair (EHP) recombination pro-
cesses in materials [118]. The recombination of free charge carriers inside the material results in PL and thereby a strong correlation 
exists between PL emission intensity and the photocatalytic efficiencies [119,120]. Although the PL intensity can be affected by 
multiple factors like sample preparation conditions and impurity concentration, common observations suggest that low PL intensity 
implies a low free charge carrier recombination rate that promotes superior photocatalytic performances as more photo-generated 
carriers can participate in it [121–125]. The measured steady-state PL spectra of BVO, CBVO, MBVO, and CMBVO samples were 
displayed in Fig. 8. The PL emission of BVO near 525 nm marks the EHP recombination mediated by electron transition from the 
V-3𝑑 in the conduction band (CB) to the hole residing in the (Bi-3𝑑, O-2𝑝) hybridized states in the valence band (VB) of the 𝑚𝑠 phase 
[42,126]. The most intense PL peak occurred for CBVO sample which is indicative of enhanced EHP recombination in the presence 
of Ce dopants. The PL intensity diminishes gradually for CMBVO and MBVO, indicating a sequential reduction in photo-generated 
carrier recombination [127]. No significant PL peak shift in wavelength was observed for the mixed 𝑚𝑠-𝑡𝑧 phase of the CMBVO sam-
ple. This is expected as the PL peak of the 𝑚𝑠 phase lies very close to that of the 𝑡𝑧 phase [124,128]. The possible EHP recombination 
mechanism in these samples is explored from DFT simulations in Section 3.9.

3.8. Photocatalytic measurements

Fig. 9(a)-(d) present UV-vis MB dye absorption spectra as a function of irradiation time for BVO, CBVO, MBVO, and CMBVO 
photocatalysts. The MB characteristic 665 nm absorption peak intensity reduction over time corroborates the annihilation of its 
8

chromophoric structure by the photocatalyst. The dye degradation efficiencies of the photocatalysts were evaluated by recording 
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Fig. 8. Photoluminescence steady-state spectra of BVO, CBVO, MBVO, and CMBVO NPs measured at 260 nm excitation.

Fig. 9. The MB dye (10 ppm) degradation of 1 g/L (a) BVO, (b) CBVO, (c) MBVO, and (d) CMBVO photocatalysts measured from UV-vis absorption spectra during 
the photodegradation at pH = 10.

the ratio 𝐶∕𝐶0, where 𝐶0 and 𝐶 stand for the MB concentration at initial and some specific time, as a function of simulated solar 
irradiation time as displayed in Fig. 10(a). For a comparative analysis of photocatalytic performances, the relevant parameters of 
interest were recorded from existing literature and this work in Table S7. The 𝑚𝑠 phase of the BVO achieved a 93% MB degradation 
efficiency, whereas 𝑡𝑧 phase has efficiencies < 40% in Ref. [28,42]. For CBVO, the 46% efficiency turned out to be low compared to 
that of Ref. [28]. The Mo mono-doped MBVO showed a 98% efficiency outperforming reported photocatalytic degradation efficiencies 
9

in Ref. [129–131]. For the co-doped CMBVO sample, the efficiency was reduced to 65%. The photocatalytic degradation can be 



Heliyon 10 (2024) e29408T.A. Mahi, Q.S. Hossain, S.S. Nishat et al.

Fig. 10. (a) Time-dependent photocatalytic degradation fraction 𝐶∕𝐶0 and (b) Linear fitted time-dependent photocatalytic degradation fraction of 10 ppm MB dye 
MB for 1 g/L BVO, CBVO, MBVO, and CMBVO photocatalyst as a function of irradiation time at pH= 10.

modeled with the pseudo-first-order kinetics following a time evolution of the 𝐶∕𝐶0 as ln(𝐶0∕𝐶) = 𝑘𝑡 as depicted in Fig. 10(b). 
The slope of this linear fitting model provides the reaction rates 𝑘 to be 0.01317 (BVO), 0.00242 (CBVO), 0.01765 (MBVO), and 
0.00420 (CMBVO) min−1. Several reasons can be speculated for the observed photocatalytic efficiency reduction in CBVO and 
CMBVO. The defect density measured from XRD analysis in Table S2 was increased in CMBVO which may adversely affect the 
photocatalytic performance. These defect states were supported by the Urbach tail in the UV-vis absorption data. In addition, the 
irregular agglomerations and grain growths in the CMBVO sample were presented in Section 3.4 can hinder the photocatalytic 
activity due to reduced specific surface area [93]. The DFT simulation presented in Section 3.9 suggests photo-generated carrier 
recombination may have adversely affected the photocatalytic performance of CBVO and CMBVO samples.

3.9. Electronic properties simulation

Fig. 11(a) presents the total density of states (TDOS) and its projections on relevant orbitals (PDOS) of pristine BiVO4 supercell. 
The Fermi energy 𝐸F was set as zero of energy. This DFT+𝑈 DOS yields band gap 𝐸g of 2.51 eV. The energy states near the VBM 
stem from hybridization between dominant O-2p and small Bi-6s orbitals. The Bi-5d has negligible contribution to valence band 
maxima (VBM) and conduction band minima (CBm) edges. The states around the CBm originate from the mixing among large V-3d, 
small Bi-6p, and O-2p orbital contributions. The V-3d splits into two lobes in the CB due to the tetrahedron crystal-field effect. In the 
case of the 12.5% Ce doped Bi0.875Ce0.125VO4 structure, the Ce-4𝑓 orbital introduces deep impurity levels as shown in Fig. 11(b). The 
position of the impurity states in the electronic DOS depends on the choice of the Hubbard interaction parameter 𝑈 and can produce 
energy levels deep in the energy band gap [31]. This impurity state can act as a photo-generated electron-hole pair recombination 
center and can effectively degrade the photocatalytic performance. The shallow up spin impurity states near the CB of Mo doped 
BiV0.9375Mo0.065O4 in Fig. 11(c) germinated from the hybridization of Mo-4𝑑, O-2𝑝 and V-3d orbitals. These states can trap photo-
generated electrons preventing quick recombination and thereby prolonging its lifetime which may aid the photocatalytic activities. 
This Mo shallow trap states mediated carrier lifetime enhancement is well established in the existing literature [32,33,35,63]. For 
(12.5% Ce, 6.5% Mo) co-doped Bi0.875Ce0.125V0.9375Mo0.065O4 structure, deep impurity states are created from the up spin of Ce-4𝑓 1

states below the mid-band gap and the hybridization of Mo-4𝑑, O-2𝑝 and V-3𝑑 stems impurity states above the mid-band gap region, 
see Fig. 11(d). These deep levels can inflate the unwanted carrier recombination that can act as a key factor in degrading the 
photocatalytic activity. The electronic BS is simulated along Γ, Z, D, B, A, and E high symmetry k-points for all aforementioned 
undoped and doped structures as shown in Fig. 12(a)-(d). The simulated indirect band gap 𝐸g remained invariant at 2.62 eV. The 
deep impurity state due to Ce doping is evident in the BS of Bi0.875Ce0.125VO4 as depicted in Fig. 12(b). The BS of Mo doped 
BiV0.9375Mo0.065O4 structure in Fig. 12(c) shows the shallow impurity level near the CB as expected which can trap electrons and 
thereby prevent them from recombination. The (Ce, Mo) co-doped structure possesses detrimental deep recombination centers in its 
BS as presented in Fig. 12(d) that can limit the photocatalytic response.

Now we delve into the detailed analysis of the impurity stated in DOS that affects the photo-generated carriers. A trap center is 
amphoteric and can either trap an electron or a hole depending on its occupancy defined by its position relative to 𝐸F [132–134]. 
In the case of the Ce-doped CBVO, the mid-gap Ce4+ defect states above the 𝐸F is empty and act as electron recombination center 
as shown in Fig. 13(a). The photo-generated electron in the CB can recombine with the hole in the VB through the help of this 
recombination center through non-radiative Shockley-Read-Hall recombination [135]. For Mo-doped MBVO in Fig. 13(b), the empty 
Mo6+ state lies close to the CB and situated below the 𝐸F. This level can trap the photo-generated electron and thereby hinder the 
EHP recombination. The trapped electron can easily be thermally excited to CB again and take part in photocatalytic reactions. In co-
doped CMBVO, the Ce4+ and Mo6+ states, as shown in Fig. 13(c), are above the 𝐸F. These empty states can mediate the non-radiative 
10

Shockley-Read-Hall electron-hole recombination and can prevent the EHP from taking part in photocatalytic activity.
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Fig. 11. The DFT+𝑈 derived TDOS and its projection onto different orbitals in Bi, V, O, Ce, and Mo atoms for (a) 𝑚𝑠 BiVO4 supercell, (b) Ce doped Bi0.875Ce0.125VO4
supercell, (c) Mo doped BiV0.9375Mo0.065O4 supercell and (d) (Ce, Mo) co-doped Bi0.875Ce0.125V0.9375Mo0.065O4 supercell.

4. Conclusion

The phases of hydrothermally synthesized undoped BiVO4, 10% Ce doped Bi0.90Ce0.10VO4, 2% Mo BiV0.98Mo0.02O4 and (Ce=10%, 
Mo=2%) co-doped Bi0.90Ce0.10V0.98Mo0.02O4 NPs were characterized with XRD, Raman, and FTIR spectroscopy. The FESEM micro-
graphs revealed the NP sizes to be in the ∼ 20 nm regime. The HRTEM and XPS have confirmed the (Ce, Mo) co-doping in mixed 
𝑚𝑠-𝑡𝑧 phase of Bi0.90Ce0.10V0.98Mo0.02O4. The spatial EDX scans confirmed uniform dopant distributions across the samples. The 
DRS confirmed the presence of defect states in (Ce, Mo) co-doped NPs as Urbach tails in the UV-vis absorption. The steady-state PL 
study provided evidence for enhancement in photo-generated carrier recombination in the (Ce, Mo) co-doped sample. This unwanted 
carrier recombination hampered its photocatalytic efficiency in MB dye degradation. The DFT+𝑈 simulation suggested the presence 
of Ce and Mo deep impurity states may act as recombination centers for the photo-generated carriers. Moreover, the increased defect 
densities, irregular agglomeration, and grain growth of the CMBVO sample may have hindered the photocatalytic activity. Overall, 
this work may have provided a detailed experimental analysis for (Ce, Mo) co-doped bismuth vanadate with theoretical perspectives.
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Fig. 12. Electronic BS of along Γ, Z, D, B, A, and E high symmetry k-points in BZ of (a) 𝑚𝑠 BiVO4 supercell, (b) Ce doped Bi0.875Ce0.125VO4 supercell, (c) Mo doped 
BiV0.9375Mo0.065O4 supercell, and (d) (Ce, Mo) co-doped Bi0.875Ce0.125V0.9375Mo0.065O4 supercell.

Fig. 13. Salient features of the electronic structure (a) CBVO, (b) MBVO, and (c) CMBVO in a schematic view. The reddish-filled and bluish-empty boxes represent 
the VB and CB, respectively. The black dot and the hollow circle denote electron and hole, respectively.
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