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The crop loss caused by bacteria has increased year by year due to the lack of effective
control agents. In order to develop efficient, broad-spectrum, and structurally simple
agricultural bactericide, the structure of piperonylic acid was modified and a series of novel
piperonylic acid derivatives containing a sulfonic acid ester moiety was synthesized.
Bioassay results indicated the compounds exhibited significantly antibacterial activities.
Among them, compound 41 exhibited excellent antibacterial activities against
Pseudomonas syringae pv. Actinidiae (Psa), with inhibitory value 99 and 85% at
100 μg/ml and 50 μg/ml, respectively, which was higher than that of thiodiazole-copper
(84 and 77%) and bismerthiazol (96 and 78%). In addition, some compounds also showed
moderate insecticidal activity against Spodoptera frugiperda. The abovementioned results
confirm the broadening of the application of piperonylic acid, with reliable support for the
development of novel agrochemical bactericide.
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1 INTRODUCTION

Crop diseases caused by bacteria are considered as the second largest disease in agriculture, second
only to fungal diseases, and cause major agricultural losses every year (Abdullahiab et al., 2020;Wang
et al., 2021). Although there are some agents widely used to control bacterial diseases, such as
bismerthiazol, streptomycin, and copper compounds (ChenM. H. et al., 2021), due to long-term and
large-scale use for many years, it not only caused resistance in bacteria but also caused serious
environmental problems. Pests were also an important culprit in reducing crop yields. In addition to
fed directly on crops, pests also transmitted many viruses and bacteria during migration and feeding.
Therefore, it was very necessary to develop an efficient and broad-spectrum agricultural bactericide
(Wang et al., 2022).

Due to its characteristics of unique mechanism of action, novel scaffolds, and easy derivation, the
natural products have always been a valuable source for lead compounds discovery in agricultural
chemistry. Piperonylic acid is an aromatic acid mainly found in black pepper (Moreira et al., 2021).
Lots of research results revealed members of the piperonylic acid family had a range of biological
activities and were further developed into a commercial drug and widely used in the field of medicine,
such as oxolinic acid (Yamazawa et al., 2021; Boycov et al., 2022; Quan et al., 2022), kakuol (Jang
et al., 2020; Matsumoto et al., 2020; Sui et al., 2020), andmiloxacin (Horie and Nakazawa, 1992; Ueno
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and Aoki, 1996; Ueno et al., 2001). In addition, piperonylic acid
derivatives also showed good activity against bacteria (Umadevi
et al., 2013). Sulfonic acid groups are widely used in the field of
medicine mainly in the form of sulfonate derivatives. Such as
apatinib mesylate (Guo Q. et al., 2020; Chen M. et al., 2021; Kou
et al., 2021; Zheng et al., 2021), donafenib tosylate (Wang et al.,
2017), and dabrafenib mesylate (Carlos et al., 2015; Liu et al.,
2019; Rai et al., 2020) that have been widely used to treat cancer,
gemifloxacin mesylate for antibacterial (Chai et al., 2019), and
pradefovir mesylate for antiviral (Tuerkova and Zdrazil, 2020).
However, many research results revealed that sulfonic acid ester
derivatives also had very extensive and excellent biological
activities, especially the antibacterial activity was impressive.
Guo et al. (2019) and Guo T. et al. (2020) had reported that
by splicing a sulfonic acid ester moiety into the backbone of 1,4-
pentadien-3-one and chalcone, respectively, the two series of
derivatives obtained showed excellent inhibitory activities against
bacteria such as Xanthomonas axonopodis pv. citri (Xac),

Ralstonia solanacearum (Rs), and Xanthomonas oryzae pv.
oryzae (Xoo). Inspired by the results of these studies, the
present work aims to incorporate a sulfonic acid ester moiety
into the piperonylic acid backbone to synthesize a series of novel
derivatives, and further evaluate their antibacterial and
insecticidal activity, and hope to obtain piperonylic acid
derivatives with good antibacterial activities.

2 EXPERIMENTAL

2.1 Chemistry
All starting materials and reagents were commercially available
and used without further purification, except as indicated. The 1H
NMR and 13C NMR spectra were recorded on a Bruker DPX
400 MHz (Bruker BioSpin GmbH, Rheinstetten, Germany) NMR
spectrometer with CDCl3 as the solvent. The following
abbreviations were used to explain the multiplicities: s, singlet;

SCHEME 1 | The synthetic route of title compounds 4a-4x.
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d, doublet; t, triplet; m, multiplet; and br, broadened. The melting
points were determined on a WRX-4 microscope melting point
apparatus (YiCe Apparatus & Equipment co., LTD, Shanghai,
China). High-resolution mass spectrometry (HRMS) was
conducted using a Thermo Scientific Q Exactive (Thermo
Fisher Scientific, Massachusetts, America). The X-ray
crystallographic data were determined on a D8 Quest X-ray
diffractometer (Bruker BioSpin GmbH, Rheinstetten, German).

2.1.1 General Procedures for Preparing Compounds
The synthetic route for the final compounds 4a–4x were
depicted in Scheme 1. Intermediates 1–2 were synthesized
according to a previously reported method (Dam and
Madsen, 2009; Zazeri et al., 2020). Intermediate 3 was
prepared according to literature method (Joseph et al.,
2019). Target compounds 4a–4x were synthesized by
condensation of different sulfonyl chloride which
contained different substituent group and intermediate 3
at room temperature condition. Intermediate 2 equivalent
of triethylamine was added to the system as a catalyst to
neutralize the HCl generated by the reaction so that the
reaction can proceed smoothly. After approximately about
4 h, the solvent was removed, and the residue was purified by
flash chromatography on silica gel with petroleum n-hexane/
ethyl acetate (volume ratio 5:1) to obtain the pure product.

2.1.1.1 N-(2-((4-fluorophenyl)sulfonyl)phenyl)benzo[d][1,3]
dioxole-5-carboxamide (4a)
Light yellow powder, yield 82%. m.p 133.4–134.7°C. 1H NMR
(400 MHz, CDCl3) δ 8.32 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.26 (s,
1H, -NH-), 7.87 (dd, J = 9.0, 4.9 Hz, 2H, Ph-H), 7.40 (dd, J = 8.1,
1.9 Hz, 1H, Ph-H), 7.36–7.29 (m, 2H, Ph-H), 7.21–7.10 (m, 2H,
Ph-H), 7.06–7.02 (m, 1.6 Hz, 1H, Ph-H), 6.94–6.87 (m, 2H, Ph-
H), 6.09 (s, 2H, -OCH2O-).

13C NMR (100 MHz, CDCl3) δ 164.4,
151.0, 148.3, 139.2, 131.5, 131.4, 128.2, 124.5, 123.3, 122.9, 122.0,
117.1, 116.8, 108.3, 107.7, 102.0. HRMS (ESI): calculated for
C20H14FNO6S [M + Na]+: 438.0526, found: 438.0418.

2.1.1.2 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
Phenyl Methanesulfonate (4b)
Light yellow powder, yield 80%. m.p 127.5–128.5°C. 1H NMR
(400 MHz, CDCl3) δ 7.48 (dd, J = 7.8, 1.8 Hz, 1H, -NH-), 7.29 (s,
2H, Ph-H), 7.13–7.01 (m, 6H, Ph-H), 6.95 (dd, J = 8.2, 1.5 Hz, 1H,
Ph-H), 6.83 (d, J = 8.7 Hz, 1H, Ph-H), 6.07 (s, 2H, -OCH2O-),
4.65 (s, 2H, -CH2-PH). 13C NMR (100 MHz, CDCl3) δ 164.6,
150.8, 148.1, 138.0, 131.8, 130.9, 129.6, 129.2, 128.4, 128.2, 126.8,
124.6, 123.3, 123.0, 122.1, 108.2, 107.8, 101.8, 57.8. HRMS (ESI):
calculated for C21H17NO6S [M + Na]+: 434.0777, found:
434.0667.

2.1.1.3 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2,5-Dichlorobenzenesulfonate (4c)
Light yellow powder, yield 83%. m.p 149.7–152.7°C. 1H NMR
(400 MHz, CDCl3) δ 8.67 (s, 1H, -NH-), 8.30–7.76 (m, 2H, Ph-
H), 7.69–7.33 (m, 2H, Ph-H, Ph-H), 7.21–6.74 (m, 6H, Ph-H),
6.08 (s, 2H, -OCH2O-).

13C NMR (100 MHz, CDCl3) δ 166.4
151.3, 148.8, 127.2, 125.7, 122.4, 122.3, 120.6, 119.8, 108.3, 107.9,

102.1. HRMS (ESI): calculated for C20H13Cl2NO6S [M + Na]+:
487.9732, found: 487.9705.

2.1.1.4 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2-Bromobenzenesulfonate (4d)
Light yellow powder, yield 85%. m.p 130.5–132.5°C. 1H NMR
(400 MHz, CDCl3) δ 8.58 (s, 1H, -NH-), 8.37 (dd, J = 8.3, 1.6 Hz,
1H, Ph-H), 8.11–8.04 (m, 1H, Ph-H), 7.78 (d, J = 7.5 Hz, 1H, Ph-
H), 7.56–7.46 (m, 3H, Ph-H), 7.41 (d, J = 1.8 Hz, 1H, Ph-H),
7.31–7.29 (m, 1H, Ph-H), 7.16–6.98 (m, 2H, Ph-H), 6.90 (d, J =
8.1 Hz, 1H, Ph-H), 6.08 (s, 2H, -OCH2O-).

13C NMR (100 MHz,
CDCl3) δ 164.7, 151.0, 148.2, 138.8, 135.9, 135.6, 132.6, 128.2,
128.0, 124.5, 123.3, 122.8, 122.3, 121.3, 108.2, 108.0, 101.9. HRMS
(ESI): calculated for C20H14BrNO6S [M + Na]+: 497.9617, found:
497.9614.

2.1.1.5 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
3,5-Difluorobenzenesulfonate (4e)
Light yellow powder, yield 81.5%. m.p 152.7–153.8°C. 1H NMR
(400 MHz, CDCl3) δ 8.32 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.17 (s,
1H, -NH-), 7.46–7.31 (m, 5H, Ph-H), 7.17–6.82 (m, 4H, Ph-H),
6.09 (s, 2H, -OCH2O-).

13C NMR (100 MHz, CDCl3) δ 164.4,
161.6, 151.1, 148.4, 139.1, 131.2, 128.5, 128.1, 124.8, 123.6, 122.6,
121.9, 112.3, 112.0, 110.6, 108.3, 107.7, 102.0. HRMS (ESI):
calculated for C20H13F2NO6S [M + Na]+: 456.0324, found:
456.0319.

2.1.1.6 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
4-Methoxybenzenesulfonate (4f)
Light yellow powder, yield 89%. m.p 94.3–95.2°C. 1H NMR
(400 MHz, CDCl3) δ 8.34 (s, 1H, -NH-), 8.32 (d, J = 2.0 Hz,
1H, Ph-H), 7.75 (d, J = 9.0 Hz, 2H, Ph-H), 7.39 (dd, J = 8.1, 1.9 Hz,
1H, Ph-H), 7.34–7.28 (m, 2H, Ph-H), 7.01 (dd, J = 7.5, 1.6 Hz, 1H,
Ph-H), 6.95–6.87 (m, 4H, Ph-H), 6.08 (s, 2H, -OCH2O-), 3.86 (s,
3H, -OCH3).

13C NMR (100 MHz, CDCl3) δ 164.6, 164.4, 150.9,
139.3, 130.8, 127.9, 125.7, 124.4, 123.1, 122.9, 122.0, 114.7, 108.2,
107.8, 101.9, 55.8. HRMS (ESI): calculated for C21H17NO7S [M +
Na]+: 450.0618, found: 450.0619.

2.1.1.7 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2-Chlorobenzenesulfonate (4g)
Light yellow powder, yield 88%. m.p 101.8–103.6°C. 1H NMR
(400 MHz, CDCl3) δ 8.53 (s, 1H, -NH-), 8.40 (dd, J = 8.3, 1.6 Hz,
1H, Ph-H), 7.93–7.90 (m, 1H, Ph-H), 7.73–7.67 (m, 1H, Ph-H),
7.49 (dd, J = 8.1, 1.9 Hz, 1H, Ph-H), 7.42 (d, J = 1.8 Hz, 1H, Ph-H),
7.36–7.29 (m, 2H, Ph-H), 7.24–7.16 (m, 1H, Ph-H), 7.09–7.05 (m,
1H, Ph-H), 6.91 (d, J = 8.2 Hz, 1H, Ph-H), 6.08 (s, 2H, -OCH2O-).
13C NMR (100 MHz, CDCl3) δ 164.6, 160.8, 158.2, 151.0, 148.2,
138.4, 137.5, 137.4, 131.5, 131.4, 128.4, 128.2, 124.8, 124.5, 123.0,
122.8, 122.2, 117.7, 117.5, 108.2, 107.9, 101.9. HRMS (ESI):
calculated for C20H14ClNO6S [M + Na]+: 454.0210, found:
424.0146.

2.1.1.8 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
Naphthalene-2-sulfonate (4h)
Light yellow powder, yield 83%. m.p 145.6–147.1°C. 1H NMR
(400 MHz, CDCl3) δ 8.44 (s, 1H, Ph-H), 8.32 (dd, J = 8.3, 1.4 Hz,
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1H, Ph-H), 8.22 (s, 1H, -NH-), 7.90 (q, J = 8.4 Hz, 3H, Ph-H),
7.75–7.58 (m, 3H, Ph-H), 7.32–7.27 (m, 1H, Ph-H), 7.24–7.16 (m,
2H, Ph-H), 6.77 (d, J = 8.1 Hz, 1H, -OCH2O-).

13C NMR
(100 MHz, CDCl3) δ 164.3, 150.8, 148.1, 139.3, 135.6, 131.8,
131.6, 131.4, 130.5, 129.9, 129.5, 128.1, 128.0, 124.4, 123.1,
123.0, 122.4, 121.7, 108.1, 107.7, 101.8. HRMS (ESI): calculated
for C24H17Cl2NO6S [M + Na]+: 470.0777, found: 470.6777.

2.1.1.9 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2,4,6-Trimethylbenzenesulfonate (4i)
Light yellow powder, yield 84%. m.p 130.5–131.6°C. 1H NMR
(400 MHz, CDCl3) δ 8.60 (s, 1H, -NH-), 8.38 (dd, J = 8.3, 1.6 Hz,
1H, Ph-H), 7.47 (dd, J = 8.1, 1.8 Hz, 1H, Ph-H), 7.41 (d, J = 1.9 Hz,
1H, Ph-H), 7.29 (d, J = 1.4 Hz, 1H, Ph-H), 7.02–6.84 (m, 4H, Ph-
H), 6.67 (dd, J = 8.2, 1.5 Hz, 1H, Ph-H), 6.07 (s, 2H, -OCH2O-),
2.56 (s, 6H, -2CH3), 2.34 (s, 3H, -CH3).

13C NMR (100 MHz,
CDCl3) δ 164.6, 150.9, 148.2, 144.7, 140.7, 139.1, 132.1, 132.0,
129.8, 128.7, 127.8, 124.3, 123.2, 122.5, 122.0, 108.2, 107.9, 101.8,
22.9, 21.2. HRMS (ESI): calculated for C23H21NO6S [M + Na]+:
462.0982, found: 462.0977.

2.1.1.10 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
4-Chlorobenzenesulfonate (4j)
Light yellow powder, yield 85%. m.p 134.6–137.0°C. 1H NMR
(400 MHz, CDCl3) δ 8.31 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.19 (s,
1H, -NH-), 7.77 (d, J = 8.6 Hz, 2H, Ph-H), 7.44 (d, J = 8.6 Hz, 2H,
Ph-H), 7.37 (dd, J = 8.1, 1.9 Hz, 1H, Ph-H), 7.33–7.29 (m, 2H, Ph-
H), 7.13–7.02 (m, 1H, Ph-H), 6.95 (dd, J = 8.2, 1.5 Hz, 1H, Ph-H),
6.90 (d, J = 8.1 Hz, 1H, Ph-H), 6.09 (s, 2H, -2CH3).

13C NMR
(100 MHz, CDCl3) δ 164.3, 151.1, 148.3, 141.8, 139.2, 133.1,
131.3, 129.9, 129.8, 128.2, 124.6, 123.3, 122.9, 121.9, 108.3,
107.7, 102.0. HRMS (ESI): calculated for C20H14ClNO6S [M +
Na]+: 454.0122, found: 454.0119.

2.1.1.11 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
4-(Trifluoromethyl)benzenesulfonate (4k)
Light yellow powder, yield 82.3%. m.p 120.8–122.5°C. 1H NMR
(400 MHz, CDCl3) δ 8.31 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.17 (s,
1H, -NH-), 8.05–7.66 (m, 4H, Ph-H), 7.46–7.29 (m, 3H, Ph-H),
7.10–6.86 (m, 3H, Ph-H), 6.09 (s, 2H, -OCH2O-).

13C NMR
(100 MHz, CDCl3) δ 164.2, 151.1, 148.3, 139.2, 138.3, 131.2,
129.0, 128.4, 128.1, 126.6, 126.7, 124.7, 123.6, 122.8, 121.9,
108.2, 107.7, 102.0. HRMS (ESI): calculated for C21H14F3NO6S
[M + Na]+: 488.0386, found: 488.0386.

2.1.1.12 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
Benzenesulfonate (4l)
Light yellow powder, yield 86.2%. m.p 140.0–140.9°C. 1H NMR
(400 MHz, CDCl3) δ 8.34 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.31 (s,
1H, -NH-), 7.86 (dd, J = 8.5, 1.3 Hz, 2H, Ph-H), 7.69–7.65 (m, 1H,
Ph-H), 7.52–7.48 (m, 2H, Ph-H), 7.40–7.37 (m, 1H, Ph-H),
7.35–7.28 (m, 2H, Ph-H), 7.04–7.02 (m, 1H, Ph-H), 6.95–6.86
(m, 2H, Ph-H), 6.08 (s, 2H, -OCH2O-).

13C NMR (100 MHz,
CDCl3) δ 164.4, 151.0, 148.2, 139.2, 134.9, 131.4, 129.5, 128.4,
128.0, 124.4, 123.0, 122.9, 122.0, 108.2, 107.8, 101.9. HRMS (ESI):
calculated for C20H15NO6S [M + Na]+: 420.0512, found:
420.0511.

2.1.1.13 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2-Fluorobenzenesulfonate (4m)
Light yellow powder, yield 80%. m.p 93.7–94.7°C. 1H NMR
(400 MHz, CDCl3) δ 8.58 (s, 1H, -NH-), 8.37 (dd, J = 8.3,
1.6 Hz, 1H, Ph-H), 8.05 (dd, J = 8.0, 1.6 Hz, 1H, Ph-H),
7.62–7.54 (m, 2H, Ph-H), 7.49 (dd, J = 8.1, 1.8 Hz, 1H, Ph-H),
7.41 (d, J = 1.8 Hz, 1H, Ph-H), 7.36–7.27 (m, 2H, Ph-H),
7.14–7.02 (m, 2H, Ph-H), 6.91 (d, J = 8.1 Hz, 1H, Ph-H), 6.08
(s, 2H, Ph-H). 13C NMR (100 MHz, CDCl3) δ 164.7, 151.0, 138.7,
135.7, 132.4, 131.6, 128.2, 127.4, 124.5, 123.2, 122.8, 122.2, 108.2,
108.0, 101.9. HRMS (ESI): Calculated for C20H14FNO6S [M +
K]+: 454.0163, found: 454.0120.

2.1.1.13 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
4-(tert-butyl) Benzenesulfonate (4n)
Light yellow powder, yield 82%. m.p 107.7–109.3°C. 1H NMR
(400 MHz, CDCl3) δ 8.36 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.33 (s,
1H, -NH-), 7.64 (dd, J = 111.7, 8.7 Hz, 4H, Ph-H), 7.39 (dd, J =
8.1, 1.9 Hz, 1H, Ph-H), 7.33–7.27 (m, 2H, Ph-H), 7.06–6.96 (m,
2H, Ph-H), 6.90 (d, J = 8.1 Hz, 1H, Ph-H), 6.08 (s, 2H, -OCH2O-),
1.31 (s, 9H, -CH3 × 3). 13C NMR (100 MHz, CDCl3) δ 164.2,
159.2, 150.9, 148.2, 139.2, 131.5, 128.4, 128.3, 128.0, 126.5, 124.3,
123.0, 122.8, 122.0, 108.2, 107.8, 101.9, 35.4, 30.9. HRMS (ESI):
calculated for C24H23Cl2NO6S [M + Na]+: 476.1144, found:
476.1138.

2.1.1.14 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
4-Bromobenzenesulfonate (4o)
Light yellow powder, yield 83%. m.p 122.2–125.1°C. 1H NMR
(400 MHz, CDCl3) δ 8.31 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.17 (s,
1H, -NH-), 7.73–7.58 (m, 4H, Ph-H), 7.43–7.30 (m, 3H, Ph-H),
7.06 (td, J = 7.9, 1.6 Hz, 1H, Ph-H), 6.96 (dd, J = 8.2, 1.5 Hz, 1H,
Ph-H), 6.90 (d, J = 8.1 Hz, 1H, Ph-H), 6.09 (s, 2H, -OCH2O-).

13C
NMR (100 MHz, 7.30 (m, 3H) δ 164.3, 151.1, 148.3, 139.2, 133.6,
132.9, 131.2, 130.5, 129.8, 128.2, 124.6, 123.3, 122.9, 121.9, 108.3,
107.7, 102.0. HRMS (ESI): calculated for C20H14BrNO6S [M +
Na]+: 497.9617, found: 497.9612.

2.1.1.15 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2,5-Difluorobenzenesulfonate (4p)
Light yellow powder, yield 88%. m.p 109.9–121.6°C. 1H NMR
(400 MHz, CDCl3) δ 8.45 (s, 1H, -NH-), 8.39 (dd, J = 8.3, 1.6 Hz,
1H, Ph-H), 7.66–7.57 (m, 1H, Ph-H), 7.48 (dd, J = 8.1, 1.9 Hz, 1H,
Ph-H), 7.44–7.30 (m, 3H, Ph-H), 7.24–7.17 (m, 2H, Ph-H), 7.10
(ddd, J = 8.2, 7.4, 1.6 Hz, 1H, Ph-H), 6.92 (d, J = 8.1 Hz, 1H, Ph-
H), 6.08 (s, 2H, -OCH2O-).

13C NMR (100 MHz, CDCl3) δ 164.6,
151.1, 148.3, 138.4, 131.4, 128.5, 124.6, 123.2, 122.7, 122.1, 118.2,
108.3, 107.8, 101.9. HRMS (ESI): calculated for C20H13F2NO6S
[M + Na]+: 456.0323, found: 456.0322.

2.1.1.16 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
3-Nitrobenzenesulfonate (4q)
Light yellow powder, yield 81%. m.p 116.2–127.1°C. 1H NMR
(400 MHz, CDCl3) δ 8.44 (s, 1H, -NH-), 8.24 (dd, J = 8.3, 1.6 Hz,
1H, Ph-H), 7.86 (dd, J = 7.8, 1.5 Hz, 1H, Ph-H), 7.74 (td, J = 7.7,
1.5 Hz, 1H, Ph-H), 7.66 (td, J = 7.7, 1.4 Hz, 1H, Ph-H), 7.53 (dd,

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 9130034

Xie et al. Synthesis, Bioactivities, Piperonylic Acid Derivatives, and Sulfonic Acid Ester Moiety

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


J = 7.9, 1.4 Hz, 1H, Ph-H), 7.43–7.29 (m, 3H, Ph-H), 7.21 (d, J =
1.9 Hz, 1H, Ph-H), 7.15 (ddd, J = 8.3, 7.5, 1.6 Hz, 1H, Ph-H), 6.86
(d, J = 8.1 Hz, 1H, Ph-H), 6.07 (s, 2H, -OCH2O-).

13C NMR
(100 MHz, CDCl3) δ 164.6, 151.0, 148.0, 138.9, 135.7, 132.5,
132.1, 131.0, 128.4, 128.2, 127.8, 124.9, 124.7, 123.6, 123.2,
122.4, 108.1, 108.0, 101.9. HRMS (ESI): calculated for
C20H14Cl2N2O8S [M + Na]+: 465.0363, found: 465.0362.

2.1.1.17 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
3-Fluorobenzenesulfonate (4r)
Light yellow powder, yield 86.6%. m.p 160.0–162.1°C. 1H NMR
(400MHz, CDCl3) δ 8.33 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.23 (s,
1H, -NH-), 7.67–7.62 (m, 1H, Ph-H), 7.59 (ddd, J = 7.7, 2.6, 1.7 Hz,
1H, Ph-H), 7.50 (td, J = 8.1, 5.1 Hz, 1H, Ph-H), 7.41–7.31 (m, 4H, Ph-
H), 7.05 (ddd, J = 8.9, 7.4, 1.6 Hz, 1H, Ph-H), 6.96 (dd, J = 8.2, 1.5 Hz,
1H, Ph-H), 6.91 (d, J = 8.1 Hz, 1H, Ph-H), 6.09 (s, 2H, -OCH2O-).

13C
NMR (100MHz, CDCl3) δ 164.4, 151.0, 148.3, 139.1, 131.4, 131.3,
128.3, 128.2, 124.6, 124.3, 123.3, 122.8, 122.4, 122.2, 121.9, 116.0, 115.7,
108.3, 107.7, 101.9. HRMS (ESI): calculated for C20H14FNO6S [M +
Na]+: 438.0418, found: 438.0419.

2.1.1.18 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2,4-Difluorobenzenesulfonate (4s)
Light yellow powder, yield 83.2%. m.p 95.6–98.4°C. 1H NMR
(400 MHz, CDCl3) δ 8.46 (s, 1H, -NH-), 8.38 (dd, J = 8.3, 1.6 Hz,
1H, Ph-H), 7.97–7.87 (m, 1H, Ph-H), 7.49 (dd, J = 8.1, 1.9 Hz, 1H,
Ph-H), 7.41 (d, J = 1.9 Hz, 1H, Ph-H), 7.35–7.29 (m, 1H, Ph-H),
7.21–7.14 (m, 1H, Ph-H), 7.12–6.87 (m, 4H, Ph-H), 6.09 (s, 2H,
-OCH2O-).

13C NMR (100 MHz, CDCl3) δ 164.6, 151.0, 148.3,
138.5, 133.4, 133.3, 131.4, 128.4, 124.6, 123.3, 122.8, 122.1, 112.7,
108.3, 107.8, 106.3, 101.9. HRMS (ESI): calculated for
C20H13F2NO6S [M + Na]+: 456.0324, found: 456.0326.

2.1.1.19 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
3-(Trifluoromethyl)benzenesulfonate (4t)
Light yellow powder, yield 84%. m.p 120.9–123.6°C. 1H NMR
(400 MHz, CDCl3) δ 8.33 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.23 (s,

1H, -NH-), 8.14 (s, 1H, Ph-H), 8.06–7.90 (m, 2H, Ph-H), 7.67 (t,
J = 7.9 Hz, 1H, Ph-H), 7.43–7.31 (m, 3H, Ph-H), 7.06 (ddd, J =
9.1, 7.4, 1.6 Hz, 1H, Ph-H), 6.94 (dd, J = 8.3, 1.5 Hz, 1H, Ph-H),
6.90 (d, J = 8.1 Hz, 1H, Ph-H), 6.08 (s, 2H, -OCH2O-).

13C NMR
(100 MHz, CDCl3) δ 164.3, 151.1, 148.3, 139.0, 135.9, 131.6,
131.2, 130.4, 128.4, 128.1, 125.5, 124.6, 123.5, 122.7, 121.9,
108.3, 107.7, 102.0. HRMS (ESI): calculated for C21H14F3NO6S
[M + Na]+: 488.0386, found: 488.0396.

2.1.1.20 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
2-(Trifluoromethyl)benzenesulfonate (4u)
Light yellow powder, yield 87%. m.p 101.3–105.4°C. 1H NMR
(400 MHz, CDCl3) δ 8.36 (s, 1H, -NH-), 8.34 (d, J = 4.1 Hz, 1H,
Ph-H), 8.13 (d, J = 7.9 Hz, 1H, Ph-H), 7.90 (d, J = 8.3 Hz, 1H, Ph-
H), 7.85–7.69 (m, 2H, Ph-H), 7.42 (dd, J = 8.1, 1.8 Hz, 1H, Ph-H),
7.35 (d, J = 1.9 Hz, 1H, Ph-H), 7.33–7.28 (m, 1H, Ph-H),
7.08–7.04 (m, 2H, Ph-H), 6.90 (d, J = 8.1 Hz, 1H, Ph-H), 6.08
(s, 2H, -OCH2O-).

13C NMR (100 MHz, CDCl3) δ 148.2, 138.8,
134.8, 132.9, 132.6, 131.4, 128.3, 124.5, 123.2, 123.0, 122.1, 108.2,
107.8, 101.9. HRMS (ESI): calculated for C21H14F3NO6S [M +
Na]+: 488.0386, found: 488.0388.

2.1.1.21 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
3-Bromobenzenesulfonate (4v)
Light yellow powder, yield 84%. m.p 158.0–158.5°C. 1H NMR
(400MHz, CDCl3) δ 8.34 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.20 (s,
1H, -NH-), 8.04 (t, J = 1.9 Hz, 1H, Ph-H), 7.80–7.71 (m, 2H, Ph-H),
7.44–7.30 (m, 4H, Ph-H), 7.09–7.05 (m, 1H, Ph-H), 6.98 (dd, J =
8.2, 1.6 Hz, 1H, Ph-H), 6.91 (d, J = 8.1 Hz, 1H, Ph-H), 6.09 (s, 2H,
-OCH2O-).

13C NMR (100MHz, CDCl3) δ 151.1, 148.4, 139.1,
137.9, 136.4, 131.3, 131.1, 130.9, 128.3, 128.2, 127.0, 124.6, 123.5,
123.3, 122.8, 121.9, 108.3, 107.8, 101.9. HRMS (ESI): calculated for
C20H14BrNO6S [M + Na]+: 497.9617, found: 497.9619.

2.1.1.22 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
3-Chlorobenzenesulfonate (4w)
Light yellow powder, yield 86%. m.p 148.4–150.1°C. 1H NMR
(400MHz, CDCl3) δ 8.33 (dd, J = 8.2, 1.6 Hz, 1H, Ph-H), 8.20
(s, 1H, -NH-), 7.88 (t, J = 1.9 Hz, 1H, Ph-H), 7.74–7.67 (m, 1H, Ph-
H), 7.61 (dd, J = 2.1, 1.0 Hz, 1H, Ph-H), 7.44 (t, J = 8.0 Hz, 1H, Ph-
H), 7.39–7.30 (m, 3H, Ph-H), 7.07 (ddd, J = 9.0, 7.4, 1.6 Hz, 1H, Ph-
H), 6.98 (dd, J = 8.2, 1.5 Hz, 1H, Ph-H), 6.91 (d, J = 8.1 Hz, 1H, Ph-
H), 6.08 (s, 2H, -OCH2O-).

13C NMR (100MHz, CDCl3) δ 164.3,
151.1, 148.3, 139.1, 136.3, 135.9, 135.0, 131.3, 130.7, 128.3, 126.5,
124.6, 123.3, 122.8, 121.9, 108.3, 107.8, 101.9. HRMS (ESI):
calculated for C20H14ClNO6S [M+Na]+: 454.0168, found: 454.0121.

2.1.1.23 2-(Benzo[d][1,3]dioxole-5-carboxamido)phenyl
4-Methylbenzenesulfonate (4x)
Light yellow powder, yield 85%. m.p 130.0–131.1°C. 1H NMR
(400 MHz, CDCl3) δ 8.33 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H), 8.28 (s,
1H, -NH-), 7.72 (d, J = 8.4 Hz, 2H, Ph-H), 7.38 (dd, J = 8.1, 1.8 Hz,
1H, Ph-H), 7.32–7.27 (m, 3H, Ph-H), 7.26 (s, 1H, Ph-H), 7.02 (td,
J = 7.8, 7.4, 1.6 Hz, 1H, Ph-H), 6.94 (dd, J = 8.2, 1.5 Hz, 1H, Ph-
H), 6.90 (d, J = 8.1 Hz, 1H, Ph-H), 6.08 (s, 2H, -OCH2O-), 2.42 (s,
3H, -CH3).

13C NMR (100 MHz, CDCl3) δ 164.3, 150.9, 148.2,

FIGURE 1 | X-ray crystal structure of compound 4a.
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146.3, 139.2, 131.6, 131.4, 130.1, 128.4, 128.0, 124.4, 123.0, 122.9,
122.0, 108.2, 107.8, 101.9, 21.8. HRMS (ESI): calculated for
C21H17NO6S [M + Na]+: 434.0669, found: 434.0673.

2.2 Antimicrobial Assay
The antimicrobial activity of the derivatives (4a–4x) was tested
using the turbidimeter test, the commercial agricultural bactericide
bismerthiazol, thiodiazole-copper and lead compound piperonylic
acid used as control. The test compounds were dissolved in 150 μL
of dimethylformamide (DMF) and diluted with 0.1% (v/v) Tween-
20 to prepare two concentrations of 100 and 50 μg/ml. One
milliliter of the liquid sample was added to the 40 ml non-toxic
nutrient broth medium (NB: 1.5 g of beef extract, 2.5 g of peptone,
0.5 g of yeast powder, 5.0 g of glucose, and 500 ml of distilled water,
pH 7.0–7.2). Then, 40 μL of NB medium containing bacteria was
added to 5 ml of solvent NB containing the test compounds or
thiodiazole–copper. The inoculated test tubes were incubated at
30 ± 1°C with continuous shaking at 180 rpm for 48 h. The culture
growth was monitored spectrophotometrically by measuring the
optical density at 600 nm (OD600) and expressed as corrected
turbidity. The relative inhibition rates Inhibition (%) were
calculated as the following equation, where Ctur was the
corrected turbidity value of bacterial growth on untreated NB
and Ttur was the corrected turbidity value of bacterial growth on
treated NB.

Inhibition(%) � (Ctur − Ttur)/Ctur × 100%.

2.3 Insecticidal Activity Assay
Divide 20 second-instar larvae of Spodoptera frugiperda into 20
small cups and starve for 3–4 h. Cut the fresh corn leaves into
small leaf discs of 1 cm × 1 cm with scissors, and then soak them
in each test solution for 5 s, and then air dry them naturally. Then
put them in a cup with Spodoptera frugiperda and keep it under
the conditions of temperature of 25 ± 1°C, relative humidity of
60~70%, and a light-dark cycle of L: D = 14 h: 10 h. Feed normal
fresh corn leaf discs after 12 h and record the number of dead
insects at 12, 24, and 36 h.

3 RESULTS AND DISCUSSION

3.1 Chemistry
The synthetic route for the target compounds 4a–4x was shown
in Scheme 1. Intermediates 2–3 were prepared according to
previously reported procedures, and the yield of all
compounds was satisfactory, usually higher than 80%. In the
syntheses target compounds of 4a–4x, the yield when using
inorganic base, such as K2CO3 or KHCO3 as catalyst was
usually only approximately 30%. When inorganic base was

TABLE 1 | In vitro antibacterial activities of the target compounds 4a–4x.

Compound Pseudomonas syringae pv.
actinidiae (Psa)

Xanthomonas oryzae pv.
oryzae (Xoo)

R 100 μg/ml 50 μg/ml 100 μg/ml 50 μg/ml

4a -4-FPh 76 ± 1.3 68 ± 2.7 52 ± 0.6 45 ± 0.9%
4b -CH2-Ph 77 ± 1.2 73 ± 1.2 42 ± 2.2 38 ± 2.3%
4c -2,5-2ClPh 80 ± 0.8 75 ± 1.4 59 ± 1.1 52 ± 1.1%
4d -2-BrPh 96 ± 1.5 80 ± 1.6 38 ± 1.3 30 ± 0.8%
4e -3,5-2BrPh 83 ± 1.8 77 ± 2.4 87 ± 2.8 76 ± 1.5%
4f -4-CH3OPh 87 ± 0.7 80 ± 1.0 67 ± 3.6 51 ± 0.9%
4g -2-ClPh 82 ± 1.0 80 ± 1.7 37 ± 1.7 61 ± 0.8%
4h -2-Naphthalene 93 ± 2.1 80 ± 1.4 35 ± 0.5 17 ± 1.2%
4i -2,4,6-3CH3Ph 82 ± 1.1 75 ± 2.2 61 ± 1.9 44 ± 1.1%
4j -4-ClPh 90 ± 1.7 71 ± 1.3 76 ± 0.8 43 ± 2.4%
4k -4-CF3Ph 88 ± 1.8 72 ± 2.0 53 ± 1.7 39 ± 1.2%
4l -Ph 99 ± 2.0 85 ± 1.3 47 ± 2.7 18 ± 1.6%
4m -2-FPh 94 ± 3.0 78 ± 0.6 45 ± 0.6 13 ± 2.9%
4n -4-tBu Ph 88 ± 2.3 79 ± 3.0 38 ± 1.6 36 ± 1.8%
4o -4-BrPh 99 ± 1.4 81 ± 2.1 59 ± 3.4 54 ± 2.7%
4p -2,5-2FPh 94 ± 1.0 78 ± 1.3 54 ± 2.3 44 ± 1.3%
4q -3-NO2Ph 81 ± 1.1 78 ± 2.6 62 ± 1.8 32 ± 2.5%
4r -3-FPh 86 ± 1.4 79 ± 2.9 61 ± 2.0 30 ± 1.3%
4s -2,4-2FPh 91 ± 2.3 89 ± 0.8 64 ± 2.0 42 ± 2.4%
4t -3-CF3Ph 87 ± 2.1 78 ± 0.9 47 ± 1.4 9 ± 1.5%
4u -2-CF3Ph 81 ± 1.6 78 ± 1.4 44 ± 2.8 12 ± 0.3%
4v -3-BrPh 99 ± 1.1 81 ± 1.6 64 ± 1.8 47 ± 0.4%
4w -3-FPh 79 ± 1.6 75 ± 2.4 54 ± 2.9 30 ± 2.3%
4x -4-CH3Ph 83 ± 1.4 78 ± 1.3 29 ± 1.0 8 ± 1.5%
— Piperonylic acid 59 ± 2.1 47 ± 1.1 21 ± 1.9 13 ± 1.7%
— Bismerthiazol 96 ± 3.1 78 ± 2.1 55 ± 2.2 53 ± 2.3%
— Thiodiazole-copper 84 ± 1.8 77 ± 3.1 60 ± 1.9 59 ± 0.6%
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replaced with organic base triethylamine as the catalyst, the yield
was considerably greater usually more than 80%. It was worth
noting that when the intermediates 3 were synthesized using acid
and 2-amino phenol the carboxyl group might have reacted with
hydroxyl group to form an ester, or it may have reacted with the
amino group to form an amide. These two structures of isomers
were difficult to confirm through HRMS or NMR. In order to get
the exact structure of the target compound, we used X-ray to
confirm the structure of compound 4a, and the results are show in
Figure 1 (CCDC 2131244). Crystal data of 4a indicated that
target compounds were in the form of carbonamide instead of
carbonate.

3.2 In Vitro Antibacterial Activity
Antibacterial activities of target compounds 4a–4x against
agriculturally important pathogenic bacteria Psa and Xoo
were determined in vitro via the turbidimetric method, using
the commercialized bismerthiazol, thiodiazole-copper, and
piperonylic acid as a control agent. The bactericide which
was used to make the bioassay was provided by Guizhou Tea
Institute, and the results of the bioassay against Psa and Xoo are
shown in Table 1 and indicated that most of the title
compounds exhibited good to excellent activities in vitro.
Compounds 4l, 4o, and 4v showed excellent activities against
Psa at 100 μg/ml with inhibition rates of 99%, which were higher
than those of thiodiazole-copper (84%), bismerthiazol (96%),
and lead compound piperonylic acid (59%), respectively. In
particular, even at a concentration as low as 50 μg/ml,
compound 4l was found to still possess a pronounced anti-
Pas efficacy of 85%. Moreover, compounds 4e, 4f, and 4j
exhibited higher activities (i.e., 87, 67 and 76%, respectively)
against Xoo than that of thiodiazole-copper (60%),
bismerthiazol (55%), and piperonylic acid (21%) at 100 μg/ml
even at a concentration as low as 50 μg/ml, compound 4e was
found to still possess a pronounced anti-Xoo effifcacy of 76%,
which was significantly higher than that of control agent. It is
worth mentioning that whether for Psa or Xoo, the activities of
almost all target compounds were significantly higher than that
of the lead compound piperonylic acid. This indicated that

incorporation of a sulfonic acid ester moiety into the
piperonylic acid backbone could significantly improve its
antibacterial activity.

3.3 Insecticidal Activity Assay Against
Spodoptera frugiperda
In view of the literature which reported that piperonylic acid has
certain insecticidal activities, we also evaluated the activity of
some title compounds against Spodoptera frugiperda at 50 μg/ml,
The Spodoptera frugiperda used in the biological tests were
collected from fields in Luodian County, Guizhou Province,
China, and bred in a greenhouse. The pesticidal results are
shown in Figure 2. Although most compounds exhibited
certain insecticidal effect on Spodoptera frugiperda, such as the
lethal rate of compound 4g, 4q, and 4w on to the second instar
larvae of the insect reached 50.0, 50.0 and 62.5% at the 36 h,
respectively, which was significantly higher than the lead
structure piperonylic acid (37.5%), but still lower than the
commercial insecticide monosultap (100%) and
sulfoxaflor (87.5%).

4 CONCLUSION

In summary, in order to seek new efficiency, broad-spectrum, and
structure simple agricultural bactericide, a series of novel
piperonylic acid derivatives containing a sulfonic acid ester
moiety was synthesized. The structures of the title compounds
were verified by 1H NMR, 13C NMR, and HRMS. The bioassay
results revealed that these compounds showed good inhibition
activity against Xoo and Psa, and some compounds even
exhibited higher antibacterial activity than those of
commercial bactericide which are widely used. The title
compounds showed weaker activity against |Spodoptera
frugiperda compared with commercial pesticides. Thus, we
recommend these newly designed and synthesized scaffolds
should be used as a bactericide lead compound rather than an
insecticide lead compound for further optimization and research.

FIGURE 2 | Insecticidal activity against Spodoptera frugiperda of title compounds.
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