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Brain derived neurotrophic factor (BDNF) plays key roles in several neurodevelopmental
disorders and actions of pharmacological treatments. However, it is unclear how specific
BDNF’s effects are on different circuit components. Current studies have largely focused
on the role of BDNF in modification of synaptic development. The precise roles of BDNF
in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of
BDNF may be associated with increased risk for cognitive impairments and is mediated
at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant
mice that lacked activity-driven BDNF expression (bdnf -KIV), we previously reported that
experience regulation of the cortical GABAergic network is mediated by activity-driven
BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits
formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic
but not axonal morphology was altered in the mutant. Physiologically, GABAergic but
not glutamatergic synapses were severely affected. The effects on GABA transmission
occurs via presynaptic alteration of calcium-dependent release probability. These results
suggest that neuronal activity through activity-driven BDNF expression, can selectively
regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-
dependent BDNF is to modulate the computational ability of circuits that relate to the
gain control (i.e., feed-forward inhibition); whereas the basic wiring of circuits relevant to
the sensory pathway is spared. Gain control modulation within cortical circuits has broad
impact on cognitive processing and brain state-transitions. Cognitive behavior and mode
is determined by brain states, thus the studying of circuit alteration by endogenous BDNF
provides insights into the cellular and molecular mechanisms of diseases mediated by
BDNF.
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INTRODUCTION
Brain derived neurotrophic factor (BDNF) plays key roles in sev-
eral neurodevelopmental and neuropsychiatric disorders includ-
ing Rett Syndrome (Chang et al., 2006; Li and Pozzo-Miller,
2014), schizophrenia (Durany and Thome, 2004; Lu and Mar-
tinowich, 2008), major depression disorder (MDD; Martinowich
et al., 2007), attention deficit hyperactivity disorder (ADHD; Kebir
et al., 2009; Caylak, 2012), and actions of pharmacological treat-
ments (Longo and Massa, 2013; Ninan, 2014) in these diseases.
A consensus of the role of BDNF in neurodevelopmental disor-
ders is related to its role in the regulation of synaptic maturation
within critical brain areas (Li and Pozzo-Miller, 2014). Current
studies have largely focused on the role of BDNF in modification
of synaptic development (Lu, 2003; English et al., 2012). The pre-
cise roles of BDNF in the refinement of an entire functional circuit
in vivo remain unclear.

The refinement of a neural circuit during development depends
on a dynamic process of axonal and dendritic branching that leads
to changes in synaptic connectivity. Neuronal activities play a cru-
cial role in neural circuit refinement. It has been proposed that

BDNF acts as a modulator, rather than a direct mediator of activity
during the morphological development of neural circuits (Cohen-
Cory, 1999). The transcription of the bdnf gene is mediated by nine
discrete promoters; each driving a unique 5′ exon (exons I–VIII)
that is spliced onto the common 3′ coding exon (exon IX) to syn-
thesize the same pre-, pro- BDNF proteins (Aid et al., 2007). These
promoters drive activity-, epigenetic-, or hormonal -dependent
BDNF expressions. Single nucleotide polymorphism in BDNF
val66met allele is implicated with increased risk for schizophre-
nia, and cognitive impairments and is mediated at least in part by
activity-dependent trafficking and/or secretion of BDNF (Lu and
Martinowich, 2008; Li and Pozzo-Miller, 2014). Although exten-
sive knowledge has been accumulated regarding the roles of BDNF
signaling at the organismal and regional tissue level, relatively little
is known about BDNF expression being driven by different pro-
moters (e.g., activity-dependent endogenous BDNF), in playing a
specific roles in the formation of a functional circuit in vivo. There
are examples where BDNF can differentially modulate axonal and
dendritic arborizations within a single neuronal population (Kang
and Schuman, 1996; Lom and Cohen-Cory, 1999). However, it is
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unclear if BDNF driven by a specific promoter has similar effects.
The exact roles of activity-driven BDNF expression in the synapse
and circuit specific modulations remain elusive. BDNF’s effects are
spatially confined within single neurons, or even different subcel-
lular domains (Horch and Katz, 2002; Horch, 2004; English et al.,
2012). An understanding of local signaling functions at the level of
single neurons for specific BDNF promoters is essential in defining
its roles in modulating neural circuitry.

We sought to contribute to this area by using layer IV circuits
formed by spiny stellate cells within the mouse whisker-barrel sys-
tem, the first sensory processing unit within the primary sensory
cortex. In this circuit, the contribution of cell types and their dif-
ferent synaptic components to sensory perception/transmission
can be clearly explained. Using a strain of genetically modified
mice (KIV−/−) that exhibits relatively normal basal expression
but severely reduced activity-driven BDNF expression in the cor-
tex (Sakata et al., 2009), we have recently demonstrated a critical
role of activity-driven BDNF expression in the activity-dependent
modulation of GABAergic transmissions (Jiao et al., 2011). The
present study examines the structural (axonal vs. dendritic) and
synaptic specific (GABAergic vs. glutamatergic) properties of layer
IV circuits in the KIV−/− mice. In this study, we focused on
spiny stellate cells within the mouse somatosensory cortex, in
which previous studies have demonstrated circuit-wide changes
in response to the manipulation of sensory experiences (Feld-
man et al., 1999; Feldman and Brecht, 2005; Holtmaat et al., 2006;
Feldmeyer et al., 2013). Our results indicate that the actions of
activity-driven BDNF are highly specific to the presynaptic organi-
zation of GABAergic synapses and dendrites, particularly dendritic
spines, but not the formation of intracortical glutamatergic axonal
arborizations and synapses. Thus, we postulate that the role of
activity-driven BDNF expression is to specifically modulate the
computational ability of circuits that relate to gain control; rather
than the basic wiring of the circuits. These results support the
idea that BDNF signaling at the level of individual neurons is
highly specific, and understanding the specificity of BDNF is cen-
tral to understanding how BDNF is involved in the modulation of
development, maintenance, and plasticity of neural circuitry and
neural basis underlying neurodevelopmental disorders involving
BDNF.

MATERIALS AND METHODS
All experiments using mice were approved by the IACUC commit-
tee of the University of Wyoming.

BRAIN SLICE PREPARATIONS, ELECTROPHYSIOLOGICAL RECORDINGS
Mice were deeply anesthetized with isoflurane and decapitated.
The brains were quickly removed and placed into cold (∼4◦C)
oxygenated slicing medium containing (in mM): 2.5 KCl, 1.25
NaH2PO4, 10.0 MgCl2, 0.5 CaCl2, 26.0 NaHCO3, 11.0 glucose,
and 234.0 sucrose. TC slices were prepared according to methods
described by Agmon and Connors (1991). Tissue slices (300–
400 μm) were cut using a vibratome (TPI, St. Louis, MO, USA),
transferred to a holding chamber, and incubated (35◦C) for at
least 1 h. Individual slices were then transferred to a recording
chamber, fixed to a modified microscope stage, and allowed to
equilibrate for at least 30 min before recording. Slices were min-

imally submerged and continuously superfused with oxygenated
physiological saline at the rate of 4.0 ml/min. The physiological
perfusion solution contained (in mM): 126.0 NaCl, 2.5 KCl, 1.25
NaH2PO4, 1.0 MgCl2, 2.0 CaCl2, 26.0 NaHCO3, and 10.0 glucose.
Solutions were gassed with 95% O2/5% CO2 to a final pH of 7.4 at a
temperature of 35 ± 1◦C. The method for identification of the bar-
rel subfield in living TC slices was described in earlier studies (Sun
et al., 2006). A low-power objective (2.5×) was used to identify
barrels and thalamic nuclei, and a high-power water immersion
objective (60×) with Nomarski optics and infrared video was used
to visualize individual neurons. Recording pipettes were pulled
from capillary glass obtained from World Precision Instruments
(M1B150F-4), using a Sutter Instrument P80 puller, and had tip
resistances of 2–5 M� when filled with the intracellular solutions
below. A Multi-Clamp 700B amplifier (Axon Instruments, Foster
City, CA, USA) was used for voltage-clamp and current clamp
recordings. Patch pipette saline was modified according to Brecht
and Sakmann (2002) and composed of (in mM): 100 K-gluconate
(or Cs-gluconate for IPSC recordings), 10.0 phosphocreatine-Tris,
3.0 MgCl2, 0.07 CaCl2, 4 EGTA, 10.0 HEPES, 4.0 Na2-ATP, and 1.0
Na-GTP, pH adjusted to 7.4 and osmolarity adjusted to 280 mOsm.
Neurobiotin (0.5%; Vector Labs) was added to the patch pipette
solution. Data were accepted for analysis when access resistance
in whole-cell recordings ranged from 15 to 35 M�, and was
stable (<25% change) during the recording. The resting mem-
brane potential and the resting input resistance of the cell was
also monitored to ensure a stable baseline recording. Current and
voltage-clamp protocols were generated using PCLAMP9.2 soft-
ware (Axon Instruments). A sharpened bipolar tungsten electrode,
placed at ∼200 μm away from recorded cells in the cortical layer
IV, was used to activate intracortical fibers. eEPSCs were evoked in
the presence of a cocktail ACSF solution containing GABAA antag-
onist picrotoxin (50 μM) and low concentration of AMPA/kainate
receptor antagonist 2,3-dihydro-6-nitro-7-sulfamoyl-benzo (F)
quinoxaline (NBQX; 0.05 μM) to reduce excitation and pre-
vent hyperexcitability (Kumar and Huguenard, 2003). Evoked
EPSCs events were detected using Clampfit® event detection
function with either ‘threshold detection’ or ‘template detection’
method.

CHEMICALS
AMPA antagonist GYKI 52466 hydrocloride, [1-(4-aminophenyl)-
4-methyl-7, 8-methylenedioxy-5H-2, 3-benzodiazepine] (Sigma-
Aldrich, St. Louis, MO 63178, USA); 2,3-dihydro-6-nitro-7-
sulfamoyl-benzo (F) quinoxaline (NBQX, Tocris, Ellisville, MO
63021, USA), DL-AP5 (Tocris), Picrotoxin (Tocris).

VARIANCE–MEAN (V–M) ANALYSIS
Variance–mean (V–M) analysis was conducted based on Oleske-
vich et al. (2000). Briefly, Synaptic events were evoked in different
extracellular Ca2+/Mg2+ ratios (Silver et al., 1998, 2003; DiGre-
gorio et al., 2002; Lawrence and McBain, 2003). Although there
is a small differences in the concentration of the divalent cation,
this is in sufficient to cause significant changes in the excitabili-
ties (Hanck and Sheets, 1992). Next three parameters were used
to describe synaptic function: the probability of vesicle release
(Pr); the mean amplitude of the synaptic response to a vesicle of
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release (Qw); and the number of release sites (N). These param-
eters were obtained from the relationship between the variance
and the mean of a post-synaptic amplitude recorded under var-
ious release probability conditions (Silver et al., 1998; Reid and
Clements, 1999). When the V–M plot showed a typical parabolic
plot y = Ax-Bx2 (1). The following two equations were used to
calculate the average synaptic parameters: Qw = A/(1+CVI

2) (2);
Prw = X(B/A)(1+CVI

2) (3); and Nmin = 1/B (4). When the release
probability was low (<0.3), the V–M relationship was approxi-
mately linear, then the plot was analyzed with the linear equation
of Y = Ax (5). This would permit an estimation of Qw using equa-
tion (2), however, Prw and Nmin could not be estimated under this
conditions.

NEURONAL RECONSTRUCTION AND MORPHOMETRIC ANALYSIS
Individual spiny stellate cells were labeled via intracellular load-
ing neurobiotin during a 30–60 min whole-cell recording session.
Brain slices (350 μm) were subsequently histologically processed
and mounted onto microscopy slides using methods described
earlier (Young and Sun, 2009). The dendritic and axonal arbors
of each spiny stellate cell were digitally traced using Neurolucida®
under 100X oil-immersion objectives. Standard morphometric
analysis (e.g., Sholl analysis, polar histogram) was conducted using
Neurolucida Explorer® program, as described earlier (Young and
Sun, 2009). Shrinkage related errors was not corrected.

IMMUNOHISTOCHEMISTRY
Brains were post-fixed after perfusion in 4% paraformaldehyde
at 4◦C overnight, cryoprotected in 30% sucrose for 2 days,
frozen, and cut into 30 μm thick cryostat sections. Free-floating
sections were then stained for antibody-DAB as follows: sections
were rinsed in PBS, incubated for 30 min in 0.5% H2O2 in
PBS, 2 min × 10 min PBS washes, incubated for 2 h at room
temperature in PBS with 0.3% Triton X-100, 0.05% Tween,
and 4% normal goat serum, and incubated overnight at 4◦C
in PBS containing 0.2% Triton X-100 and primary antibodies
directed against: BDNF (1:500, Santa Cruz Biotechnology, sc-
546). Sections were then rinsed two times in PBS, incubated
at room temperature for 90 min in PBS containing biotiny-
lated goat anti-rabbit IgG (Vector labs), and finally incubated
overnight at 4◦C in Vectastain ABC kit (Vector Labs). Sections
were then rinsed two times in PBS, developed in 50 mM TBS con-
taining 0.04% 3,3′-diaminobenzidine tetrahydrochloride (DAB,
Sigma, St. Louis, MO, USA) and 0.012% H2O2 washed two
times with TBS, mounted onto glass slides, dehydrated, cleared,
and coversliped. 3-D neuron models were reconstructed from
stained cells using the Neurolucida system (MicroBrightField
Inc., Williston, VT, USA) and a bright-field light microscope
(Carl Zeiss MicroImaging Inc., Thornwood, NY, USA). Recon-
structed neurons were quantitatively analyzed with NeuroExplorer
(MicroBrightField Inc.).

MOUSE BREEDING AND GENOTYPING
The KIV+/− mice were crossed again to generate F2 homozy-
gous KIV−/− and litter mate wild-type KIV+/+ mice. Mouse
genotyping methods were described earlier by Sakata et al. (2009).

STATISTICS
Upon group divisions, data was compared across groups using
t-test, and/or single factor analysis of variances (one way-ANOVA)
tests, followed by Tukey’s HSD test in order to determine inter-
group significance. p < 0.05 was considered to be significantly
different. In some experiments, t-test or Kolmogorov–Smirnov
test was used as well.

RESULTS
Activity-driven BDNF-expression is abolished in the prefrontal
cortex, hippocampus, and neocortex in the KIV−/− mice (Sakata
et al., 2009). To further confirm this in the barrel cortex, we
applied kainic acid (KA) in vivo (30 mg/Kg). Within the first hour
of application, four out five treated animals developed seizures
evolving into recurrent generalized convulsions and were used
for histology experiments. The mice were euthanized at 4 h
post-treatment, and BDNF level was assessed using immuno-
histochemistry (Figure 1A). In wild-type mice, KA significantly
increased BDNF protein levels in both the hippocampus dentate
gyrus (DG) area and in the barrel field (BF). In contrast, KA
did not increase BDNF levels in these two areas in the KIV−/−
mice (Figure 1A3). These results indicated that activity-driven
BDNF expression in the forebrain is abolished in the KIV−/−
mice. We then examined the anatomical remodeling occurring
within the BF of the KIV−/− mice. Flattened tangential cortical
slices were prepared for cytochrome-C staining to label the BF
(Wong-Riley and Welt, 1980). The entire BF was reconstructed
using Neurolucida® and analyzed using Neurolucida Explorer®
(e.g., Figure 1B). Our results showed that there was a signifi-
cant increase in the size of individual barrels within the major
mystacial whisker barrels of KIV−/− mice (p < 0.01, Figure 1C),
but the barrel/septum ratio was unchanged (Figure 1D). There-
fore, we conclude that the development and maintenance of major
anatomical organization in the BF does not require activity-driven
BDNF.

DENDRITIC MORPHOLOGY
The morphological analysis was based on 44 neurobiotin labeled
intact layer IV spiny stellate cells, which consisted of 25 wild-type
neurons (KIV+/+) and 19 mutant neurons (KIV−/−). Cells with
truncated dendrites were removed from the analysis. Spiny stellate
cells were identified based on enriched dendritic spines and the
absence of apical dendrites extending out of layer IV into supra-
granular layers (Staiger et al., 2004). We found that the dendritic
morphology between the wild-type and mutant spiny stellate neu-
rons was different in several ways. (1) The total number (Table 1)
and density of spines on each dendrite (Figure 2) were significantly
reduced (Table 1). (2) While the dendritic branching measured by
the total number of intersections was unchanged, the total den-
dritic length was significantly reduced (Figure 2B2; Table 1). The
distribution of spines along the dendrites of spiny stellate cells
showed a linear correlation with dendritic location: distal den-
drites had far more spines than proximal dendrites. The slope of
this linear correlation was reduced in the mutant (Figure 2B4). As
a result, the reduction in dendritic spines was positively correlated
with dendritic length, i.e., distal dendritic spines are reduced the
most in the mutant (Figure 2B5).
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FIGURE 1 | Intact barrel structure with reduced activity-driven

expression of BDNF in KIV –/– mice. (A) Photograph of BDNF-IR in
thalamocortical sections of kainic acid treated (right) vs. control (left) wild-type
(A1) and mutant (KIV−/−, A2) mice. (A3) the intensity of BDNF-IR was
measured along lines across the barrel field (BF) and hippocampus dentate
gyrus area (DG), respectively. n = 4 mice in each group. Scale bars: 1 mm.
(B) Photograph of cytochrome-C stained BF in a flattened tangential section

across layer IV of somatosensory cortex of wild-type mice (B1). The BF was
re-constructed using Neurolucida®, from which the morphometric data of BF
was analyzed (B2). (C) The size of individual barrels within the primary
mystacial BF (PMBF A1 though E4) was significantly larger in the mutant,
N=4 in each group (C). (D) In contrast, the septum percentage within PMBF
did not show significant differences. The measurements were made from 6
pairs of littermate control (n = 6) and mutant (n = 6) mice, respectively.

The majority of wild-type spiny stellate cells showed an
asymmetric dendritic branching pattern: the distribution of
dendrites confined within a barrel and the soma was located
near the barrel border (Staiger et al., 2004; Egger et al., 2008).
This asymmetric distribution of dendritic arbors correlate with
the experience-dependent refinement process (Fox and Wong,
2005). Using a method described earlier by Egger et al. (2008),
we examined if dendritic asymmetry was affected in the
mutants. Indeed, there were significant reductions in asym-
metry in the mutant neurons, with a higher percentage of
cells showing reduced asymmetry (Figure 3; Table 1). Thus,
the dendritic morphology of spiny stellate cells was signif-
icantly affected by the disruption of activity-driven BDNF

expression, suggesting the maintenance of normal dendritic
morphology and spine density requires activity-driven BDNF.
Basal level of BDNF expression is insufficient to achieve this
role.

AXONAL ARBORS
Intracortical axonal collaterals between layer IV cells contribute
profusely to the excitatory synaptic inputs in spiny stellate cells
(Feldmeyer et al., 1999). The morphological analysis of axonal
arbors was based on 31 neurobiotin labeled, relatively intact layer
IV spiny stellate cells. These consisted of 9 out of 21 wild-type
neurons (KIV+/+) and 9 out of 10 mutant neurons (KIV−/−)
that were located at least 100 μm below the surface of a 350 μm
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Table 1 | Structural analysis of dendrites between wild-type and KIV–/– spiny stellate cells.

Qty Nodes Ends Spines Length

(μm)

Mean

length

Surface

(μm2)

Volume

(μm3)

Polar angle

(after fan in)

Polarized

cells

(yes = 1,

no = 0)

KIV+/+(n = 25) 4.5 ± 0.3 23.1 ± 1.4 28.0 ± 1.4 488.4 ± 64 1818.6 ± 90 438.1 ± 32 3724.0 ± 281 691.4 ± 86 126.9 ± 6.8 0.9 ± 0.1

KIV−/−

(n = 19)

4.4 ± 0.0 18.9 ± 0.1 239 ± 0.25 288.1 ± 42 1527.3 ± 96 384.0 ± 37 2828.8 ± 244 457.3 ± 56 154.2 ± 8.5 0.5 ± 0.1

p value 0.8 0.1 0.2 0.04 0.01 0.2 0.01 0.03 0.04 0.01

QTY, quantity; Ends, dendritic endings; length, total dendritic length; mean length, mean dendritic length. Mean ± Standard error (SE) of the data is shown. p < 0.05
is considered statistically significant.

brain slice. The axonal arbors of both the mutant and wild-type
spiny stellate cells showed typical patterns as previously described
(Staiger et al., 2004; Egger et al., 2008). Briefly, the main stem
of axons originated from the basal direction of the soma and
extended toward the white matter. Within layer IV, the main stem
of axons gave rise to abundant recurrent collaterals that centered
on the barrels and extended to layer II/III barrels (Figure 4A).
Cells with truncated axonal arbors, i.e., severe deviation from
the typical axonal morphology, were removed from analysis. The
morphometric data and Sholl analysis showed that there were no
significant differences in either aspects of axonal morphologies,
which include both the total length and the branching patterns
(Table 2; Figures 4B,C). Therefore, in contrast to the dendrites,
the morphology of axonal arbors of spiny stellate cells is indepen-
dent of the activity-driven BDNF expression. The basal level of
BDNF expression is therefore sufficient to the development and
maintenance of intact axonal arbors in these cells.

GABAergic TRANSMISSION
We previously reported the disturbance of excitation–inhibition
(E–I) balance in the KIV−/− mice (Jiao et al., 2011). To further
understand how specific synapses are affected and the underly-
ing synaptic mechanisms, we compared GABAergic transmissions
within spiny stellate cells from wild-type and KIV−/− mice. Paired
recordings were initially made from wild-type mice. The unitary
IPSCs (uIPSCs) onto spiny stellate cells showed a strong paired-
pulse depression that was reduced by calcium channel blocker
cadmium (100 μM, Figure 5A2), suggesting that inhibitory
synapses were high release probability synapses (Xu-Friedman and
Regehr, 2000; Silver et al., 2003). Next, evoked IPSCs (eIPSCs)
were induced by an extracellular tungsten stimulating electrode
located near the recorded cells (<100 μm), in the presence of a
cocktail solution containing NBQX (10 μM) and AP-5 (100 μM)
to block AMPARs and NMDARs. Consistent with the results
of paired recordings, the eIPSCs showed a typical paired-pulse
depression in the wild-type mice, whereas the paired-pulse depres-
sion was abolished in the mutant mice (Figure 6B2). This data
suggests that the calcium-dependent release of GABA was compro-
mised in the mutants. We next studied the properties of eIPSCs
under different calcium and magnesium ratios in the extracel-
lular solution (Silver et al., 2003). VM analysis was performed

based on the methods described previously (Silver, 2003). As
shown in Figures 5C2,D2, the change of extracellular calcium
and magnesium ratios did not induce significant changes in the
input resistance (Rin) of the recorded cells. The V–M plot of
eIPSCs in the wild-type mice showed a feature that was consis-
tent with the high release probability (Pr) synapses: when the Pr
was low (e.g., at 0.5/5 mM Ca2+/Mg2+), the trial to trial vari-
ance of eIPSC amplitude was low; when the Pr was moderate
(at 1.25/3 or 2/2 mM Ca2+/Mg2+), the trial to trial variabil-
ity was high; when the Pr was high (at 5/0.5 mM Ca2+/Mg2+),
almost all sites released GABA after every stimulus and the eIPSC
amplitude variance was low (Figure 5C). Therefore, the V–M
plot of GABA release in the wild-type neurons showed a typi-
cal parabolic plot y = Ax-Bx2 (1). The following three equations
were used to calculate the average synaptic parameters: quan-
tal content (Qw) = A/(1+CV1

2) (CV, coefficient of variance)
(2); release probability of the eIPSCs Prw = X(B/A)(1+CV1

2)
(3); and number of minimum release site (N/min) = 1/B (4).
The eIPSCs of wild-type mice were estimated to have a Qw of
14.3 ± 2.5 pA, with N/min of 10 ± 2. The Prw varies from
0.1 ± 0.2 at 0.5/5 mM Ca2+/Mg2+ to 1.0 ± 0.2 at 5/0.5 mM
Ca2+/Mg2+. Next, we studied the eIPSCs in KIV−/− mice under
similar conditions and performed V–M analysis. As shown in
Figure 5D, eIPSCs in mutant neurons did not show the typical
V–M relationship that can be plotted using a typical parabolic
plot. In contrast, the V–M relationship in mutants was lin-
ear, which indicated that the Pr of these synapses was always
low (<0.3), with a significantly smaller Qw of 3.8 ± 1.5 pA
(p < 0.05 vs. wild-type mice). The amplitudes of eIPSCs in the
four different Ca2+/Mg2+ concentrations also showed statistical
significant differences at higher Ca2+ concentrations (p = 0.3,
0.5, 0.04, and 0.01, respectively) between wild-type (17 ± 2,
45 ± 7, 91 ± 11, and 131 ± 13 pA, respectively) and KIV group
(11 ± 3, 36 ± 4, 40 ± 3, and 51 ± 5 pA, respectively). The results
of the V–M analysis indicate that inhibitory synaptic transmis-
sion is compromised in KIV−/− mice, with significantly lower
quantal content and release probabilities. These findings suggest
that activity-driven BDNF expression fine-tunes the strength of
intracortical GABAergic transmissions by remodeling of presy-
naptic calcium-dependent vesicle release features of GABAergic
synapses. Thus, activity-driven expression of BDNF is required
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FIGURE 2 | Altered dendritic morphology in KIV–/– mice. (A)

Photomicrograph of a pair of neurobiotin labeled spiny stellate cells from
littermate wild-type (A1,A3) and KIV−/− mice (A2,A4), respectively. Scale bar
in (A1,A2) 10 μm; Scale bar in (A3,A4) 2 μm. White arrows in (A3,A4) dendritic
spines. (B) Sholl analysis was performed to compare the distribution of
dendritic spines (B1), the distribution of total dendritic length (B2), as well as

the no. of intersections (B3) along different dendritic radiums from the soma.
(B4) The average no. of dendritic spines was plotted against its dendritic
length in wild-type mice (black squares) and KIV−/− mice (red circles). (B5)
the spine density in wild-type vs. KIV−/− mice was plotted against the
dendritic radius from the soma. n = 25 and 19 wild-type and mutant spiny
stellate cells, respectively.
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FIGURE 3 | Altered dendritic asymmetry in KIV-/- mice. (A) Graphs
illustrated the processes where the distribution of dendritic arbors was
converted into a polar histogram, from which a free angle was derived. (B)

Free angles, an objective way to assess the asymmetric feature of dendritic
arbors, were significantly larger in KIV−/− mice (red, p < 0.05), indicating a
reduced dendritic asymmetry.

for maintaining the presynaptic features of GABAergic synapses,
and the basal level of BDNF is insufficient to maintain these
features.

GLUTAMATERGIC TRANSMISSION
Intracortical unitary EPSCs between wild-type spiny stellate cells
did not show the type of paired-pulse depression as seen in uIPSCs

(Figure 6A). Next, eEPSCs were induced by placing an extra-
cellular tungsten stimulating electrode near the recorded cells
(<100 μm), in the presence of a cocktail solution containing picro-
toxin (100 μM) and a low concentration of NBQX (0.1 μM) to
partially block AMPARs and prevent epileptiform activity in the
tissue (Kumar and Huguenard, 2001). Similar to uEPSCs, the eEP-
SCs did not show strong paired-pulse depression in either mutant
or wild-type mice (Figure 6A3). The CV of the amplitudes of eEP-
SCs also remained similar between wild-type and KIV−/− mice
(Figure 6A4). To further examine the properties of intracorti-
cal glutamate transmission, we studied the properties of eEPSCs
under different calcium and magnesium ratios in the extracel-
lular solution (Silver et al., 2003). As shown in Figures 6B2,C2,
the change of extracellular calcium and magnesium ratios did not
induce significant changes in the input resistance (Rin) of the
recorded cells. eEPSC VM plot showed a linear regression with
similar slopes in the wild-type and mutant neurons (Figure 6).
This indicates that the release probability (Pr) for these synapses
was restricted to the lower range (<0.3), therefore a linear fit was
appropriate: Y = Ax (5). We next estimated the Qw using equation
(2): Qw =A(1+CV2). Qw of the KIV−/− mice (7.2 ± 1.0) was sim-
ilar to that of wild-type mice (7.4 ± 0.8, p > 0.3). The amplitudes
of evoked EPSCs in the four different Ca2+/Mg2+ concentrations
showed no statistical significant differences (p = 0.8, 0.4, 0.6, and
0.3, respectively) between wild-type (10 ± 2, 11 ± 1.5, 37 ± 7, and
78 ± 20 pA, respectively) and KIV group (9 ± 2, 20 ± 3, 29 ± 4,
and 36 ± 5 pA, respectively). Our results indicated that the proper-
ties of glutamatergic EPSCs induced by local electrical stimulation
were similar between the wild-type and KIV−/− mice. These find-
ings support the idea that excitatory transmission in the mutant is
similar to the wild-type mice. Therefore, activity-driven BDNF is
not required for the development/maintenance of the properties
of glutamate synapses, and a basal level of BDNF appears to be
sufficient to achieve this role.

DISCUSSION
The output of neural circuits are fine-tuned according to different
brain states (Hasenstaub et al., 2007), which underlies cogni-
tive function of the brain. Abnormal balance of excitation and
inhibitions underlies neurodevelopmental disorders and epilepsy
(Yizhar et al., 2011; Paz et al., 2013). Understanding the relation-
ship in how activity and BDNF interacts to generate circuit specific
modulation and control cortical plasticity is imperative. Using
the KIV−/−-GAD67-GFP+/− line, allowing the visualization of
GABAergic interneurons, we have previously addressed the effects
of the KIV−/− line on whisker-trimming induced plasticity of
GABAergic synapses (Jiao et al., 2011). However, further investi-
gations of the consequences of disrupting of activity-driven BDNF
expression on the maturation of the entire neuronal network in
vivo are necessary. This type of work has never been done for
the KIV−/− mutants. To our knowledge, this type of work has
not been done for other mouse models of reduced BDNF (e.g.,
heterozygotes).

Our first major finding is that activity-driven BDNF expres-
sion in the barrel cortex is important for the maturation and/or
maintenance of dendritic arborizations, especially spine densi-
ties. Although it is well established that BDNF contributes to the
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FIGURE 4 | Axonal morphology was unaltered in KIV-/- mice. (A) An
example of a pair of reconstructed wild-type spiny stellate cells, located in
neighboring barrels (grey areas in A2 and red contour in A1). Note the typical
distribution of axonal arbors (blue) within layer IV barrels with projections
toward layer II/III, and downward projections toward the white matter.
Dendrites (magenta) are largely confined within a single barrel. (B)

Reconstructed axonal arbors from 9 pairs of wild-type (B1, black) and
littermate mutant neurons (B2, red) were superimposed at the soma location.
(C) Sholl analysis was performed to compare the distribution of no. of
intersections (C1), and the distribution of total axonal length (C2) along
different radius from the soma in 21 wild-type and 10 mutant neurons,
respectively. No statistical differences between WT and KIV mice.
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Table 2 | Structural analysis of axonal arbors between wild-type and KIV–/– spiny stellate cells.

Nodes Ends Length

(μm)

Mean length

(μm)

Surface

(μm2)

Volume

(μm3)

KIV+/+ (n = 9) 52.3 ± 8.7 54.0 ± 8.9 6174.4 ± 1013 6119.7 ± 1045 6270.3 ± 1314 608.8 ± 143

KIV−/−(n = 9) 58.1 ± 6.8 60.2 ± 6.8 6944.0 ± 834 6435.7 ± 627 6516.4 ± 946 554.2 ± 149

p value 1.0 0.9 0.5 0.8 0.8 0.7

FIGURE 5 | Altered presynaptic GABAergic transmission in KIV–/– mice.

(A) Paired recordings from a pair of synaptic connected cells in layer IV of a
wild-type mouse. Repetitive action potentials (top) in a FS cell induced
GABAergic uIPSCs (bottom) in the post-synaptic spiny stellate cell (A1). The
averaged uIPSCs (red trace in the bottom) showed a short-term depression,
which was reduced by calcium channel blocker cadmium (100 μM, A2). (B)

The characteristic paired-pulse depression of eIPSCs in spiny stellate cells of
wild-type mice was abolished in KIV−/− mice. n = 8 cells in each group.

(C,D) IPSCs were evoked in the presence of different extracellular
Ca2+/Mg2+ ratios (C1,D1) in wild-type (C, n = 8) and KIV−/− mice (D, n = 8).
The input resistance (C2,D2), and amplitude (C3,D3) of each evoked IPSC
event was plotted against experimental time. (C4,D4) V–M analysis of the
same experiments of C1,D1. (E) The V–M analysis of all wild-type mice (black
squares) and KIV−/− mice (red circles), statistical analysis were performed
between amplitude of eIPSCs evoked in the same conditions. *p < 0.05;
**p < 0.01.

sculpting of dendrites and synapses (Horch et al., 1999; Horch
and Katz, 2002; Gorski et al., 2003; Jin et al., 2003; English et al.,
2012), the range and source of BDNF signaling underlying these
functions is unclear. Data from our studies indicates that sensory
activity-dependent synthesis of BDNF accounts for approximately
2/3 of the total BDNF within the barrel cortex (Jiao et al., 2011).
Sensory experience drives the stabilization of new spines in the
subclasses of cortical neurons and promotes the formation of new
synapses (Holtmaat et al., 2008). In the BDNF heterozygote mouse,

BDNF expression is reduced to less than half of wild-type mouse.
However, both the spine density, spine morphology, and synap-
tic vesicle distribution is indistinguishable from wild-type controls
(Genoud et al., 2004). In contrast, in the bdnf-KIV mice, the reduc-
tion in BDNF protein is similar to the BDNF heterozygote mouse,
yet, both spines are severely reduced (Figure 2). More impor-
tantly, the dendritic asymmetry, a feature highly unique to the
spiny stellate cells (Staiger et al., 2004; Egger et al., 2008), were
shown to be regulated via experience-dependent process (Fox and
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FIGURE 6 | Unaltered presynaptic glutamatergic transmission in KIV-/-

mice. (A) Paired recordings from a pair of synaptic connected cells in layer
IV in a wild-type mouse. Repetitive action potentials (bottom) in a spiny
stellate cell induced uEPSPs (top) in a post-synaptic spiny stellate cell (A1).
The averaged uEPSPs (top red trace) showed little short-term depression
(A2). (A3,A4) There were no significant differences between the
paired-pulse ratios (A3) and CV (A4) of eIPSCs in spiny stellate cells of
wild-type vs. mutant (KIV−/−) mice, n = 9 cells in each group. (B,C)

EPSCs were evoked in the presence of different extracellular Ca2+/Mg2+

ratios (B1,C1) in wild-type (B) and KIV−/− mice (C). The input resistance
(B2,C2), and amplitude of each eIPSC event was plotted against
experimental time. (B4) V–M analysis of the same experiments of B1. (D)

The V–M analysis of all wild-type mice (black squares, n = 9) and KIV−/−
mice (red open circles, N = 9). The linear fitting curves were essentially
overlap between wild-type and KIV−/− mice. Statistical analysis were
performed between amplitude of eIPSCs evoked in the same conditions.
There were no significant differences between the wild-type and KIV−/−
mice.

Wong, 2005), as was indeed reduced in the KIV−/− mice. Thus,
our data described here indicates, for the first time, that con-
stitutive BDNF is insufficient to maintain the spine density and
normal dendritic arborizations in the sensory cortex, and activity-
driven BDNF is responsible for the stabilization of dendritic
spines.

In contrast to the dendrites, activity-driven BDNF expression is
NOT required for the maturation and/or maintenance of intracor-
tical glutamatergic axonal arbors in vivo. Previous studies conclude
that BDNF’s modulation occurs both within axonal and dendritic
compartments (Cohen-Cory and Fraser, 1995; Cabelli et al., 1997),
and is mediated by protein synthesis in both compartments as
well (Kang and Schuman, 1996). BDNF is essential for the out-
growth and activity-dependent remodeling of axonal arbors in
vivo (Hu et al., 2005; Jeanneteau et al., 2010). However, it is unclear

whether this requires constitutive and/or activity-driven BDNF.
The axonal arbors of layer IV spiny stellate cells shows stereo-
typed organization in a manner that facilitates thalamocortical
relay onto layer II/III cells (Staiger et al., 2004; Egger et al., 2008).
Studies have shown that the intracortical axonal branches in
layer 2/3 are modulated by sensory manipulations (Bruno et al.,
2009). Our data suggests that there are no significant differences
in axonal arbors of layer IV cells between wild-type mice and
mice lacking activity-driven BDNF, even though the dendritic
arbors showed significant differences in the same neuron. Thus,
we propose that the activity-dependent remodeling of axonal
arbors is NOT mediated by activity-driven BDNF expression. It
appears that the basal level of BDNF is adequate in the develop-
ment and/or maintenance of axonal arbors of adult spiny stellate
cells.
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Our third and perhaps most surprising conclusion is related
to the subcellular specificity of the effects of activity-driven
BDNF expression within layer IV. (1) presynaptic GABAergic
transmissions, but not glutamatergic transmissions, are affected in
KIV−/− mice (Figures 5 and 6). (2) Within GABAergic synapses,
the effects of mutation selectively affect the synaptic transmission
mediated by presynaptic calcium-dependent properties (release
probability, no. of release sites, and quanta content). Moreover,
our previous results showed that the disruption of activity-driven
BDNF expression prevented sensory deprivation-induced barrel-
specific attenuations of GABAergic transmissions. In the KIV−/−
mice, whisker-trimming induced plasticity in inhibitory synaptic
transmissions was entirely abolished (Jiao et al., 2011). In addition,
there are no significant differences in the properties of minia-
ture IPSCs between the wild-type and KIV−/− mice (Jiao et al.,
2011). The strong effects on dendritic spines and GABAergic
transmissions vs. lack of effects on axonal arbors and glutamate
transmissions appear to be paradoxical: the spine is usually associ-
ated with the establishment of glutamatergic synapses. However, it
has been reported that GABAergic synapses formulate at the den-
dritic spines of spiny stellate cells (Knott et al., 2002). We further
hypothesize that dendritic spines are subdivided into GABAergic
containing and putative glutamatergic spines. Our results indicate
that these GABAergic containing dendritic spines require expres-
sion of activity-driven BDNF. Our data should not be interpreted
as lack of any changes associated with glutamatergic synapses.
In fact, both our current data (Figures 6B1 vs. 6C1) and earlier
data (Jiao et al., 2011), demonstrated a reduction of glutamater-
gic synaptic conductances in the KIV mice. It is remarkable that
a significant removal of BDNF (about 2/3 of reduction in total
BDNF is mediated via activity-dependent process), only produced
negligible effects on presynaptic properties of intracortical glu-
tamatergic transmissions, but severely changed the presynaptic
but not post-synaptic GABAergic transmissions (this study), and
completely abolished whisker-trimming induced plasticity of the
GABAergic network in vivo (Jiao et al., 2011). The network con-
sequences of such an effect are intriguing. While the function of
intracortical glutamatergic transmissions between layer IV spiny
cells is to relay sensory information onto layer II/III (Shepherd
and Svoboda, 2005; Bruno and Sakmann, 2006), the function of
intracortical GABAergic transmissions is to generate feed-forward
inhibition (Bruno and Simons, 2002; Swadlow, 2003; Sun et al.,
2006), which provides gain control over receptive field properties.
Activity-driven BDNF selectively targets the feed-forward inhibi-
tion, but spares the glutamatergic transmission and wiring, which
is fundamentally important for the sensory transmission.

Although BDNF has been postulated to play critical roles in
neuronal circuit development and plasticity (Greenberg et al.,
2009; Deinhardt and Chao, 2013), here we demonstrated a high
degree of selectivity of activity regulated BDNF expression medi-
ated effects on individual neurons within a functional network
in vivo. The contrasting effects of genetic removal of activity-
driven BDNF on dendrites vs. axonal arbors, and GABAergic
vs. glutamatergic synapses, demonstrate a highly specific effect
of neurotrophin in the activity-dependent sculpting of neural
circuits. We postulate that the role of activity-dependent BDNF
is to modulate the computational ability of circuits that relate

to the gain control (i.e., feed-forward inhibition); whereas the
basic wiring of circuits relevant to the sensory pathway is spared.
Gain control modulation within cortical circuits has broad impact
on cognitive processing attention related behavior (Kerlin et al.,
2010). Cognitive behavior and mode is determined by brain
states. Thus the studying of circuit alteration by endogenous
BDNF provides insights into the cellular and molecular mech-
anisms of diseases mediated by BDNF. These results raise a
number of interesting questions regarding the need to uncover
the precise subcellular and molecular mechanisms of such an
action. These results also shed light on the potential neural
mechanisms underlying cognitive impairments within the sensory
system.
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